1
|
Gozashti L, Hartl DL, Corbett-Detig R. Universal signatures of transposable element compartmentalization across eukaryotic genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562820. [PMID: 38585780 PMCID: PMC10996525 DOI: 10.1101/2023.10.17.562820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The evolutionary mechanisms that drive the emergence of genome architecture remain poorly understood but can now be assessed with unprecedented power due to the massive accumulation of genome assemblies spanning phylogenetic diversity1,2. Transposable elements (TEs) are a rich source of large-effect mutations since they directly and indirectly drive genomic structural variation and changes in gene expression3. Here, we demonstrate universal patterns of TE compartmentalization across eukaryotic genomes spanning ~1.7 billion years of evolution, in which TEs colocalize with gene families under strong predicted selective pressure for dynamic evolution and involved in specific functions. For non-pathogenic species these genes represent families involved in defense, sensory perception and environmental interaction, whereas for pathogenic species, TE-compartmentalized genes are highly enriched for pathogenic functions. Many TE-compartmentalized gene families display signatures of positive selection at the molecular level. Furthermore, TE-compartmentalized genes exhibit an excess of high-frequency alleles for polymorphic TE insertions in fruit fly populations. We postulate that these patterns reflect selection for adaptive TE insertions as well as TE-associated structural variants. This process may drive the emergence of a shared TE-compartmentalized genome architecture across diverse eukaryotic lineages.
Collapse
Affiliation(s)
- Landen Gozashti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
2
|
Zhang S, Wang R, Zhu X, Zhang L, Liu X, Sun L. Characteristics and expression of lncRNA and transposable elements in Drosophila aneuploidy. iScience 2023; 26:108494. [PMID: 38125016 PMCID: PMC10730892 DOI: 10.1016/j.isci.2023.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/28/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Aneuploidy can globally affect the expression of the whole genome, which is detrimental to organisms. Dosage-sensitive regulators usually have multiple intermolecular interactions, and changes in their stoichiometry are responsible for the dysregulation of the regulatory network. Currently, studies on noncoding genes in aneuploidy are relatively rare. We studied the characteristics and expression profiles of long noncoding RNAs (lncRNAs) and transposable elements (TEs) in aneuploid Drosophila. It is found that lncRNAs and TEs are affected by genomic imbalance and appear to be more sensitive to an inverse dosage effect than mRNAs. Several dosage-sensitive lncRNAs and TEs were detected for their expression patterns during embryogenesis, and their biological functions in the ovary and testes were investigated using tissue-specific RNAi. This study advances our understanding of the noncoding sequences in imbalanced genomes and provides a novel perspective for the study of aneuploidy-related human diseases such as cancer.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xilin Zhu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ludan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xinyu Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Charlesworth B. The effects of inversion polymorphisms on patterns of neutral genetic diversity. Genetics 2023; 224:iyad116. [PMID: 37348059 PMCID: PMC10411593 DOI: 10.1093/genetics/iyad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/23/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023] Open
Abstract
The strong reduction in the frequency of recombination in heterozygotes for an inversion and a standard gene arrangement causes the arrangements to become partially isolated genetically, resulting in sequence divergence between them and changes in the levels of neutral variability at nucleotide sites within each arrangement class. Previous theoretical studies on the effects of inversions on neutral variability have assumed either that the population is panmictic or that it is divided into 2 populations subject to divergent selection. Here, the theory is extended to a model of an arbitrary number of demes connected by migration, using a finite island model with the inversion present at the same frequency in all demes. Recursion relations for mean pairwise coalescent times are used to obtain simple approximate expressions for diversity and divergence statistics for an inversion polymorphism at equilibrium under recombination and drift, and for the approach to equilibrium following the sweep of an inversion to a stable intermediate frequency. The effects of an inversion polymorphism on patterns of linkage disequilibrium are also examined. The reduction in effective recombination rate caused by population subdivision can have significant effects on these statistics. The theoretical results are discussed in relation to population genomic data on inversion polymorphisms, with an emphasis on Drosophila melanogaster. Methods are proposed for testing whether or not inversions are close to recombination-drift equilibrium, and for estimating the rate of recombinational exchange in heterozygotes for inversions; difficulties involved in estimating the ages of inversions are also discussed.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
4
|
Colonna Romano N, Fanti L. Transposable Elements: Major Players in Shaping Genomic and Evolutionary Patterns. Cells 2022; 11:cells11061048. [PMID: 35326499 PMCID: PMC8947103 DOI: 10.3390/cells11061048] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous genetic elements, able to jump from one location of the genome to another, in all organisms. For this reason, on the one hand, TEs can induce deleterious mutations, causing dysfunction, disease and even lethality in individuals. On the other hand, TEs can increase genetic variability, making populations better equipped to respond adaptively to environmental change. To counteract the deleterious effects of TEs, organisms have evolved strategies to avoid their activation. However, their mobilization does occur. Usually, TEs are maintained silent through several mechanisms, but they can be reactivated during certain developmental windows. Moreover, TEs can become de-repressed because of drastic changes in the external environment. Here, we describe the ‘double life’ of TEs, being both ‘parasites’ and ‘symbionts’ of the genome. We also argue that the transposition of TEs contributes to two important evolutionary processes: the temporal dynamic of evolution and the induction of genetic variability. Finally, we discuss how the interplay between two TE-dependent phenomena, insertional mutagenesis and epigenetic plasticity, plays a role in the process of evolution.
Collapse
|
5
|
Bertocchi NÁ, Oliveira TDD, Deprá M, Goñi B, Valente VLS. Interpopulation variation of transposable elements of the hAT superfamily in Drosophila willistoni (Diptera: Drosophilidae): in-situ approach. Genet Mol Biol 2022; 45:e20210287. [PMID: 35297941 PMCID: PMC8961557 DOI: 10.1590/1678-4685-gmb-2021-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Transposable elements are abundant and dynamic part of the genome, influencing organisms in different ways through their presence or mobilization, or by acting directly on pre- and post-transcriptional regulatory regions. We compared and evaluated the presence, structure, and copy number of three hAT superfamily transposons (hobo, BuT2, and mar) in five strains of Drosophila willistoni species. These D. willistoni strains are of different geographical origins, sampled across the north-south occurrence of this species. We used sequenced clones of the hAT elements in fluorescence in-situ hybridizations in the polytene chromosomes of three strains of D. willistoni. We also analyzed the structural characteristics and number of copies of these hAT elements in the 10 currently available sequenced genomes of the willistoni group. We found that hobo, BuT2, and mar were widely distributed in D. willistoni polytene chromosomes and sequenced genomes of the willistoni group, except for mar, which is restricted to the subgroup willistoni. Furthermore, the elements hobo, BuT2, and mar have different evolutionary histories. The transposon differences among D. willistoni strains, such as variation in the number, structure, and chromosomal distribution of hAT transposons, could reflect the genomic and chromosomal plasticity of D. willistoni species in adapting to highly variable environments.
Collapse
Affiliation(s)
- Natasha Ávila Bertocchi
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Thays Duarte de Oliveira
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Animal, Porto Alegre, RS, Brazil
| | - Maríndia Deprá
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Animal, Porto Alegre, RS, Brazil
| | - Beatriz Goñi
- Universidad de la República, Facultad de Ciencias, Montevideo, Uruguay
| | - Vera Lúcia S Valente
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Animal, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Comprehensive mapping of transposable elements reveals distinct patterns of element accumulation on chromosomes of wild beetles. Chromosome Res 2021; 29:203-218. [PMID: 33638119 DOI: 10.1007/s10577-021-09655-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Over the past decades, transposable elements (TEs) have been shown to play important roles shaping genome architecture and as major promoters of genetic diversification and evolution of species. Likewise, TE accumulation is tightly linked to heterochromatinization and centromeric dynamics, which can ultimately contribute to speciation. Despite growing efforts to characterize the repeat landscape of species, few studies have focused on mapping the accumulation profiles of TEs on chromosomes. The few studies on repeat accumulation profiles in populations are biased towards model organisms and inbred lineages. Here, we present a cytomolecular analysis of six mobilome-extracted elements on multiple individuals from a population of a species of wild-captured beetle, Dichotomius schiffleri, aiming to investigate patterns of TE accumulation and uncover possible trends of their chromosomal distribution. Compiling TE distribution data from several individuals allowed us to make generalizations regarding variation of TEs at the gross chromosome level unlikely to have been achieved using a single individual, or even from a whole-genome assembly. We found that (1) transposable elements have differential accumulation profiles on D. schiffleri chromosomes and (2) specific chromosomes have their own TE accumulation landscape. The remarkable variability of their genomic distribution suggests that TEs are likely candidates to contribute to the evolution of heterochromatin architecture and promote high genetic variability in species that otherwise display conserved karyotypes. Therefore, this variation likely contributed to genome evolution and species diversification in Dichotomius.
Collapse
|
7
|
Bertocchi NA, Torres FP, Garnero ADV, Gunski RJ, Wallau GL. Evolutionary history of the mariner element galluhop in avian genomes. Mob DNA 2017; 8:11. [PMID: 28814978 PMCID: PMC5556988 DOI: 10.1186/s13100-017-0094-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/21/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Transposable elements (TEs) are highly abundant genomic parasites in eukaryote genomes. Although several genomes have been screened for TEs, so far very limited information is available regarding avian TEs and their evolutionary histories. Taking advantage of the rich genomic data available for birds, we characterized the evolutionary history of the galluhop element, originally described in Gallus gallus, through the use of several bioinformatic analyses. RESULTS galluhop homologous sequences were found in 6 of 72 genomes analyzed: 5 species of Galliformes (Gallus gallus, Meleagris gallopavo, Coturnix japonica, Colinus virginianus, Lyrurus tetrix) and one Buceritiformes (Buceros rhinoceros). The copy number ranged from 5 to 10,158, in the genomes of C. japonica and G. gallus respectively. All 6 species possessed short elements, suggesting the presence of Miniature Inverted repeats Transposable Elements (MITEs), which underwent an ancient massive amplification in the G. gallus and M. gallopavo genomes. Only 4 species showed potential MITE full-length partners, although no potential coding copies were detected. Phylogenetic analysis of reconstructed coding sequences showed that galluhop homolog sequences form a new mariner subfamily, which we termed Gallus. Inter-species and intragenomic galluhop distance analyses indicated a high identity between the consensus of B. rhinoceros and the other 5 related species, and different emergence ages of the element between the Galliformes species and B. rhinocerus, suggesting that horizontal transfer took place from Galliformes to a Buceritiformes ancestor, probably through an intermediate species. CONCLUSIONS Overall, our results showed that mariner elements have amplified to high copy numbers in some avian species, and that this transposition burst probably occurred in the common ancestor of G. gallus and M. gallopavo. In addition, although no coding sequences could be found currently, they probably existed, allowing an ancient massive MITE amplification in these 2 species. The other 4 species also have MITEs, suggesting that this new mariner family is prone to give rise to such non-autonomous derivatives. Last, our results suggest that a horizontal transfer event of a galluhop element occurred between Galliformes and Buceritiformes.
Collapse
Affiliation(s)
- Natasha Avila Bertocchi
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
| | - Fabiano Pimentel Torres
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
| | - Analía del Valle Garnero
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
| | - Ricardo José Gunski
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães – FIOCRUZ-CPqAM, Recife, Pernambuco Brazil
| |
Collapse
|
8
|
Scarpato M, Angelini C, Cocca E, Pallotta MM, Morescalchi MA, Capriglione T. Short interspersed DNA elements and miRNAs: a novel hidden gene regulation layer in zebrafish? Chromosome Res 2016; 23:533-44. [PMID: 26363800 DOI: 10.1007/s10577-015-9484-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, we investigated by in silico analysis the possible correlation between microRNAs (miRNAs) and Anamnia V-SINEs (a superfamily of short interspersed nuclear elements), which belong to those retroposon families that have been preserved in vertebrate genomes for millions of years and are actively transcribed because they are embedded in the 3' untranslated region (UTR) of several genes. We report the results of the analysis of the genomic distribution of these mobile elements in zebrafish (Danio rerio) and discuss their involvement in generating miRNA gene loci. The computational study showed that the genes predicted to bear V-SINEs can be targeted by miRNAs with a very high hybridization E-value. Gene ontology analysis indicates that these genes are mainly involved in metabolic, membrane, and cytoplasmic signaling pathways. Nearly all the miRNAs that were predicted to target the V-SINEs of these genes, i.e., miR-338, miR-9, miR-181, miR-724, miR-735, and miR-204, have been validated in similar regulatory roles in mammals. The large number of genes bearing a V-SINE involved in metabolic and cellular processes suggests that V-SINEs may play a role in modulating cell responses to different stimuli and in preserving the metabolic balance during cell proliferation and differentiation. Although they need experimental validation, these preliminary results suggest that in the genome of D. rerio, as in other TE families in vertebrates, the preservation of V-SINE retroposons may also have been favored by their putative role in gene network modulation.
Collapse
Affiliation(s)
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo "M. Picone", CNR, via P. Castellino, 80131, Napoli, Italy
| | - Ennio Cocca
- IBBR-CNR, via P. Castellino, 80131, Napoli, Italy
| | - Maria M Pallotta
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy
| | - Maria A Morescalchi
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy
| | - Teresa Capriglione
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy.
| |
Collapse
|
9
|
Rius N, Guillén Y, Delprat A, Kapusta A, Feschotte C, Ruiz A. Exploration of the Drosophila buzzatii transposable element content suggests underestimation of repeats in Drosophila genomes. BMC Genomics 2016; 17:344. [PMID: 27164953 PMCID: PMC4862133 DOI: 10.1186/s12864-016-2648-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/22/2016] [Indexed: 11/10/2022] Open
Abstract
Background Many new Drosophila genomes have been sequenced in recent years using new-generation sequencing platforms and assembly methods. Transposable elements (TEs), being repetitive sequences, are often misassembled, especially in the genomes sequenced with short reads. Consequently, the mobile fraction of many of the new genomes has not been analyzed in detail or compared with that of other genomes sequenced with different methods, which could shed light into the understanding of genome and TE evolution. Here we compare the TE content of three genomes: D. buzzatii st-1, j-19, and D. mojavensis. Results We have sequenced a new D. buzzatii genome (j-19) that complements the D. buzzatii reference genome (st-1) already published, and compared their TE contents with that of D. mojavensis. We found an underestimation of TE sequences in Drosophila genus NGS-genomes when compared to Sanger-genomes. To be able to compare genomes sequenced with different technologies, we developed a coverage-based method and applied it to the D. buzzatii st-1 and j-19 genome. Between 10.85 and 11.16 % of the D. buzzatii st-1 genome is made up of TEs, between 7 and 7,5 % of D. buzzatii j-19 genome, while TEs represent 15.35 % of the D. mojavensis genome. Helitrons are the most abundant order in the three genomes. Conclusions TEs in D. buzzatii are less abundant than in D. mojavensis, as expected according to the genome size and TE content positive correlation. However, TEs alone do not explain the genome size difference. TEs accumulate in the dot chromosomes and proximal regions of D. buzzatii and D. mojavensis chromosomes. We also report a significantly higher TE density in D. buzzatii and D. mojavensis X chromosomes, which is not expected under the current models. Our easy-to-use correction method allowed us to identify recently active families in D. buzzatii st-1 belonging to the LTR-retrotransposon superfamily Gypsy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2648-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nuria Rius
- Department de Genética i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.
| | - Yolanda Guillén
- Department de Genética i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Alejandra Delprat
- Department de Genética i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alfredo Ruiz
- Department de Genética i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| |
Collapse
|
10
|
Canapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. Transposons, Genome Size, and Evolutionary Insights in Animals. Cytogenet Genome Res 2016; 147:217-39. [PMID: 26967166 DOI: 10.1159/000444429] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
The relationship between genome size and the percentage of transposons in 161 animal species evidenced that variations in genome size are linked to the amplification or the contraction of transposable elements. The activity of transposable elements could represent a response to environmental stressors. Indeed, although with different trends in protostomes and deuterostomes, comprehensive changes in genome size were recorded in concomitance with particular periods of evolutionary history or adaptations to specific environments. During evolution, genome size and the presence of transposable elements have influenced structural and functional parameters of genomes and cells. Changes of these parameters have had an impact on morphological and functional characteristics of the organism on which natural selection directly acts. Therefore, the current situation represents a balance between insertion and amplification of transposons and the mechanisms responsible for their deletion or for decreasing their activity. Among the latter, methylation and the silencing action of small RNAs likely represent the most frequent mechanisms.
Collapse
Affiliation(s)
- Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Universitx00E0; Politecnica delle Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|
11
|
Gonçalves JW, Valiati VH, Delprat A, Valente VLS, Ruiz A. Structural and sequence diversity of the transposon Galileo in the Drosophila willistoni genome. BMC Genomics 2014; 15:792. [PMID: 25218200 PMCID: PMC4168063 DOI: 10.1186/1471-2164-15-792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 09/09/2014] [Indexed: 01/07/2023] Open
Abstract
Background Galileo is one of three members of the P superfamily of DNA transposons. It was originally discovered in Drosophila buzzatii, in which three segregating chromosomal inversions were shown to have been generated by ectopic recombination between Galileo copies. Subsequently, Galileo was identified in six of 12 sequenced Drosophila genomes, indicating its widespread distribution within this genus. Galileo is strikingly abundant in Drosophila willistoni, a neotropical species that is highly polymorphic for chromosomal inversions, suggesting a role for this transposon in the evolution of its genome. Results We carried out a detailed characterization of all Galileo copies present in the D. willistoni genome. A total of 191 copies, including 133 with two terminal inverted repeats (TIRs), were classified according to structure in six groups. The TIRs exhibited remarkable variation in their length and structure compared to the most complete copy. Three copies showed extended TIRs due to internal tandem repeats, the insertion of other transposable elements (TEs), or the incorporation of non-TIR sequences into the TIRs. Phylogenetic analyses of the transposase (TPase)-encoding and TIR segments yielded two divergent clades, which we termed Galileo subfamilies V and W. Target-site duplications (TSDs) in D. willistoni Galileo copies were 7- or 8-bp in length, with the consensus sequence GTATTAC. Analysis of the region around the TSDs revealed a target site motif (TSM) with a 15-bp palindrome that may give rise to a stem-loop secondary structure. Conclusions There is a remarkable abundance and diversity of Galileo copies in the D. willistoni genome, although no functional copies were found. The TIRs in particular have a dynamic structure and extend in different ways, but their ends (required for transposition) are more conserved than the rest of the element. The D. willistoni genome harbors two Galileo subfamilies (V and W) that diverged ~9 million years ago and may have descended from an ancestral element in the genome. Galileo shows a significant insertion preference for a 15-bp palindromic TSM. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-792) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Vera L S Valente
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), CP 15053, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.
| | | |
Collapse
|
12
|
Rossato DO, Ludwig A, Deprá M, Loreto ELS, Ruiz A, Valente VLS. BuT2 is a member of the third major group of hAT transposons and is involved in horizontal transfer events in the genus Drosophila. Genome Biol Evol 2014; 6:352-65. [PMID: 24459285 PMCID: PMC3942097 DOI: 10.1093/gbe/evu017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2014] [Indexed: 12/24/2022] Open
Abstract
The hAT superfamily comprises a large and diverse array of DNA transposons found in all supergroups of eukaryotes. Here we characterized the Drosophila buzzatii BuT2 element and found that it harbors a five-exon gene encoding a 643-aa putatively functional transposase. A phylogeny built with 85 hAT transposases yielded, in addition to the two major groups already described, Ac and Buster, a third one comprising 20 sequences that includes BuT2, Tip100, hAT-4_BM, and RP-hAT1. This third group is here named Tip. In addition, we studied the phylogenetic distribution and evolution of BuT2 by in silico searches and molecular approaches. Our data revealed BuT2 was, most often, vertically transmitted during the evolution of genus Drosophila being lost independently in several species. Nevertheless, we propose the occurrence of three horizontal transfer events to explain its distribution and conservation among species. Another aspect of BuT2 evolution and life cycle is the presence of short related sequences, which contain similar 5' and 3' regions, including the terminal inverted repeats. These sequences that can be considered as miniature inverted repeat transposable elements probably originated by internal deletion of complete copies and show evidences of recent mobilization.
Collapse
Affiliation(s)
- Dirleane Ottonelli Rossato
- Programa de Pós-Graduação em
Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do
Sul, Brazil
| | - Adriana Ludwig
- Laboratório de Genômica Funcional, Instituto
Carlos Chagas (ICC), Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Maríndia Deprá
- Programa de Pós-Graduação em Biologia
Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do
Sul, Brazil
- Departamento de Genética, Universidade Federal do
Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Elgion L. S. Loreto
- Programa de Pós-Graduação em
Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS),
Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biologia, Universidade Federal de Santa
Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Alfredo Ruiz
- Departament de Genètica i Microbiologia, Facultat
de Biociènces, Universitat Autònoma de Barcelona, Spain
| | - Vera L. S. Valente
- Programa de Pós-Graduação em Biologia
Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do
Sul, Brazil
- Departamento de Genética, Universidade Federal do
Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em
Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS),
Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
13
|
Rius N, Delprat A, Ruiz A. A divergent P element and its associated MITE, BuT5, generate chromosomal inversions and are widespread within the Drosophila repleta species group. Genome Biol Evol 2013; 5:1127-41. [PMID: 23682154 PMCID: PMC3698922 DOI: 10.1093/gbe/evt076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transposon BuT5 caused two chromosomal inversions fixed in two Drosophila species of the repleta group, D. mojavensis and D. uniseta. BuT5 copies are approximately 1-kb long, lack any coding capacity, and do not resemble any other transposable element (TE). Because of its elusive features, BuT5 has remained unclassified to date. To fully characterize BuT5, we carried out bioinformatic similarity searches in available sequenced genomes, including 21 Drosophila species. Significant hits were only recovered for D. mojavensis genome, where 48 copies were retrieved, 22 of them approximately 1-kb long. Polymerase chain reaction (PCR) and dot blot analyses on 54 Drosophila species showed that BuT5 is homogeneous in size and has a widespread distribution within the repleta group. Thus, BuT5 can be considered as a miniature inverted-repeat TE. A detailed analysis of the BuT5 hits in D. mojavensis revealed three partial copies of a transposon with ends very similar to BuT5 and a P-element-like transposase-encoding region in between. A putatively autonomous copy of this P element was isolated by PCR from D. buzzatii. This copy is 3,386-bp long and possesses a seven-exon gene coding for an 822-aa transposase. Exon–intron boundaries were confirmed by reverse transcriptase-PCR experiments. A phylogenetic tree built with insect P superfamily transposases showed that the D. buzzatii P element belongs to an early diverging lineage within the P-element family. This divergent P element is likely the master transposon mobilizing BuT5. The BuT5/P element partnership probably dates back approximately 16 Ma and is the ultimate responsible for the generation of the two chromosomal inversions in the Drosophila repleta species group.
Collapse
Affiliation(s)
- Nuria Rius
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
14
|
Identification of multiple binding sites for the THAP domain of the Galileo transposase in the long terminal inverted-repeats. Gene 2013; 525:84-91. [PMID: 23648487 PMCID: PMC3688188 DOI: 10.1016/j.gene.2013.04.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/21/2022]
Abstract
Galileo is a DNA transposon responsible for the generation of several chromosomal inversions in Drosophila. In contrast to other members of the P-element superfamily, it has unusually long terminal inverted-repeats (TIRs) that resemble those of Foldback elements. To investigate the function of the long TIRs we derived consensus and ancestral sequences for the Galileo transposase in three species of Drosophilids. Following gene synthesis, we expressed and purified their constituent THAP domains and tested their binding activity towards the respective Galileo TIRs. DNase I footprinting located the most proximal DNA binding site about 70 bp from the transposon end. Using this sequence we identified further binding sites in the tandem repeats that are found within the long TIRs. This suggests that the synaptic complex between Galileo ends may be a complicated structure containing higher-order multimers of the transposase. We also attempted to reconstitute Galileo transposition in Drosophila embryos but no events were detected. Thus, although the limited numbers of Galileo copies in each genome were sufficient to provide functional consensus sequences for the THAP domains, they do not specify a fully active transposase. Since the THAP recognition sequence is short, and will occur many times in a large genome, it seems likely that the multiple binding sites within the long, internally repetitive, TIRs of Galileo and other Foldback-like elements may provide the transposase with its binding specificity.
Collapse
|
15
|
Brianti MT, Ananina G, Klaczko LB. Differential occurrence of chromosome inversion polymorphisms among Muller's elements in three species of the tripunctata group of Drosophila, including a species with fast chromosomal evolution. Genome 2013; 56:17-26. [PMID: 23379335 DOI: 10.1139/gen-2012-0074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Detailed chromosome maps with reliable homologies among chromosomes of different species are the first step to study the evolution of the genetic architecture in any set of species. Here, we present detailed photo maps of the polytene chromosomes of three closely related species of the tripunctata group (subgenus Drosophila): Drosophila mediopunctata, D. roehrae, and D. unipunctata. We identified Muller's elements in each species, using FISH, establishing reliable chromosome homologies among species and D. melanogaster. The simultaneous analysis of chromosome inversions revealed a distribution pattern for the inversion polymorphisms among Muller's elements in the three species. Element E is the most polymorphic, with many inversions in each species. Element C follows; while the least polymorphic elements are B and D. While interesting, it remains to be determined how general this pattern is among species of the tripunctata group. Despite previous studies showing that D. mediopunctata and D. unipunctata are phylogenetically closer to each other than to D. roehrae, D. unipunctata shows rare karyotypic changes. It has two chromosome fusions: an additional heterochromatic chromosome pair and a pericentric inversion in the X chromosome. This especial conformation suggests a fast chromosomal evolution that deserves further study.
Collapse
Affiliation(s)
- Mitsue T Brianti
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, UNICAMP, P.O. Box 6109, Campinas 13083-970, São Paulo, Brazil
| | | | | |
Collapse
|
16
|
Marzo M, Bello X, Puig M, Maside X, Ruiz A. Striking structural dynamism and nucleotide sequence variation of the transposon Galileo in the genome of Drosophila mojavensis. Mob DNA 2013; 4:6. [PMID: 23374229 PMCID: PMC3573991 DOI: 10.1186/1759-8753-4-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/26/2012] [Indexed: 01/25/2023] Open
Abstract
Background Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long internally-repetitive terminal inverted repeats (TIRs), which resemble the Drosophila Foldback element, its transposase-coding sequence has led to its classification as a member of the P-element superfamily (Class II, subclass 1, TIR order). Furthermore, Galileo has a wide distribution in the genus Drosophila, since it has been found in 6 of the 12 Drosophila sequenced genomes. Among these species, D. mojavensis, the one closest to D. buzzatii, presented the highest diversity in sequence and structure of Galileo elements. Results In the present work, we carried out a thorough search and annotation of all the Galileo copies present in the D. mojavensis sequenced genome. In our set of 170 Galileo copies we have detected 5 Galileo subfamilies (C, D, E, F, and X) with different structures ranging from nearly complete, to only 2 TIR or solo TIR copies. Finally, we have explored the structural and length variation of the Galileo copies that point out the relatively frequent rearrangements within and between Galileo elements. Different mechanisms responsible for these rearrangements are discussed. Conclusions Although Galileo is a transposable element with an ancient history in the D. mojavensis genome, our data indicate a recent transpositional activity. Furthermore, the dynamism in sequence and structure, mainly affecting the TIRs, suggests an active exchange of sequences among the copies. This exchange could lead to new subfamilies of the transposon, which could be crucial for the long-term survival of the element in the genome.
Collapse
Affiliation(s)
- Mar Marzo
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, 08193, Spain.
| | | | | | | | | |
Collapse
|
17
|
Wallau GL, Ortiz MF, Loreto ELS. Horizontal transposon transfer in eukarya: detection, bias, and perspectives. Genome Biol Evol 2012; 4:689-99. [PMID: 22798449 PMCID: PMC3516303 DOI: 10.1093/gbe/evs055] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The genetic similarity observed among species is normally attributed to the existence of
a common ancestor. However, a growing body of evidence suggests that the exchange of
genetic material is not limited to the transfer from parent to offspring but can also
occur through horizontal transfer (HT). Transposable elements (TEs) are DNA fragments with
an innate propensity for HT; they are mobile and possess parasitic characteristics that
allow them to exist and proliferate within host genomes. However, horizontal transposon
transfer (HTT) is not easily detected, primarily because the complex TE life cycle can
generate phylogenetic patterns similar to those expected for HTT events. The increasingly
large number of new genome projects, in all branches of life, has provided an
unprecedented opportunity to evaluate the TE content and HTT events in these species,
although a standardized method of HTT detection is required before trends in the HTT rates
can be evaluated in a wide range of eukaryotic taxa and predictions about these events can
be made. Thus, we propose a straightforward hypothesis test that can be used by TE
specialists and nonspecialists alike to discriminate between HTT events and natural TE
life cycle patterns. We also discuss several plausible explanations and predictions for
the distribution and frequency of HTT and for the inherent biases of HTT detection.
Finally, we discuss some of the methodological concerns for HTT detection that may result
in the underestimation and overestimation of HTT rates during eukaryotic genome
evolution.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Brazil.
| | | | | |
Collapse
|
18
|
Fonseca NA, Vieira CP, Schlötterer C, Vieira J. The DAIBAM MITE element is involved in the origin of one fixed and two polymorphic Drosophila virilis phylad inversions. Fly (Austin) 2012; 6:71-4. [PMID: 22561870 DOI: 10.4161/fly.19423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chromosomal inversions can originate from breakage and repair by non-homologous end-joining. Nevertheless, they can also originate from ectopic recombination between transposable elements located on the same chromosome inserted in opposite orientations. Here, we show that a MITE element (DAIBAM), previously involved in the origin of one Drosophila americana polymorphic inversion, is also involved in the origin of one fixed inversion between D. virilis and D. americana and another D. americana polymorphic inversion. Therefore, DAIBAM is responsible for at least 20% of the chromosomal rearrangements that are observed within and between species of the virilis phylad (D. virilis, D. lummei, D. novamexicana and D. americana), having thus played a significant role in the chromosomal evolution of this group of closely related species.
Collapse
|
19
|
Calvete O, González J, Betrán E, Ruiz A. Segmental duplication, microinversion, and gene loss associated with a complex inversion breakpoint region in Drosophila. Mol Biol Evol 2012; 29:1875-89. [PMID: 22328714 DOI: 10.1093/molbev/mss067] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chromosomal inversions are usually portrayed as simple two-breakpoint rearrangements changing gene order but not gene number or structure. However, increasing evidence suggests that inversion breakpoints may often have a complex structure and entail gene duplications with potential functional consequences. Here, we used a combination of different techniques to investigate the breakpoint structure and the functional consequences of a complex rearrangement fixed in Drosophila buzzatii and comprising two tandemly arranged inversions sharing the middle breakpoint: 2m and 2n. By comparing the sequence in the breakpoint regions between D. buzzatii (inverted chromosome) and D. mojavensis (noninverted chromosome), we corroborate the breakpoint reuse at the molecular level and infer that inversion 2m was associated with a duplication of a ~13 kb segment and likely generated by staggered breaks plus repair by nonhomologous end joining. The duplicated segment contained the gene CG4673, involved in nuclear transport, and its two nested genes CG5071 and CG5079. Interestingly, we found that other than the inversion and the associated duplication, both breakpoints suffered additional rearrangements, that is, the proximal breakpoint experienced a microinversion event associated at both ends with a 121-bp long duplication that contains a promoter. As a consequence of all these different rearrangements, CG5079 has been lost from the genome, CG5071 is now a single copy nonnested gene, and CG4673 has a transcript ~9 kb shorter and seems to have acquired a more complex gene regulation. Our results illustrate the complex effects of chromosomal rearrangements and highlight the need of complementing genomic approaches with detailed sequence-level and functional analyses of breakpoint regions if we are to fully understand genome structure, function, and evolutionary dynamics.
Collapse
Affiliation(s)
- Oriol Calvete
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
20
|
Guillén Y, Ruiz A. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution. BMC Genomics 2012; 13:53. [PMID: 22296923 PMCID: PMC3355041 DOI: 10.1186/1471-2164-13-53] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/01/2012] [Indexed: 01/17/2023] Open
Abstract
Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution.
Collapse
Affiliation(s)
- Yolanda Guillén
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | | |
Collapse
|
21
|
Vasil’eva LA, Antonenko OV, Zakharov IK. Role of transposable elements in the genome of Drosophila melanogaster. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s2079059711060128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Hua-Van A, Le Rouzic A, Boutin TS, Filée J, Capy P. The struggle for life of the genome's selfish architects. Biol Direct 2011; 6:19. [PMID: 21414203 PMCID: PMC3072357 DOI: 10.1186/1745-6150-6-19] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/17/2011] [Indexed: 01/28/2023] Open
Abstract
Transposable elements (TEs) were first discovered more than 50 years ago, but were totally ignored for a long time. Over the last few decades they have gradually attracted increasing interest from research scientists. Initially they were viewed as totally marginal and anecdotic, but TEs have been revealed as potentially harmful parasitic entities, ubiquitous in genomes, and finally as unavoidable actors in the diversity, structure, and evolution of the genome. Since Darwin's theory of evolution, and the progress of molecular biology, transposable elements may be the discovery that has most influenced our vision of (genome) evolution. In this review, we provide a synopsis of what is known about the complex interactions that exist between transposable elements and the host genome. Numerous examples of these interactions are provided, first from the standpoint of the genome, and then from that of the transposable elements. We also explore the evolutionary aspects of TEs in the light of post-Darwinian theories of evolution.
Collapse
Affiliation(s)
- Aurélie Hua-Van
- Laboratoire Evolution, Génomes, Spéciation, CNRS UPR9034/Université Paris-Sud, Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
23
|
Testing chromosomal phylogenies and inversion breakpoint reuse in Drosophila. The martensis cluster revisited. Chromosome Res 2011; 19:251-65. [PMID: 21394512 DOI: 10.1007/s10577-011-9195-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 01/06/2023]
Abstract
The chromosomal relationships of the four martensis cluster species are among the most complex and intricate within the entire Drosophila repleta group, due to the so-called sharing of inversions. Here, we have revised these relationships using comparative mapping of bacterial artificial chromosome (BAC) clones on the salivary gland chromosomes. A physical map of chromosome 2 of Drosophila uniseta (one of the cluster members) was generated by in situ hybridization of 82 BAC clones from the physical map of the Drosophila buzzatii genome (an outgroup that represents the ancestral arrangement). By comparing the marker positions, we determined the number, order, and orientation of conserved chromosomal segments between chromosome 2 of D. buzzatii and D. uniseta. GRIMM software was used to infer that a minimum of five chromosomal inversions are necessary to transform the chromosome 2 of D. buzzatii into that of D. uniseta. Two of these inversions have been overlooked in previous cytological analyses. The five fixed inversions entail two breakpoint reuses because only nine syntenic segments and eight interruptions were observed. We tested for the presence of the five inversions fixed in D. uniseta in the other three species of the martensis cluster by in situ hybridization of eight breakpoint-bearing BAC clones. The results shed light on the chromosomal phylogeny of the martensis cluster, yet leave a number of questions open.
Collapse
|
24
|
Tubio JMC, Tojo M, Bassaganyas L, Escaramis G, Sharakhov IV, Sharakhova MV, Tornador C, Unger MF, Naveira H, Costas J, Besansky NJ. Evolutionary dynamics of the Ty3/gypsy LTR retrotransposons in the genome of Anopheles gambiae. PLoS One 2011; 6:e16328. [PMID: 21283637 PMCID: PMC3026039 DOI: 10.1371/journal.pone.0016328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/13/2010] [Indexed: 12/21/2022] Open
Abstract
Ty3/gypsy elements represent one of the most abundant and diverse LTR-retrotransposon (LTRr) groups in the Anopheles gambiae genome, but their evolutionary dynamics have not been explored in detail. Here, we conduct an in silico analysis of the distribution and abundance of the full complement of 1045 copies in the updated AgamP3 assembly. Chromosomal distribution of Ty3/gypsy elements is inversely related to arm length, with densities being greatest on the X, and greater on the short versus long arms of both autosomes. Taking into account the different heterochromatic and euchromatic compartments of the genome, our data suggest that the relative abundance of Ty3/gypsy LTRrs along each chromosome arm is determined mainly by the different proportions of heterochromatin, particularly pericentric heterochromatin, relative to total arm length. Additionally, the breakpoint regions of chromosomal inversion 2La appears to be a haven for LTRrs. These elements are underrepresented more than 7-fold in euchromatin, where 33% of the Ty3/gypsy copies are associated with genes. The euchromatin on chromosome 3R shows a faster turnover rate of Ty3/gypsy elements, characterized by a deficit of proviral sequences and the lowest average sequence divergence of any autosomal region analyzed in this study. This probably reflects a principal role of purifying selection against insertion for the preservation of longer conserved syntenyc blocks with adaptive importance located in 3R. Although some Ty3/gypsy LTRrs show evidence of recent activity, an important fraction are inactive remnants of relatively ancient insertions apparently subject to genetic drift. Consistent with these computational predictions, an analysis of the occupancy rate of putatively older insertions in natural populations suggested that the degenerate copies have been fixed across the species range in this mosquito, and also are shared with the sibling species Anopheles arabiensis.
Collapse
Affiliation(s)
- Jose Manuel C. Tubio
- Genes and Disease Programme, Center for Genomic Regulation, Barcelona, Spain
- Hospital Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta Tojo
- Hospital Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Centro Nacional de Genotipado (CEGEN), Barcelona, Spain
| | - Laia Bassaganyas
- Genes and Disease Programme, Center for Genomic Regulation, Barcelona, Spain
| | - Georgia Escaramis
- Genes and Disease Programme, Center for Genomic Regulation, Barcelona, Spain
| | - Igor V. Sharakhov
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Maria V. Sharakhova
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Cristian Tornador
- Genes and Disease Programme, Center for Genomic Regulation, Barcelona, Spain
| | - Maria F. Unger
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Horacio Naveira
- Departamento de Biología Celular y Molecular, Universidade da Coruña, A Coruña, Spain
| | - Javier Costas
- Fundación Pública Galega de Medicina Xenómica, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Nora J. Besansky
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
25
|
Valente G, Mazzuchelli J, Ferreira I, Poletto A, Fantinatti B, Martins C. Cytogenetic Mapping of the Retroelements Rex1, Rex3 and Rex6 among Cichlid Fish: New Insights on the Chromosomal Distribution of Transposable Elements. Cytogenet Genome Res 2011; 133:34-42. [DOI: 10.1159/000322888] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2010] [Indexed: 11/19/2022] Open
|
26
|
Zacharopoulou A, Augustinos AA, Sayed WAA, Robinson AS, Franz G. Mitotic and polytene chromosomes analysis of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Genetica 2010; 139:79-90. [PMID: 20844937 DOI: 10.1007/s10709-010-9495-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 08/27/2010] [Indexed: 11/28/2022]
Abstract
The Oriental fruit fly, Batrocera dorsalis s.s. (Hendel) is one of the most destructive agricultural pests, belonging to a large group of difficult to distinguish morphologically species, referred as the B. dorsalis complex. We report here a cytogenetic analysis of two laboratory strains of the species and provide a photographic polytene chromosome map from larval salivary glands. The mitotic complement consists of six chromosome pairs including a heteromorphic sex (XX/XY) chromosome pair. Analysis of the polytene complement has shown a total of five polytene chromosomes (10 polytene arms) that correspond to the five autosomes. The most important landmarks of each polytene chromosome and characteristic asynapsis at a specific chromosomal region are presented and discussed. Chromosomal homology between B. dorsalis and Ceratitis capitata has been determined by comparing chromosome banding patterns. The detection of chromosome inversions in both B. dorsalis strains is shown and discussed. Our results show that the polytene maps presented here are suitable for cytogenetic analysis of this species and can be used for comparative studies among species of the Tephritidae family. They also provide a diagnostic tool that could accelerate species identification within the B. dorsalis complex and could shed light on the ongoing speciation in this complex. Polytene chromosome maps can facilitate the development of biological control methods and support the genome mapping project of the species that is currently in progress.
Collapse
Affiliation(s)
- Antigone Zacharopoulou
- Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Agency's Laboratories, Seibersdorf, Austria.
| | | | | | | | | |
Collapse
|
27
|
Marlétaz F, Gyapay G, Le Parco Y. High level of structural polymorphism driven by mobile elements in the Hox genomic region of the Chaetognath Spadella cephaloptera. Genome Biol Evol 2010; 2:665-77. [PMID: 20829282 PMCID: PMC2997562 DOI: 10.1093/gbe/evq047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2010] [Indexed: 11/22/2022] Open
Abstract
Little is known about the relationships between genome polymorphism, mobile element dynamics, and population size among animal populations. The chaetognath species Spadella cephaloptera offers a unique perspective to examine this issue because they display a high level of genetic polymorphism at the population level. Here, we have investigated in detail the extent of nucleotide and structural polymorphism in a region harboring Hox1 and several coding genes and presumptive functional elements. Sequencing of several bacterial artificial chromosome inserts representative of this nuclear region uncovered a high level of structural heterogeneity, which is mainly caused by the polymorphic insertion of a diversity of genetic mobile elements. By anchoring this variation through individual genotyping, we demonstrated that sequence diversity could be attributed to the allelic pool of a single population, which was confirmed by detection of extensive recombination within the genomic region studied. The high average level of nucleotide heterozygosity provides clues of selection in both coding and noncoding domains. This pattern stresses how selective processes remarkably cope with intense sequence turnover due to substitutions, mobile element insertions, and recombination to preserve the integrity of functional landscape. These findings suggest that genome polymorphism could provide pivotal information for future functional annotation of genomes.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre d'Océanologie de Marseille, CNRS UMR 6540 DIMAR, Université de la Méditerranée (Aix-Marseille II), Station Marine d'Endoume, Marseille, France
| | - Gabor Gyapay
- Genoscope (CEA), CNRS UMR 8030, Université d'Evry, Evry, France
| | - Yannick Le Parco
- Centre d'Océanologie de Marseille, CNRS UMR 6540 DIMAR, Université de la Méditerranée (Aix-Marseille II), Station Marine d'Endoume, Marseille, France
| |
Collapse
|
28
|
Lin JY, Stupar RM, Hans C, Hyten DL, Jackson SA. Structural and functional divergence of a 1-Mb duplicated region in the soybean (Glycine max) genome and comparison to an orthologous region from Phaseolus vulgaris. THE PLANT CELL 2010; 22:2545-61. [PMID: 20729383 PMCID: PMC2947175 DOI: 10.1105/tpc.110.074229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 07/21/2010] [Accepted: 07/30/2010] [Indexed: 05/03/2023]
Abstract
Soybean (Glycine max) has undergone at least two rounds of polyploidization, resulting in a paleopolyploid genome that is a mosaic of homoeologous regions. To determine the structural and functional impact of these duplications, we sequenced two ~1-Mb homoeologous regions of soybean, Gm8 and Gm15, derived from the most recent ~13 million year duplication event and the orthologous region from common bean (Phaseolus vulgaris), Pv5. We observed inversions leading to major structural variation and a bias between the two chromosome segments as Gm15 experienced more gene movement (gene retention rate of 81% in Gm15 versus 91% in Gm8) and a nearly twofold increase in the deletion of long terminal repeat (LTR) retrotransposons via solo LTR formation. Functional analyses of Gm15 and Gm8 revealed decreases in gene expression and synonymous substitution rates for Gm15, for instance, a 38% increase in transcript levels from Gm8 relative to Gm15. Transcriptional divergence of homoeologs was found based on expression patterns among seven tissues and developmental stages. Our results indicate asymmetric evolution between homoeologous regions of soybean as evidenced by structural changes and expression variances of homoeologous genes.
Collapse
Affiliation(s)
- Jer-Young Lin
- Molecular and Evolutionary Genetics, Purdue University, West Lafayette, Indiana 47907
| | - Robert M. Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Christian Hans
- Molecular and Evolutionary Genetics, Purdue University, West Lafayette, Indiana 47907
| | - David L. Hyten
- Soybean Genomics and Improvement Lab, U.S. Department of Agriculture–Agricultural Research Service, Beltsville, Maryland 20705
| | - Scott A. Jackson
- Molecular and Evolutionary Genetics, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
29
|
Delprat A, Negre B, Puig M, Ruiz A. The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination. PLoS One 2009; 4:e7883. [PMID: 19936241 PMCID: PMC2775673 DOI: 10.1371/journal.pone.0007883] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 10/01/2009] [Indexed: 11/25/2022] Open
Abstract
Background Transposable elements (TEs) are responsible for the generation of chromosomal inversions in several groups of organisms. However, in Drosophila and other Dipterans, where inversions are abundant both as intraspecific polymorphisms and interspecific fixed differences, the evidence for a role of TEs is scarce. Previous work revealed that the transposon Galileo was involved in the generation of two polymorphic inversions of Drosophila buzzatii. Methodology/Principal Findings To assess the impact of TEs in Drosophila chromosomal evolution and shed light on the mechanism involved, we isolated and sequenced the two breakpoints of another widespread polymorphic inversion from D. buzzatii, 2z3. In the non inverted chromosome, the 2z3 distal breakpoint was located between genes CG2046 and CG10326 whereas the proximal breakpoint lies between two novel genes that we have named Dlh and Mdp. In the inverted chromosome, the analysis of the breakpoint sequences revealed relatively large insertions (2,870-bp and 4,786-bp long) including two copies of the transposon Galileo (subfamily Newton), one at each breakpoint, plus several other TEs. The two Galileo copies: (i) are inserted in opposite orientation; (ii) present exchanged target site duplications; and (iii) are both chimeric. Conclusions/Significance Our observations provide the best evidence gathered so far for the role of TEs in the generation of Drosophila inversions. In addition, they show unequivocally that ectopic recombination is the causative mechanism. The fact that the three polymorphic D. buzzatii inversions investigated so far were generated by the same transposon family is remarkable and is conceivably due to Galileo's unusual structure and current (or recent) transpositional activity.
Collapse
Affiliation(s)
- Alejandra Delprat
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | | | | | | |
Collapse
|
30
|
Prazeres da Costa O, González J, Ruiz A. Cloning and sequencing of the breakpoint regions of inversion 5g fixed in Drosophila buzzatii. Chromosoma 2009; 118:349-60. [PMID: 19198866 DOI: 10.1007/s00412-008-0201-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Chromosomal inversions are ubiquitous in Drosophila both as intraspecific polymorphisms and interspecific differences. Many gaps still remain in our understanding of the mechanisms that generate them. Previous work has shown that in Drosophila buzzatii, three polymorphic inversions were generated by ectopic recombination between copies of the transposon Galileo. In this study, we have characterized the breakpoint regions of inversion 5g, fixed in D. buzzatii and absent in Drosophila koepferae and other closely related species. A novel approach comprising four experimental steps was used. First, D. buzzatii BAC clones encompassing the breakpoints were identified and their ends sequenced. Then, breakpoint regions were mapped at high resolution in the Drosophila mojavensis genome sequence. Finally, breakpoint regions were isolated by polymerase chain reaction in D. buzzatii and D. koepferae and sequenced. Our aim was to shed light on the mechanism that generated inversion 5g and specifically to test for an implication of the transposon Galileo. No evidence implicates Galileo or other transposable elements in the origin of inversion 5g that was generated most likely by two independent breaks and non-homologous end-joining repair. Our results show that different inversion-generating mechanisms may coexist within the same lineage and suggest a hypothesis for the evolutionary time and mode of their operation.
Collapse
Affiliation(s)
- Olivia Prazeres da Costa
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
31
|
Abstract
The availability of 12 complete genomes of various species of genus Drosophila provides a unique opportunity to analyze genome-scale chromosomal rearrangements among a group of closely related species. This article reports on the comparison of gene order between these 12 species and on the fixed rearrangement events that disrupt gene order. Three major themes are addressed: the conservation of syntenic blocks across species, the disruption of syntenic blocks (via chromosomal inversion events) and its relationship to the phylogenetic distribution of these species, and the rate of rearrangement events over evolutionary time. Comparison of syntenic blocks across this large genomic data set confirms that genetic elements are largely (95%) localized to the same Muller element across genus Drosophila species and paracentric inversions serve as the dominant mechanism for shuffling the order of genes along a chromosome. Gene-order scrambling between species is in accordance with the estimated evolutionary distances between them and we find it to approximate a linear process over time (linear to exponential with alternate divergence time estimates). We find the distribution of synteny segment sizes to be biased by a large number of small segments with comparatively fewer large segments. Our results provide estimated chromosomal evolution rates across this set of species on the basis of whole-genome synteny analysis, which are found to be higher than those previously reported. Identification of conserved syntenic blocks across these genomes suggests a large number of conserved blocks with varying levels of embryonic expression correlation in Drosophila melanogaster. On the other hand, an analysis of the disruption of syntenic blocks between species allowed the identification of fixed inversion breakpoints and estimates of breakpoint reuse and lineage-specific breakpoint event segregation.
Collapse
|
32
|
Abstract
The availability of 12 complete genomes of various species of genus Drosophila provides a unique opportunity to analyze genome-scale chromosomal rearrangements among a group of closely related species. This article reports on the comparison of gene order between these 12 species and on the fixed rearrangement events that disrupt gene order. Three major themes are addressed: the conservation of syntenic blocks across species, the disruption of syntenic blocks (via chromosomal inversion events) and its relationship to the phylogenetic distribution of these species, and the rate of rearrangement events over evolutionary time. Comparison of syntenic blocks across this large genomic data set confirms that genetic elements are largely (95%) localized to the same Muller element across genus Drosophila species and paracentric inversions serve as the dominant mechanism for shuffling the order of genes along a chromosome. Gene-order scrambling between species is in accordance with the estimated evolutionary distances between them and we find it to approximate a linear process over time (linear to exponential with alternate divergence time estimates). We find the distribution of synteny segment sizes to be biased by a large number of small segments with comparatively fewer large segments. Our results provide estimated chromosomal evolution rates across this set of species on the basis of whole-genome synteny analysis, which are found to be higher than those previously reported. Identification of conserved syntenic blocks across these genomes suggests a large number of conserved blocks with varying levels of embryonic expression correlation in Drosophila melanogaster. On the other hand, an analysis of the disruption of syntenic blocks between species allowed the identification of fixed inversion breakpoints and estimates of breakpoint reuse and lineage-specific breakpoint event segregation.
Collapse
|
33
|
Abstract
Transposable elements are mobile genetic units that exhibit broad diversity in their structure and transposition mechanisms. Transposable elements occupy a large fraction of many eukaryotic genomes and their movement and accumulation represent a major force shaping the genes and genomes of almost all organisms. This review focuses on DNA-mediated or class 2 transposons and emphasizes how this class of elements is distinguished from other types of mobile elements in terms of their structure, amplification dynamics, and genomic effect. We provide an up-to-date outlook on the diversity and taxonomic distribution of all major types of DNA transposons in eukaryotes, including Helitrons and Mavericks. We discuss some of the evolutionary forces that influence their maintenance and diversification in various genomic environments. Finally, we highlight how the distinctive biological features of DNA transposons have contributed to shape genome architecture and led to the emergence of genetic innovations in different eukaryotic lineages.
Collapse
Affiliation(s)
- Cédric Feschotte
- Department of Biology, University of Texas, Arlington, TX 76019, USA.
| | | |
Collapse
|
34
|
Nóbrega C, Khadem M, Aguadé M, Segarra C. Genetic exchange versus genetic differentiation in a medium-sized inversion of Drosophila: the A2/Ast arrangements of Drosophila subobscura. Mol Biol Evol 2008; 25:1534-43. [PMID: 18436552 DOI: 10.1093/molbev/msn100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chromosomal inversion polymorphism affects nucleotide variation at loci associated with inversions. In Drosophila subobscura, a species with a rich chromosomal inversion polymorphism and the largest recombinational map so far reported in the Drosophila genus, extensive genetic structure of nucleotide variation was detected in the segment affected by the O(3) inversion, a moderately sized inversion at Muller's element E. Indeed, a strong genetic differentiation all over O(3) and no evidence of a higher genetic exchange in the center of the inversion than at breakpoints were detected. In order to ascertain, whether other polymorphic and differently sized inversions of D. subobscura also exhibited a strong genetic structure, nucleotide variation in 5 gene regions (P236, P275, P150, Sxl, and P125) located along the A(2) inversion was analyzed in A(st) and A(2) chromosomes of D. subobscura. A(2) is a medium-sized inversion at Muller's element A and forms a single inversion loop in heterokaryotypes. The lower level of variation in A(2) relative to A(st) and the significant excess of low-frequency variants at polymorphic sites indicate that nucleotide variation at A(2) is not at mutation-drift equilibrium. The closest region to an inversion breakpoint, P236, exhibits the highest level of genetic differentiation (F(ST)) and of linkage disequilibrium (LD) between arrangements and variants at nucleotide polymorphic sites. The remaining 4 regions show a higher level of genetic exchange between A(2) and A(st) chromosomes than P236, as revealed by F(ST) and LD estimates. However, significant genetic differentiation between the A(st) and A(2) arrangements was detected not only at P236 but also in the other 4 regions separated from the nearest breakpoint by 1.2-2.9 Mb. Therefore, the extent of genetic exchange between arrangements has not been high enough to homogenize nucleotide variation in the center of the A(2) inversion. A(2) can be considered a typical successful inversion of D. subobscura according to its relative length. Chromosomal inversion polymorphism of D. subobscura might thus cause the genome of this species to be highly structured and to harbor different gene pools that might contribute to maintain adaptations to particular environments.
Collapse
Affiliation(s)
- Clévio Nóbrega
- Centro de Estudos da Macaronésia, Departamento de Biologia, Universidade da Madeira, Funchal, Portugal
| | | | | | | |
Collapse
|
35
|
Abstract
Several lines of evidence suggest that, within a lineage, particular genomic regions are subject to instability that can lead to specific types of chromosome rearrangements important in species incompatibility. Within family Macropodidae (kangaroos, wallabies, bettongs, and potoroos), which exhibit recent and extensive karyotypic evolution, rearrangements involve chiefly the centromere. We propose that centromeres are the primary target for destabilization in cases of genomic instability, such as interspecific hybridization, and participate in the formation of novel chromosome rearrangements. Here we use standard cytological staining, cross-species chromosome painting, DNA probe analyses, and scanning electron microscopy to examine four interspecific macropodid hybrids (Macropus rufogriseus x Macropus agilis). The parental complements share the same centric fusions relative to the presumed macropodid ancestral karyotype, but can be differentiated on the basis of heterochromatic content, M. rufogriseus having larger centromeres with large C-banding positive regions. All hybrids exhibited the same pattern of chromosomal instability and remodeling specifically within the centromeres derived from the maternal (M. rufogriseus) complement. This instability included amplification of a satellite repeat and a transposable element, changes in chromatin structure, and de novo whole-arm rearrangements. We discuss possible reasons and mechanisms for the centromeric instability and remodeling observed in all four macropodid hybrids.
Collapse
|
36
|
The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus. Proc Natl Acad Sci U S A 2008; 105:2957-62. [PMID: 18287066 DOI: 10.1073/pnas.0712110105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Galileo is the only transposable element (TE) known to have generated natural chromosomal inversions in the genus Drosophila. It was discovered in Drosophila buzzatii and classified as a Foldback-like element because of its long, internally repetitive, terminal inverted repeats (TIRs) and lack of coding capacity. Here, we characterized a seemingly complete copy of Galileo from the D. buzzatii genome. It is 5,406 bp long, possesses 1,229-bp TIRs, and encodes a 912-aa transposase similar to those of the Drosophila melanogaster 1360 (Hoppel) and P elements. We also searched the recently available genome sequences of 12 Drosophila species for elements similar to Dbuz\Galileo by using bioinformatic tools. Galileo was found in six species (ananassae, willistoni, peudoobscura, persimilis, virilis, and mojavensis) from the two main lineages within the Drosophila genus. Our observations place Galileo within the P superfamily of cut-and-paste transposons and extend considerably its phylogenetic distribution. The interspecific distribution of Galileo indicates an ancient presence in the genus, but the phylogenetic tree built with the transposase amino acid sequences contrasts significantly with that of the species, indicating lineage sorting and/or horizontal transfer events. Our results also suggest that Foldback-like elements such as Galileo may evolve from DNA-based transposon ancestors by loss of the transposase gene and disproportionate elongation of TIRs.
Collapse
|
37
|
Coulibaly MB, Lobo NF, Fitzpatrick MC, Kern M, Grushko O, Thaner DV, Traoré SF, Collins FH, Besansky NJ. Segmental duplication implicated in the genesis of inversion 2Rj of Anopheles gambiae. PLoS One 2007; 2:e849. [PMID: 17786220 PMCID: PMC1952172 DOI: 10.1371/journal.pone.0000849] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 08/15/2007] [Indexed: 01/26/2023] Open
Abstract
The malaria vector Anopheles gambiae maintains high levels of inversion polymorphism that facilitate its exploitation of diverse ecological settings across tropical Africa. Molecular characterization of inversion breakpoints is a first step toward understanding the processes that generate and maintain inversions. Here we focused on inversion 2Rj because of its association with the assortatively mating Bamako chromosomal form of An. gambiae, whose distinctive breeding sites are rock pools beside the Niger River in Mali and Guinea. Sequence and computational analysis of 2Rj revealed the same 14.6 kb insertion between both breakpoints, which occurred near but not within predicted genes. Each insertion consists of 5.3 kb terminal inverted repeat arms separated by a 4 kb spacer. The insertions lack coding capacity, and are comprised of degraded remnants of repetitive sequences including class I and II transposable elements. Because of their large size and patchwork composition, and as no other instances of these insertions were identified in the An. gambiae genome, they do not appear to be transposable elements. The 14.6 kb modules inserted at both 2Rj breakpoint junctions represent low copy repeats (LCRs, also called segmental duplications) that are strongly implicated in the recent (∼0.4Ne generations) origin of 2Rj. The LCRs contribute to further genome instability, as demonstrated by an imprecise excision event at the proximal breakpoint of 2Rj in field isolates.
Collapse
Affiliation(s)
- Mamadou B. Coulibaly
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Neil F. Lobo
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Meagan C. Fitzpatrick
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Marcia Kern
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Olga Grushko
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Daniel V. Thaner
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sékou F. Traoré
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | - Frank H. Collins
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Nora J. Besansky
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Vázquez JF, Albornoz J, Domínguez A. Direct determination of the effects of genotype and extreme temperature on the transposition of roo in long-term mutation accumulation lines of Drosophila melanogaster. Mol Genet Genomics 2007; 278:653-64. [PMID: 17721789 DOI: 10.1007/s00438-007-0282-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 08/06/2007] [Indexed: 10/22/2022]
Abstract
Transposable elements (TEs) are mobile repetitive DNA sequences that constitute a structurally dynamic component of genomes. In order to understand the dynamics of TEs it is necessary to have information about the control of transposition and its dependence of environmental factors. After a great deal of previous work on transposition conducted on long-term mutation accumulation (MA) lines of Drosophila melanogaster started in 1987, only roo out of 16 families was found active in this genotype. Here we test the effect of the modification of the genetic background by introducing a Cy chromosome, and the effect of extreme temperature (28 degrees C) on the transposition rate of roo. Thermal stress did not affect the transposition rate, whereas the presence of a Cy chromosome in heterozygosis lowered it. There was an excess of insertions in the X chromosome, with respect to autosomes, and in the proximal and distal regions of chromosome arms that can be interpreted as target site preference. One of the control lines became highly unstable with mean insertion and excision rates of 3.0 x 10(-3) and 8.5 x 10(-4), respectively. Instability arose spontaneously during generations of mutation accumulation, and can be attributed to "de novo" mutation. Transposition in the unstable line could be directly studied on the progeny of individual males and females, from where we deduced that transposition occurs mainly, if not exclusively, in males, with a rate of 1.125 insertions per gamete. In situ hybridization with an LTR probe showed that most excisions (12 out of 14) were precise. Our data show the prominent role of genotype in transposition control and can explain rapid turnovers in the genome without increasing the number of copies.
Collapse
Affiliation(s)
- J Fernando Vázquez
- Departamento de Biología Funcional, Area de Genética, Facultad de Medicina, Universidad de Oviedo, Julián Clavería s/n, 33071 Oviedo, Spain
| | | | | |
Collapse
|
39
|
Abstract
Background Individuals in the same species are assumed to share the same genomic set. However, it is not unusual to find an orthologous gene only in small subset of the species, and recent genomic studies suggest that structural rearrangements are very frequent between genomes in the same species. Two recently sequenced rice genomes Oryza sativa L. var. Nipponbare and O. sativa L. var. 93-11 provide an opportunity to systematically investigate the extent of the gene repertoire polymorphism, even though the genomic data of 93-11 derived from whole-short-gun sequencing is not yet as complete as that of Nipponbare. Results We compared gene contents and the genomic locations between two rice genomes. Our conservative estimates suggest that at least 10% of the genes in the genomes were either under presence/absence polymorphism (5.2%) or asymmetrically located between genomes (4.7%). The proportion of these "asymmetric genes" varied largely among gene groups, in which disease resistance (R) genes and the RLK kinase gene group had 11.6 and 7.8 times higher proportion of asymmetric genes than housekeeping genes (Myb and MADS). The significant difference in the proportion of asymmetric genes among gene groups suggests that natural selection is responsible for maintaining genomic asymmetry. On the other hand, the nucleotide diversity in 17 R genes under presence/absence polymorphism was generally low (average nucleotide diversity = 0.0051). Conclusion The genomic symmetry was disrupted by 10% of asymmetric genes, which could cause genetic variation through more unequal crossing over, because these genes had no allelic counterparts to pair and then they were free to pair with homologues at non-allelic loci, during meiosis in heterozygotes. It might be a consequence of diversifying selection that increased the structural divergence among genomes, and of purifying selection that decreased nucleotide divergence in each R gene locus.
Collapse
|
40
|
Piccinali RV, Mascord LJ, Barker JSF, Oakeshott JG, Hasson E. Molecular population genetics of the alpha-esterase5 gene locus in original and colonized populations of Drosophila buzzatii and its sibling Drosophila koepferae. J Mol Evol 2006; 64:158-70. [PMID: 17160646 DOI: 10.1007/s00239-005-0224-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 07/21/2006] [Indexed: 11/28/2022]
Abstract
Several studies have suggested that esterase-2 (EST-2) may be the target of natural selection in the cactophilic fly Drosophila buzzatii. In this work, we analyzed nucleotide variation in a fragment of alpha-esterase5 (alphaE5), the gene encoding EST-2, in original (Argentinian) and colonized (Australian) populations of D. buzzatii and in its sibling D. koepferae. Estimates of nucleotide heterozygosity in D. buzzatii were similar in Australia and Argentina, although we detected a loss of singletons in colonized populations, suggesting a moderate founder effect. Interspecific comparisons revealed that D. buzzatii was more polymorphic for nonsynonymous variation, whereas D. koepferae was more variable for synonymous and noncoding sites. The two major chromosomal arrangements (2st and 2j) in D. buzzatii displayed similar levels of nucleotide variation, whereas 2jz3 was monomorphic. The sequenced region allowed the discrimination of a greater number of EST-2 protein variants in the Australian sample than in the Argentinean sample. In D. koepferae, nucleotide variation in alphaE5 does not depart from neutral expectations, although tests of population structure were significant for silent variation. In contrast, D. buzzatii has probably undergone a recent population expansion in its South American range. In addition, the McDonald and Kreitman test revealed an excess of nonsynonymous polymorphism in both original and colonized populations of this species.
Collapse
Affiliation(s)
- R V Piccinali
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
41
|
González J, Casals F, Ruiz A. Testing chromosomal phylogenies and inversion breakpoint reuse in Drosophila. Genetics 2006; 175:167-77. [PMID: 17028333 PMCID: PMC1775012 DOI: 10.1534/genetics.106.062612] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A combination of cytogenetic and bioinformatic procedures was used to test the chromosomal phylogeny relating Drosophila buzzatii with D. repleta. Chromosomes X and 2, harboring most of the inversions fixed between these two species, were analyzed. First, chromosomal segments conserved during the divergence of the two species were identified by comparative in situ hybridization to the D. repleta chromosomes of 180 BAC clones from a BAC-based physical map of the D. buzzatii genome. These conserved segments were precisely delimited with the aid of clones containing inversion breakpoints. Then GRIMM software was used to estimate the minimum number of rearrangements necessary to transform one genome into the other and identify all possible rearrangement scenarios. Finally, the most plausible inversion trajectory was tested by hybridizing 12 breakpoint-bearing BAC clones to the chromosomes of seven other species in the repleta group. The results show that chromosomes X and 2 of D. buzzatii and D. repleta differ by 12 paracentric inversions. Nine of them are fixed in chromosome 2 and entail two breakpoint reuses. Our results also show that the cytological relationship between D. repleta and D. mercatorum is closer than that between D. repleta and D. peninsularis, and we propose that the phylogenetic relationships in this lineage of the repleta group be reconsidered. We also estimated the rate of rearrangement between D. repleta and D. buzzatii and conclude that rates within the genus Drosophila vary substantially between lineages, even within a single species group.
Collapse
Affiliation(s)
- Josefa González
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | | | | |
Collapse
|
42
|
Morales-Hojas R, Päällysaho S, Vieira CP, Hoikkala A, Vieira J. Comparative polytene chromosome maps of D. montana and D. virilis. Chromosoma 2006; 116:21-7. [PMID: 16906413 DOI: 10.1007/s00412-006-0075-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 06/07/2006] [Accepted: 06/11/2006] [Indexed: 10/24/2022]
Abstract
Chromosomal inversion polymorphism was characterized in Finnish Drosophila montana populations. A total of 14 polymorphic inversions were observed in Finnish D. montana of which nine had not been described before. The number of polymorphic inversions in each chromosome was not significantly different from that expected, assuming equal chance of occurrence in the euchromatic genome. There was, however, no correlation between the number of polymorphic inversions and that of fixed inversions in each chromosome. Therefore, a simple neutral model does not explain the evolutionary dynamics of inversions. Furthermore, in contrast to results obtained by others, no significant correlation was found between the two transposable elements (TEs) Penelope and Ulysses and inversion breakpoints in D. montana. This result suggests that these TEs were not involved in the creation of the polymorphic inversions seen in D. montana. A comparative analysis of D. montana and Drosophila virilis polytene chromosomes 4 and 5 was performed with D. virilis bacteriophage P1 clones, thus completing the comparative studies of the two species.
Collapse
Affiliation(s)
- Ramiro Morales-Hojas
- Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal.
| | | | | | | | | |
Collapse
|
43
|
Casals F, González J, Ruiz A. Abundance and chromosomal distribution of six Drosophila buzzatii transposons: BuT1, BuT2, BuT3, BuT4, BuT5, and BuT6. Chromosoma 2006; 115:403-12. [PMID: 16773395 DOI: 10.1007/s00412-006-0071-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/03/2006] [Accepted: 05/04/2006] [Indexed: 11/29/2022]
Abstract
The abundance and chromosomal distribution of six class-II transposable elements (TEs) of Drosophila buzzatii have been analyzed by Southern blotting and in situ hybridization. These six transposons had been previously found at the breakpoints of inversions 2j and 2q ( 7 ) of D. buzzatii. These two polymorphic inversions were generated by an ectopic recombination event between two copies of Galileo, a Foldback element. The four breakpoints became hotspots for TE insertions after the generation of the inversion and the transposons analyzed in this work are considered to be secondary invaders of these regions. Insertions of the six transposons are present in the euchromatin but show an increased density in the pericentromeric euchromatin-heterochromatin transition region and the dot chromosome. They are also more abundant in the inverted segments of chromosome 2 rearrangements. We further observed that the accumulation of TE insertions varies between elements and is correlated between dot, proximal regions, and inverted segments. These observations fully agree with previous data in Drosophila melanogaster and support recombination rate as the chief force explaining the chromosomal distribution of TEs.
Collapse
Affiliation(s)
- Ferran Casals
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
44
|
Sharakhov IV, White BJ, Sharakhova MV, Kayondo J, Lobo NF, Santolamazza F, della Torre A, Simard F, Collins FH, Besansky NJ. Breakpoint structure reveals the unique origin of an interspecific chromosomal inversion (2La) in the Anopheles gambiae complex. Proc Natl Acad Sci U S A 2006; 103:6258-62. [PMID: 16606844 PMCID: PMC1458865 DOI: 10.1073/pnas.0509683103] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Indexed: 02/08/2023] Open
Abstract
Paracentric chromosomal inversions are major architects of organismal evolution and have been associated with adaptations relevant to malaria transmission in anopheline mosquitoes. The processes responsible for their origin and maintenance, still poorly understood, can be illuminated by analysis of inversion breakpoint sequences. Here, we report the breakpoint structure of chromosomal inversion 2La from the principal malaria vector Anopheles gambiae and its relatives in the A. gambiae complex. The distal and proximal breakpoints of the standard (2L+a) arrangement contain gene duplications: full-length genes and their truncated copies at opposite ends. Intact genes without pseudogene copies in the alternative arrangement (2La) imply that 2L+a is derived and was viable despite damage to genes, because duplication preserved gene function. A unique origin for the interspecific 2La inversion was challenged previously by indirect genetic evidence, but breakpoint sequences determined from members of the A. gambiae complex strongly suggest their descent from a single event. The derived position of 2L+a, long considered ancestral in this medically important group, has significant implications for the phylogenetic history and the evolution of vectorial capacity in the A. gambiae complex.
Collapse
Affiliation(s)
- Igor V. Sharakhov
- *Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Bradley J. White
- *Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Maria V. Sharakhova
- *Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Jonathan Kayondo
- *Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Neil F. Lobo
- *Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Federica Santolamazza
- Sezione di Parassitologia, Dipartimento di Scienze di Sanita Pubblica, Universita di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; and
| | - Alessandra della Torre
- Sezione di Parassitologia, Dipartimento di Scienze di Sanita Pubblica, Universita di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; and
| | - Frédéric Simard
- Organisation pour la Lutte Contre les Endémies en Afrique Centrale–Institut de Recherche pour le Développement, BP 288, Yaounde, Cameroon
| | - Frank H. Collins
- *Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Nora J. Besansky
- *Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
45
|
Coghlan A, Eichler EE, Oliver SG, Paterson AH, Stein L. Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends Genet 2005; 21:673-82. [PMID: 16242204 DOI: 10.1016/j.tig.2005.09.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/08/2005] [Accepted: 09/29/2005] [Indexed: 12/15/2022]
Abstract
In eukaryotes, chromosomal rearrangements, such as inversions, translocations and duplications, are common and range from part of a gene to hundreds of genes. Lineage-specific patterns are also seen: translocations are rare in dipteran flies, and angiosperm genomes seem prone to polyploidization. In most eukaryotes, there is a strong association between rearrangement breakpoints and repeat sequences. Current data suggest that some repeats promoted rearrangements via non-allelic homologous recombination, for others the association might not be causal but reflects the instability of particular genomic regions. Rearrangement polymorphisms in eukaryotes are correlated with phenotypic differences, so are thought to confer varying fitness in different habitats. Some seem to be under positive selection because they either trap favorable allele combinations together or alter the expression of nearby genes. There is little evidence that chromosomal rearrangements cause speciation, but they probably intensify reproductive isolation between species that have formed by another route.
Collapse
Affiliation(s)
- Avril Coghlan
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
46
|
González J, Casals F, Ruiz A. Duplicative and conservative transpositions of larval serum protein 1 genes in the genus Drosophila. Genetics 2005; 168:253-64. [PMID: 15454541 PMCID: PMC1448094 DOI: 10.1534/genetics.103.025916] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interspecific comparative molecular analyses of transposed genes and their flanking regions can help to elucidate the time, direction, and mechanism of gene transposition. In the Drosophila melanogaster genome, three Larval serum protein 1 (Lsp1) genes (alpha, beta and gamma) are present and each of them is located on a different chromosome, suggesting multiple transposition events. We have characterized the molecular organization of Lsp1 genes in D. buzzatii, a species of the Drosophila subgenus and in D. pseudoobscura, a species of the Sophophora subgenus. Our results show that only two Lsp1 genes (beta and gamma) exist in these two species. The same chromosomal localization and genomic organization, different from that of D. melanogaster, is found in both species for the Lsp1beta and Lsp1gamma genes. Overall, at least two duplicative and two conservative transpositions are necessary to explain the present chromosomal distribution of Lsp1 genes in the three Drosophila species. Clear evidence for implication of snRNA genes in the transposition of Lsp1beta in Drosophila has been found. We suggest that an ectopic exchange between highly similar snRNA sequences was responsible for the transposition of this gene. We have also identified the putative cis-acting regulatory regions of these genes, which seemingly transposed along with the coding sequences.
Collapse
Affiliation(s)
- Josefa González
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | | | | |
Collapse
|
47
|
Matzkin LM, Merritt TJS, Zhu CT, Eanes WF. The structure and population genetics of the breakpoints associated with the cosmopolitan chromosomal inversion In(3R)Payne in Drosophila melanogaster. Genetics 2005; 170:1143-52. [PMID: 15781702 PMCID: PMC1451188 DOI: 10.1534/genetics.104.038810] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report here the breakpoint structure and sequences of the Drosophila melanogaster cosmopolitan chromosomal inversion In(3R)P. Combining in situ hybridization to polytene chromosomes and long-range PCR, we have identified and sequenced the distal and proximal breakpoints. The breakpoints are not simple cut-and-paste structures; gene fragments and small duplications of DNA are associated with both breaks. The distal breakpoint breaks the tolkin (tok) gene and the proximal breakpoint breaks CG31279 and the tolloid (tld) gene. Functional copies of all three genes are found at the opposite breakpoints. We sequenced a representative sample of standard (St) and In(3R)P karyotypes for a 2-kb portion of the tok gene, as well as the same 2 kb from the pseudogene tok fragment found at the distal breakpoint of In(3R)P chromosomes. The tok gene in St arrangements possesses levels of polymorphism typical of D. melanogaster genes. The functional tok gene associated with In(3R)P shows little polymorphism. Numerous single-base changes, as well as deletions and duplications, are associated with the truncated copy of tok. The overall pattern of polymorphism is consistent with a recent origin of In(3R)P, on the order of Ne generations. The identification of these breakpoint sequences permits a simple PCR-based screen for In(3R)P.
Collapse
Affiliation(s)
| | | | | | - Walter F. Eanes
- Corresponding author: Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794. E-mail:
| |
Collapse
|
48
|
Casals F, Cáceres M, Manfrin MH, González J, Ruiz A. Molecular characterization and chromosomal distribution of Galileo, Kepler and Newton, three foldback transposable elements of the Drosophila buzzatii species complex. Genetics 2005; 169:2047-59. [PMID: 15695364 PMCID: PMC1449584 DOI: 10.1534/genetics.104.035048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Galileo is a foldback transposable element that has been implicated in the generation of two polymorphic chromosomal inversions in Drosophila buzzatii. Analysis of the inversion breakpoints led to the discovery of two additional elements, called Kepler and Newton, sharing sequence and structural similarities with Galileo. Here, we describe in detail the molecular structure of these three elements, on the basis of the 13 copies found at the inversion breakpoints plus 10 additional copies isolated during this work. Similarly to the foldback elements described in other organisms, these elements have long inverted terminal repeats, which in the case of Galileo possess a complex structure and display a high degree of internal variability between copies. A phylogenetic tree built with their shared sequences shows that the three elements are closely related and diverged approximately 10 million years ago. We have also analyzed the abundance and chromosomal distribution of these elements in D. buzzatii and other species of the repleta group by Southern analysis and in situ hybridization. Overall, the results suggest that these foldback elements are present in all the buzzatti complex species and may have played an important role in shaping their genomes. In addition, we show that recombination rate is the main factor determining the chromosomal distribution of these elements.
Collapse
Affiliation(s)
- Ferran Casals
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain.
| | | | | | | | | |
Collapse
|
49
|
Dobigny G, Ozouf-Costaz C, Waters PD, Bonillo C, Coutanceau JP, Volobouev V. LINE-1 amplification accompanies explosive genome repatterning in rodents. Chromosome Res 2004; 12:787-93. [PMID: 15702417 DOI: 10.1007/s10577-005-5265-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 09/15/2004] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) sometimes induce karyotypic changes following recombination, breakage and rearrangement. We used FISH and Southern blot analyses to investigate the amount and distribution of LINE-1 retrotransposons in rodents (genus Taterillus, Muridae, Gerbillinae) that have recently undergone an important genome repatterning. Our results were interpreted in a known phylogenetic framework and clearly showed that LINE-1 elements were greatly amplified and non-randomly distributed in the most rearranged karyotypes. A comparison between FISH and conventional banding patterns provided evidence that LINE-1 insertion sites and chromosome breakpoints were not strongly correlated, thus suggesting that LINE-1 amplification subsequently accompanied Taterillus chromosome evolution. Similar patterns are observed in some cases of genomic stresses (hybrid genomes, cancer and DNA-damaged cells) and usually associated with DNA hypomethylation. We propose that intensively repatterned genomes face transient stress phases during which some epigenetic features, such as DNA methylation, are relaxed, thus allowing TE amplification.
Collapse
Affiliation(s)
- Gauthier Dobigny
- Laboratoire Origine, Structure et Evolution de la Biodiversité, Muséum National d'Histoire Naturelle, 55, rue Buffon, F75005, Paris, France.
| | | | | | | | | | | |
Collapse
|
50
|
Waters PD, Dobigny G, Pardini AT, Robinson TJ. LINE-1 distribution in Afrotheria and Xenarthra: implications for understanding the evolution of LINE-1 in eutherian genomes. Chromosoma 2004; 113:137-44. [PMID: 15338236 DOI: 10.1007/s00412-004-0301-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 06/04/2004] [Accepted: 06/11/2004] [Indexed: 10/26/2022]
Abstract
Long interspersed nuclear elements (LINEs) comprise about 21% of the human genome (of which L1 is most abundant) and are preferentially accumulated in AT-rich regions, as well as the X and Y chromosomes. Most knowledge of L1 distribution in mammals is restricted to human and mouse. Here we report the first investigation of L1 distribution in the genomes of a wide variety of eutherian mammals, including species in the two basal clades, Afrotheria and Xenarthra. Our results show L1 accumulation on the X of all eutherian mammals, an observation consistent with an ancestral involvement of these elements in the X-inactivation process (the Lyon repeat hypothesis). Surprisingly, conspicuous accumulation of L1 in AT-rich regions of the genome was not observed in any species outside of Euarchontoglires (represented by human, mouse and rabbit). Although several features were common to most species investigated, our comprehensive survey shows that the patterns observed in human and mouse are, in many aspects, far from typical for all mammals. We discuss these findings with reference to models that have previously been proposed to explain the AT distribution bias of L1 in human and mouse, and how this relates to the evolution of these elements in other eutherian genomes.
Collapse
Affiliation(s)
- Paul D Waters
- Evolutionary Genomics Group, Department of Zoology, University of Stellenbosch, Private Bag X1, 7602, Matieland, South Africa
| | | | | | | |
Collapse
|