1
|
Hershkovitz D, Chen EJ, Ensminger AW, Dugan AS, Conway KT, Joyce AC, Segal G, Isberg RR. Genetic evidence for a regulated cysteine protease catalytic triad in LegA7, a Legionella pneumophila protein that impinges on a stress response pathway. mSphere 2024; 9:e0022224. [PMID: 39166849 PMCID: PMC11423584 DOI: 10.1128/msphere.00222-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/30/2024] [Indexed: 08/23/2024] Open
Abstract
Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate mitogen-activated protein kinase (MAPK) activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high-osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on a high-osmolarity medium. Mutations were isolated in the two carboxyl-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two carboxyl-terminal ankyrin repeat regions that modulate the function of the catalytic domain. IMPORTANCE Legionella pneumophila grows in a membrane-bound compartment in macrophages during disease. Construction of the compartment requires a dedicated secretion system that translocates virulence proteins into host cells. One of these proteins, LegA7, is shown to activate a stress response pathway in host cells called the mitogen-activated protein kinase (MAPK) pathway. The effects on the mammalian MAPK pathway were reconstructed in yeast, allowing the development of a strategy to identify the role of individual domains of LegA7. A domain similar to cysteine proteases is demonstrated to be critical for impinging on the MAPK pathway, and the catalytic activity of this domain is required for targeting this path. In addition, a conserved series of repeats, called ankyrin repeats, controls this activity. Data are provided that argue the interaction of the ankyrin repeats with unknown targets probably results in activation of the cysteine protease domain.
Collapse
Affiliation(s)
- Dar Hershkovitz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Emy J Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aisling S Dugan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Kaleigh T Conway
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alex C Joyce
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Urbanus ML, Zheng TM, Khusnutdinova AN, Banh D, O'Connor Mount H, Gupta A, Stogios PJ, Savchenko A, Isberg RR, Yakunin AF, Ensminger AW. A random mutagenesis screen enriched for missense mutations in bacterial effector proteins. G3 (BETHESDA, MD.) 2024; 14:jkae158. [PMID: 39028840 PMCID: PMC11373652 DOI: 10.1093/g3journal/jkae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
To remodel their hosts and escape immune defenses, many pathogens rely on large arsenals of proteins (effectors) that are delivered to the host cell using dedicated translocation machinery. Effectors hold significant insight into the biology of both the pathogens that encode them and the host pathways that they manipulate. One of the most powerful systems biology tools for studying effectors is the model organism, Saccharomyces cerevisiae. For many pathogens, the heterologous expression of effectors in yeast is growth inhibitory at a frequency much higher than housekeeping genes, an observation ascribed to targeting conserved eukaryotic proteins. Abrogation of yeast growth inhibition has been used to identify bacterial suppressors of effector activity, host targets, and functional residues and domains within effector proteins. We present here a yeast-based method for enriching for informative, in-frame, missense mutations in a pool of random effector mutants. We benchmark this approach against three effectors from Legionella pneumophila, an intracellular bacterial pathogen that injects a staggering >330 effectors into the host cell. For each protein, we show how in silico protein modeling (AlphaFold2) and missense-directed mutagenesis can be combined to reveal important structural features within effectors. We identify known active site residues within the metalloprotease RavK, the putative active site in SdbB, and previously unidentified functional motifs within the C-terminal domain of SdbA. We show that this domain has structural similarity with glycosyltransferases and exhibits in vitro activity consistent with this predicted function.
Collapse
Affiliation(s)
- Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Thomas M Zheng
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 1A4, Canada
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Doreen Banh
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Harley O'Connor Mount
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Alind Gupta
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 1A4, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Health Research Innovation Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02115, USA
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 1A4, Canada
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
3
|
Hershkovitz D, Chen EJ, Ensminger AW, Dugan AS, Conway KT, Joyce AC, Segal G, Isberg RR. Genetic evidence for a regulated cysteine protease catalytic triad in LegA7, a Legionella pneumophila protein that impinges on a stress response pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585421. [PMID: 38562771 PMCID: PMC10983931 DOI: 10.1101/2024.03.17.585421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate MAPK activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on high osmolarity medium. Mutations were isolated in the two carboxyl-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two carboxyl-terminal ankyrin repeat regions that modulate the function of the catalytic domain.
Collapse
Affiliation(s)
- Dar Hershkovitz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Emy J. Chen
- Department of Molecular Biology and Microbiology
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02115, USA
| | | | - Aisling S. Dugan
- Department of Molecular Biology and Microbiology
- Current Address: Dept. of Biology, Brown University, Providence, RI 02912
| | - Kaleigh T. Conway
- Department of Molecular Biology and Microbiology
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02115, USA
| | | | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | | |
Collapse
|
4
|
Barton DBH, Georghiou D, Dave N, Alghamdi M, Walsh TA, Louis EJ, Foster SS. PHENOS: a high-throughput and flexible tool for microorganism growth phenotyping on solid media. BMC Microbiol 2018; 18:9. [PMID: 29368646 PMCID: PMC5784713 DOI: 10.1186/s12866-017-1143-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
Background Microbial arrays, with a large number of different strains on a single plate printed with robotic precision, underpin an increasing number of genetic and genomic approaches. These include Synthetic Genetic Array analysis, high-throughput Quantitative Trait Loci (QTL) analysis and 2-hybrid techniques. Measuring the growth of individual colonies within these arrays is an essential part of many of these techniques but is useful for any work with arrays. Measurement is typically done using intermittent imagery fed into complex image analysis software, which is not especially accurate and is challenging to use effectively. We have developed a simple and fast alternative technique that uses a pinning robot and a commonplace microplate reader to continuously measure the thickness of colonies growing on solid agar, complemented by a technique for normalizing the amount of cells initially printed to each spot of the array in the first place. We have developed software to automate the process of combining multiple sets of readings, subtracting agar absorbance, and visualizing colony thickness changes in a number of informative ways. Results The “PHENOS” pipeline (PHENotyping On Solid media), optimized for Saccharomyces yeasts, produces highly reproducible growth curves and is particularly sensitive to low-level growth. We have empirically determined a formula to estimate colony cell count from an absorbance measurement, and shown this to be comparable with estimates from measurements in liquid. We have also validated the technique by reproducing the results of an earlier QTL study done with conventional liquid phenotyping, and found PHENOS to be considerably more sensitive. Conclusions “PHENOS” is a cost effective and reliable high-throughput technique for quantifying growth of yeast arrays, and is likely to be equally very useful for a range of other types of microbial arrays. A detailed guide to the pipeline and software is provided with the installation files at https://github.com/gact/phenos. Electronic supplementary material The online version of this article (10.1186/s12866-017-1143-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David B H Barton
- Department of Genetics & Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Danae Georghiou
- Department of Genetics & Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Neelam Dave
- Department of Genetics & Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Majed Alghamdi
- Department of Genetics & Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Thomas A Walsh
- Department of Genetics & Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Edward J Louis
- Department of Genetics & Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - Steven S Foster
- Department of Genetics & Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
5
|
Jia B, Jeon CO. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol 2017; 6:rsob.160196. [PMID: 27581654 PMCID: PMC5008019 DOI: 10.1098/rsob.160196] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/03/2016] [Indexed: 12/26/2022] Open
Abstract
The ease of genetic manipulation, low cost, rapid growth and number of previous studies have made Escherichia coli one of the most widely used microorganism species for producing recombinant proteins. In this post-genomic era, challenges remain to rapidly express and purify large numbers of proteins for academic and commercial purposes in a high-throughput manner. In this review, we describe several state-of-the-art approaches that are suitable for the cloning, expression and purification, conducted in parallel, of numerous molecules, and we discuss recent progress related to soluble protein expression, mRNA folding, fusion tags, post-translational modification and production of membrane proteins. Moreover, we address the ongoing efforts to overcome various challenges faced in protein expression in E. coli, which could lead to an improvement of the current system from trial and error to a predictable and rational design.
Collapse
Affiliation(s)
- Baolei Jia
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
Hughes SR, Riedmuller SB, Mertens JA, Li XL, Bischoff KM, Cotta MA, Farrelly PJ. Development of a Liquid Handler Component for a Plasmid-Based Functional Proteomic Robotic Workcell. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jala.2005.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Hudson Control Group, Inc. ProLink Express™ robotic workcell to conduct plasmid-based functional proteomics is being developed for optimization of protein open reading frames (ORF). The initial phase of this project is to design and assemble a Xantus liquid handler from Sias, Inc. modified by Hudson so that a workcell track component can be placed within the Xantus® gripper tool work area. The liquid handler is designed to produce plasmids using the Qiagen Turbo® plasmid preparation kit. This design allows processing of up to four 96-well plates in one run. The procedure eliminates disposable tips and provides an advanced wash system to prevent cross contamination. To evaluate liquid handler operation, a mutagenized cellulase F ORF plasmid library was prepared from wild-type cellulase F (Chen, H.; Li, X.-L.; Blum, D. L.; Ximenes, E. A.; Ljungdahl, L. G. CelF of Orpinomyces PC-2 has an intron and encodes a cellulase (CelF) containing a carbohydrate-binding module. Applied Biochemistry and Biotechnology 2003, 105–108, 775–785; Li, X.-L.; Chen, H.; Ljungdahl, L. G. Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulase-hemicellulase complex. Applied and Environmental Microbiology 1997, 63(12), 4721–4728) using a novel Invitrogen Gateway® cloning strategy. For the automated reproducibility run, the average yield of plasmid was 5.35 μg per well from 1.347 mL of starting culture. Four plates were processed automatically on the liquid handler in 374 min compared to at least 441 min for the same plate operations performed manually. The quality and quantity of plasmids prepared on the liquid handler made the implementation of the following workcell protocols possible: DNA sequencing, in vitro transcription/translation, and transformation of bacterial and yeast strains for protein expression.
Collapse
Affiliation(s)
- Stephen R. Hughes
- BBC Research Unit, USDA, ARS, NCAUR, 1815 North University Street, Peoria, IL 61604
| | | | - Jeffrey A. Mertens
- FBT Research Unit, USDA, ARS, NCAUR, 1815 North University Street, Peoria, IL 61604
| | - Xin-Liang Li
- FBT Research Unit, USDA, ARS, NCAUR, 1815 North University Street, Peoria, IL 61604
| | - Kenneth M. Bischoff
- BBC Research Unit, USDA, ARS, NCAUR, 1815 North University Street, Peoria, IL 61604
| | - Michael A. Cotta
- FBT Research Unit, USDA, ARS, NCAUR, 1815 North University Street, Peoria, IL 61604
| | | |
Collapse
|
7
|
Huillet C, Adrait A, Lebert D, Picard G, Trauchessec M, Louwagie M, Dupuis A, Hittinger L, Ghaleh B, Le Corvoisier P, Jaquinod M, Garin J, Bruley C, Brun V. Accurate quantification of cardiovascular biomarkers in serum using Protein Standard Absolute Quantification (PSAQ™) and selected reaction monitoring. Mol Cell Proteomics 2011; 11:M111.008235. [PMID: 22080464 DOI: 10.1074/mcp.m111.008235] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Development of new biomarkers needs to be significantly accelerated to improve diagnostic, prognostic, and toxicity monitoring as well as therapeutic follow-up. Biomarker evaluation is the main bottleneck in this development process. Selected Reaction Monitoring (SRM) combined with stable isotope dilution has emerged as a promising option to speed this step, particularly because of its multiplexing capacities. However, analytical variabilities because of upstream sample handling or incomplete trypsin digestion still need to be resolved. In 2007, we developed the PSAQ™ method (Protein Standard Absolute Quantification), which uses full-length isotope-labeled protein standards to quantify target proteins. In the present study we used clinically validated cardiovascular biomarkers (LDH-B, CKMB, myoglobin, and troponin I) to demonstrate that the combination of PSAQ and SRM (PSAQ-SRM) allows highly accurate biomarker quantification in serum samples. A multiplex PSAQ-SRM assay was used to quantify these biomarkers in clinical samples from myocardial infarction patients. Good correlation between PSAQ-SRM and ELISA assay results was found and demonstrated the consistency between these analytical approaches. Thus, PSAQ-SRM has the capacity to improve both accuracy and reproducibility in protein analysis. This will be a major contribution to efficient biomarker development strategies.
Collapse
Affiliation(s)
- Céline Huillet
- CEA, IRTSV, Biologie à Grande Echelle, F-38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Design and Construction of a First-Generation High-Throughput Integrated Robotic Molecular Biology Platform for Bioenergy Applications. ACTA ACUST UNITED AC 2011; 16:292-307. [DOI: 10.1016/j.jala.2011.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Indexed: 01/01/2023]
Abstract
The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains Published by Elsevier Inc. on behalf of the Society for Laboratory Automation and Screening for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries.
Collapse
|
9
|
Maier RH, Maier CJ, Rid R, Hintner H, Bauer JW, Onder K. Epitope mapping of antibodies using a cell array-based polypeptide library. ACTA ACUST UNITED AC 2010; 15:418-26. [PMID: 20233905 DOI: 10.1177/1087057110363821] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors describe a technique for mapping the epitopes of protein antigens recognized by mono- or polyclonal antibodies. This method is based on a recombinant polypeptide library, expressed in a bacterial expression system, arrayed at high density, and tested on a membrane with automated procedures. The authors analyzed the epitope of a commercially available monoclonal antibody to vitamin D receptor (VDR). About 2300 overlapping VDR peptides were screened on a test array, and a contiguous stretch of 37 amino acids was identified as the epitope. Its authenticity was confirmed by Western blotting and an immunofluorescence competition assay on human skin tissue samples. The authors define the proposed method as a cell-based protein or peptide array that is adaptable to many applications, including epitope mapping of antibodies and autoantibodies, autoantigen detection from patient sera, whole-proteome approaches such as protein-peptide interactions, or selection of monoclonal antibodies from polyclonal sera. The advantages of this method are (a) its ease of protein array production based on well-established bacterial protein/peptide expression procedures; (b) the large number of printable colonies (as many as approximately 25,000) that can be arrayed per membrane; (c) there is no need for protein purification of recombinantly expressed proteins; (d) DNA, rather than protein, is the starting material to generate the arrays; and (e) its high-throughput and automatable format.
Collapse
Affiliation(s)
- Richard H Maier
- Department of Cell Biology, University of Salzburg, Salzburg, Austria.
| | | | | | | | | | | |
Collapse
|
10
|
Pathogenic polyglutamine tracts are potent inducers of spontaneous Sup35 and Rnq1 amyloidogenesis. PLoS One 2010; 5:e9642. [PMID: 20224794 PMCID: PMC2835767 DOI: 10.1371/journal.pone.0009642] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 02/17/2010] [Indexed: 11/19/2022] Open
Abstract
The glutamine/asparagine (Q/N)-rich yeast prion protein Sup35 has a low intrinsic propensity to spontaneously self-assemble into ordered, beta-sheet-rich amyloid fibrils. In yeast cells, de novo formation of Sup35 aggregates is greatly facilitated by high protein concentrations and the presence of preformed Q/N-rich protein aggregates that template Sup35 polymerization. Here, we have investigated whether aggregation-promoting polyglutamine (polyQ) tracts can stimulate the de novo formation of ordered Sup35 protein aggregates in the absence of Q/N-rich yeast prions. Fusion proteins with polyQ tracts of different lengths were produced and their ability to spontaneously self-assemble into amlyloid structures was analyzed using in vitro and in vivo model systems. We found that Sup35 fusions with pathogenic (>or=54 glutamines), as opposed to non-pathogenic (19 glutamines) polyQ tracts efficiently form seeding-competent protein aggregates. Strikingly, polyQ-mediated de novo assembly of Sup35 protein aggregates in yeast cells was independent of pre-existing Q/N-rich protein aggregates. This indicates that increasing the content of aggregation-promoting sequences enhances the tendency of Sup35 to spontaneously self-assemble into insoluble protein aggregates. A similar result was obtained when pathogenic polyQ tracts were linked to the yeast prion protein Rnq1, demonstrating that polyQ sequences are generic inducers of amyloidogenesis. In conclusion, long polyQ sequences are powerful molecular tools that allow the efficient production of seeding-competent amyloid structures.
Collapse
|
11
|
Persson J, Augustsson P, Laurell T, Ohlin M. Acoustic microfluidic chip technology to facilitate automation of phage display selection. FEBS J 2008; 275:5657-66. [DOI: 10.1111/j.1742-4658.2008.06691.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Harbers M. The current status of cDNA cloning. Genomics 2008; 91:232-42. [PMID: 18222633 DOI: 10.1016/j.ygeno.2007.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/10/2007] [Accepted: 11/17/2007] [Indexed: 11/19/2022]
Abstract
The cloning of cDNAs, copies of cellular RNA, is one of the classical technologies in molecular biology. Over the past 30 years cDNA cloning technologies have been improved to enable the cloning of large cDNA collections, which are fundamental to today's understanding of the utilization of genetic information. With the discovery of noncoding RNAs, additional new approaches to the cloning of short RNAs have been developed. However, with the realization that much larger portions of genomes are transcribed than anticipated from genome annotations, cDNA cloning faces new challenges to uncover rare transcripts and to make the corresponding cDNAs available for functional studies. This review provides an overview on the current status of cDNA cloning and possibilities for the discovery and characterization of new RNA families.
Collapse
Affiliation(s)
- Matthias Harbers
- DNAFORM, Inc., Leading Venture Plaza 2, 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan.
| |
Collapse
|
13
|
Mersich C, Jungbauer A. Generation of bioactive peptides by biological libraries. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 861:160-70. [PMID: 17644452 DOI: 10.1016/j.jchromb.2007.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/13/2007] [Accepted: 06/23/2007] [Indexed: 11/19/2022]
Abstract
Biological libraries are powerful tools for discovery of new ligands as well as for identification of cellular interaction partners. Since the first development of the first biological libraries in form of phage displays, numerous biological libraries have been developed. For the development of new ligands, the usage of synthetic oligonucleotides is the method of choice. Generation of random oligonucleotides has been refined and various strategies for random oligonucleotide design were developed. We trace the progress and design of new strategies for the generation of random oligonucleotides, and include a look at arising diversity biases. On the other hand, genomic libraries are widely employed for investigation of cellular protein-protein interactions and targeted search of proteomic binding partners. Expression of random peptides and proteins in a linear form or integrated in a scaffold can be facilitated both in vitro and in vivo. A typical in vitro system, ribosome display, provides the largest available library size. In vivo methods comprise smaller libraries, the size of which depends on their transformation efficiency. Libraries in different hosts such as phage, bacteria, yeast, insect cells, mammalian cells exhibit higher biosynthetic capabilities. The latest library systems are compared and their strengths and limitations are reviewed.
Collapse
Affiliation(s)
- Christa Mersich
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences Vienna, Muthgasse 18, Vienna, Austria
| | | |
Collapse
|
14
|
Mersich C, Billes W, Pabinger I, Jungbauer A. Peptides derived from a secretory yeast library restore factor VIII activity in the presence of an inhibitory antibody. Biotechnol Bioeng 2007; 98:12-21. [PMID: 17390380 DOI: 10.1002/bit.21426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of autoantibodies against factor VIII represents one of the major complications in the treatment of hemophilia A patients. We have employed a novel library system to obtain peptides that specifically neutralize the interaction between factor VIII and these inhibitors. The random peptides are presented as carboxy-terminal extensions of the eukaryotic initiation factor 5a, an intracellular protein with a molecular mass of 18 kDa. These random peptides formed an unique binding site, as demonstrated by molecular simulations using the computer programs InsightII and GROMACS. The library was screened to identify peptides binding to the murine monoclonal anti-factor VIII antibody ESH8 and to inhibitors derived from patients with factor VIII antibodies. Ten peptides binding to ESH8 were identified. Their specificity was confirmed by displacement assays. Two peptides with the sequences STKTLGRPLHGPAGPVEGGALAGVAEDADLVTAVSGR and YHCKREDLTDRDATCALRQPPQAVRGLGPRVTAVSGR showed the ability to restore the factor VIII activity from 33% up to approximately 90% in functional tests performed in vitro. Three candidates for binding to factor VIII antibodies derived from four different patient's sera were achieved. Three fusion proteins with the peptide sequences PQLGSRRSTTPSLTFQNASWFPAGGPCARSNRG, SGSRQVCKLARSLQPF and WERGRRVGAQVRHARHLVARVLDGAGHQARLTAVNGP bound to inhibitors derived from different patients. Furthermore, two of the obtained fusion proteins with the peptide sequences RHWTALGPAPTHTCADLNYPLLS and WERGRRVGAQVRHARHLVARVLDGAGHQARLTAVNGP did also bind to the monoclonal antibody ESH8. This study demonstrates the potential of this system to identify peptides that inhibit the activity of potent inhibitory antibodies and also shows potential as a method for screening of bioactive peptides.
Collapse
Affiliation(s)
- Christa Mersich
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
15
|
Gutjahr C, Murphy D, Lueking A, Koenig A, Janitz M, O'Brien J, Korn B, Horn S, Lehrach H, Cahill DJ. Mouse protein arrays from a TH1 cell cDNA library for antibody screening and serum profiling. Genomics 2005; 85:285-96. [PMID: 15718096 DOI: 10.1016/j.ygeno.2004.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 11/10/2004] [Indexed: 11/22/2022]
Abstract
The mouse is the premier genetic model organism for the study of disease and development. We describe the establishment of a mouse T helper cell type 1 (T(H)1) protein expression library that provides direct access to thousands of recombinant mouse proteins, in particular those associated with immune responses. The advantage of a system based on the combination of large cDNA expression libraries with microarray technology is the direct connection of the DNA sequence information from a particular clone to its recombinant, expressed protein. We have generated a mouse T(H)1 expression cDNA library and used protein arrays of this library to characterize the specificity and cross-reactivity of antibodies. Additionally, we have profiled the autoantibody repertoire in serum of a mouse model for systemic lupus erythematosus on these protein arrays and validated the putative autoantigens on highly sensitive protein microarrays.
Collapse
Affiliation(s)
- Claudia Gutjahr
- Max Planck Institute of Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lueking A, Cahill DJ, Müllner S. Protein biochips: A new and versatile platform technology for molecular medicine. Drug Discov Today 2005; 10:789-94. [PMID: 15922937 DOI: 10.1016/s1359-6446(05)03449-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The human genome has been sequenced and the challenges of understanding the function of the newly discovered genes have been addressed. High-throughput technologies such as DNA microarrays have been developed for the profiling of gene expression patterns in whole organisms or tissues. Protein arrays are emerging to follow DNA chips as possible screening tools. Here, we review the generation and application of microarray technology to obtain more information on the regulation of proteins, their biochemical functions and their potential interaction partners. Already, a large variety of assays based on antibody-antigen interactions exists. In addition, the medical relevance of protein arrays will be discussed.
Collapse
Affiliation(s)
- Angelika Lueking
- Ruhr-University Bochum, Medical Proteome Center, Universitätsstrasse 150, D-44780 Bochum, Germany
| | | | | |
Collapse
|
17
|
Iyer K, Bürkle L, Auerbach D, Thaminy S, Dinkel M, Engels K, Stagljar I. Utilizing the split-ubiquitin membrane yeast two-hybrid system to identify protein-protein interactions of integral membrane proteins. Sci Signal 2005; 2005:pl3. [PMID: 15770033 DOI: 10.1126/stke.2752005pl3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Various modifications of the conventional yeast two-hybrid system have played an essential role in confirming or detecting protein-protein interactions among nuclear and cytoplasmic proteins. These approaches have permitted the identification of novel interaction partners, as well as provided hints as to their function. However, membrane proteins, such as receptor tyrosine kinases, G protein-coupled receptors, membrane-bound phosphatases, and transporters, which represent important classes of signaling molecules, are difficult to study using classical protein interaction assays because of their hydrophobic nature. Here, we describe a genetic system that allows the identification of integral membrane-interacting proteins. This so-called "split-ubiquitin membrane-based yeast two-hybrid assay" involves fusing the halves of ubiquitin to two interacting proteins, at least one of which is membrane bound. Upon interaction of these two proteins, the halves of ubiquitin are brought together, and the transcription factor that is fused to a membrane protein of interest is cleaved and released. The free transcription factor then enters the nucleus and activates transcription of reporter genes. We also describe how this technology is used to screen complementary DNA libraries to identify novel binding partners of a membrane protein of interest.
Collapse
Affiliation(s)
- Kavitha Iyer
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Faix PH, Burg MA, Gonzales M, Ravey EP, Baird A, Larocca D. Phage display of cDNA libraries: enrichment of cDNA expression using open reading frame selection. Biotechniques 2005; 36:1018-22, 1024, 1026-9. [PMID: 15211753 DOI: 10.2144/04366rr03] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Phage display technologies are powerful tools for selecting binding ligands against purified molecular targets, live cells, and organ vasculature. However, the selection of natural ligands using phage display has been limited because of significant problems associated with the display of complex cDNA repertoires. Here we describe the use of cDNA fragmentation and open reading frame (ORF) selection to display a human placental cDNA library on the pIII coat protein of filamentous phage. The library was enriched for ORFs by selecting cDNA-beta-lactamase fusion proteins on ampicillin, resulting in a cDNA population having 97% ORFs. The ORF-selected cDNAs were fused to pIII in the phagemid vector, pUCMG4CT-198, and the library was rescued with a pIII-deleted helper phage for multivalent display. The resulting phagemid particle library consisted of 87% ORFs, compared to only 6% ORFs when prepared without ORF selection. Western blot analysis indicated cDNA-pIII fusion protein expression in eight out of nine ORF clones tested, and seven of the ORF encoded peptides were displayed multivalently. The high level of cDNA expression obtained by ORF selection suggests that ORF-enriched phage cDNA libraries prepared by these methods will be useful as functional genomics tools for identifying natural ligands from various source tissues.
Collapse
|
19
|
Lueking A, Possling A, Huber O, Beveridge A, Horn M, Eickhoff H, Schuchardt J, Lehrach H, Cahill DJ. A nonredundant human protein chip for antibody screening and serum profiling. Mol Cell Proteomics 2003; 2:1342-9. [PMID: 14517340 DOI: 10.1074/mcp.t300001-mcp200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is burgeoning interest in protein microarrays, but a source of thousands of nonredundant, purified proteins was not previously available. Here we show a glass chip containing 2413 nonredundant purified human fusion proteins on a polymer surface, where densities up to 1600 proteins/cm(2) on a microscope slide can be realized. In addition, the polymer coating of the glass slide enables screening of protein interactions under nondenaturing conditions. Such screenings require only 200-microl sample volumes, illustrating their potential for high-throughput applications. Here we demonstrate two applications: the characterization of antibody binding, specificity, and cross-reactivity; and profiling the antibody repertoire in body fluids, such as serum from patients with autoimmune diseases. For the first application, we have incubated these protein chips with anti-RGSHis(6), anti-GAPDH, and anti-HSP90beta antibodies. In an initial proof of principle study for the second application, we have screened serum from alopecia and arthritis patients. With analysis of large sample numbers, identification of disease-associated proteins to generate novel diagnostic markers may be possible.
Collapse
Affiliation(s)
- Angelika Lueking
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cahill DJ, Nordhoff E. Protein arrays and their role in proteomics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 83:177-87. [PMID: 12934930 DOI: 10.1007/3-540-36459-5_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Arraying technologies have shown the way to smaller sample volumes, more efficient analyses and higher throughput. Proteomics is a field, which has grown in significance in the last five years. This review outlines recent developments in protein arrays and their applications in proteomics, and discusses the requirements, current limitations and the potential and future perspectives of the technology.
Collapse
Affiliation(s)
- Dolores J Cahill
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany.
| | | |
Collapse
|
21
|
Kersten B, Feilner T, Kramer A, Wehrmeyer S, Possling A, Witt I, Zanor MI, Stracke R, Lueking A, Kreutzberger J, Lehrach H, Cahilll DJ. Generation of Arabidopsis protein chips for antibody and serum screening. PLANT MOLECULAR BIOLOGY 2003; 52:999-1010. [PMID: 14558660 DOI: 10.1023/a:1025424814739] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein array technology has emerged as a new tool to enable ordered screening of proteins for expression and molecular interactions in high throughput. Besides classical solid-phase substrates, such as micro-titre plates and membrane filters, protein arrays have recently been devised with chip-sized supports. Several applications on protein chips have been described, but to our knowledge no studies using plant protein chips were published so far. The aim of this study was to generate Arabidopsis protein chips and to demonstrate the feasibility of the protein chip technology for the investigation of antigen-antibody interactions. Therefore, Arabidopsis cDNAs encoding 95 different proteins were cloned into a GATEWAY-compatible Escherichia coli expression vector. RGS-His6-tagged recombinant proteins were purified in high throughput and robotically arrayed onto glass slides coated either with a nitrocellulose based polymer (FAST slides) or polyacrylamide (PAA slides). Using an anti-RGS-His6 antibody all proteins were detected on the chips. The detection limit was ca. 2-3.6 fmol per spot on FAST slides or 0.1-1.8 fmol per spot on PAA slides. The Arabidopsis protein chips were used for the characterisation of monoclonal antibodies or polyclonal sera. We were able to show that a monoclonal anti-TCP1 antibody and anti-MYB6 and anti-DOF11 sera bound specifically to their respective antigens and did not cross-react with the other 94 proteins including other DOF and MYB transcription factors on the chips. To enable screening of antibodies or other interacting molecules against thousands of Arabidopsis proteins in future, we generated an ordered cDNA expression library and started with high-throughput cloning of full-length cDNAs with GATEWAY technology.
Collapse
Affiliation(s)
- B Kersten
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nakayama M, Kikuno R, Ohara O. Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs. Genome Res 2002; 12:1773-84. [PMID: 12421765 PMCID: PMC187542 DOI: 10.1101/gr.406902] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Large proteins have multiple domains that are potentially capable of binding many kinds of partners. It is conceivable, therefore, that such proteins could function as an intricate framework of assembly protein complexes. To comprehensively study protein-protein interactions between large KIAA proteins, we have constructed a library composed of 1087 KIAA cDNA clones based on prior functional classifications done in silico. We were guided by two principles that raise the success rate for detecting interactions per tested combination: we avoided testing low-probability combinations, and reduced the number of potential false negatives that arise from the fact that large proteins cannot reliably be expressed in yeast. The latter was addressed by constructing a cDNA library comprised of random fragments encoding large proteins. Cytoplasmic domains of KIAA transmembrane proteins (>1000 amino acids) were used as bait for yeast two-hybrid screening. Our analyses reveal that several KIAA proteins bearing a transmembrane region have the capability of binding to other KIAA proteins containing domains (e.g., PDZ, SH3, rhoGEF, and spectrin) known to be localized to highly specialized submembranous sites, indicating that they participate in cellular junction formation, receptor or channel clustering, and intracellular signaling events. Our representative library should be a very useful resource for detecting previously unidentified interactions because it complements conventional expression libraries, which seldom contain large cDNAs.
Collapse
Affiliation(s)
- Manabu Nakayama
- Department of Human Gene Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan.
| | | | | |
Collapse
|
23
|
Ansuini H, Cicchini C, Nicosia A, Tripodi M, Cortese R, Luzzago A. Biotin-tagged cDNA expression libraries displayed on lambda phage: a new tool for the selection of natural protein ligands. Nucleic Acids Res 2002; 30:e78. [PMID: 12140340 PMCID: PMC137096 DOI: 10.1093/nar/gnf077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
cDNA expression libraries displayed on lambda phage have been successfully employed to identify partners involved in antibody-antigen, protein- protein and DNA-protein interactions and represent a novel approach to functional genomics. However, as in all other cDNA expression libraries based on fusion to a carrier polypeptide, a major issue of this system is the absence of control over the translation frame of the cDNA. As a consequence, a large number of clones will contain lambda D/cDNA fusions, resulting in the foreign sequence being translated on alternative reading frames. Thus, many phage will not display natural proteins, but could be selected, as they mimic the binding properties of the real ligand, and will hence interfere with the selection outcome. Here we describe a novel lambda vector for display of exogenous peptides at the C-terminus of the capsid D protein. In this vector, translation of fusion peptides in the correct reading frame allows efficient in vivo biotinylation of the chimeric phage during amplification. Using this vector system we constructed three libraries from human hepatoma cells, mouse hepatocytic MMH cells and from human brain. Clones containing open reading frames (ORFs) were rapidly selected by streptavidin affinity chromatography, leading to biological repertoires highly enriched in natural polypeptides. We compared the selection outcome of two independent experiments performed using an anti-GAP-43 monoclonal antibody on the human brain cDNA library before and after ORF enrichment. A significant increase in the efficiency of identification of natural target peptides with very little background of false-positive clones was observed in the latter case.
Collapse
Affiliation(s)
- Helenia Ansuini
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Via Pontina Km 30.600, 00040 Pomezia, Rome, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Holz C, Hesse O, Bolotina N, Stahl U, Lang C. A micro-scale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae. Protein Expr Purif 2002; 25:372-8. [PMID: 12182816 DOI: 10.1016/s1046-5928(02)00029-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Methods have been developed aimed at applying at high-throughput technology for expression of cloned cDNAs in yeast. Yeast is a eukaryotic host, which produces soluble recombinant proteins and is capable of introducing post-translational modifications of protein. It is, thus, an appropriate expression system both for the routine expression of various cDNAs or protein domains and for the expression of proteins, which are not correctly expressed in Escherichia coli. Here, we describe a standard system in Saccharomyces cerevisiae, based on a vector for intracellular protein expression, where the gene products are fused to specific peptide sequences (tags). These epitope tags, the N-terminal His(6) tag and the C-terminal StrepII tag, allow subsequent immunological identification and purification of the gene products by a two-step affinity chromatography. This method of dual-tagged recombinant protein purification eliminates contamination by degraded protein products. A miniaturization of the procedures for cloning, expression, and detection was performed to allow all steps to be carried out in 96-well microtiter plates. The system is, thus, suitable for automation. We were able to analyze the simultaneous protein expression of a large number of cDNA clones due to the highly parallel approach of protein production and purification. The microtiter plate technology format was extended to quantitative analysis. An ELISA-based assay was developed that detects StrepII-tagged proteins. The application of this high-throughput expression system for protein production will be a useful tool for functional and structural analyses of novel genes, identified by the Human Genome Project and other large-scale sequencing projects.
Collapse
Affiliation(s)
- Caterina Holz
- Department of Microbiology and Genetics, Institute for Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany
| | | | | | | | | |
Collapse
|
25
|
Schmidt F, Lueking A, Nordhoff E, Gobom J, Klose J, Seitz H, Egelhofer V, Eickhoff H, Lehrach H, Cahill DJ. Generation of minimal protein identifiers of proteins from two-dimensional gels and recombinant proteins. Electrophoresis 2002; 23:621-5. [PMID: 11870774 DOI: 10.1002/1522-2683(200202)23:4<621::aid-elps621>3.0.co;2-j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe the technical feasibility and methodology to characterize a protein by a minimal set of structural information generated by matrix assisted laser desorption/ionization (MALDI)-mass spectrometry, termed a "minimal protein Identifier" (MPI). MPIs can be determined for proteins from two-dimensional gels and recombinant proteins and can be used to compare and identify proteins from these sources.
Collapse
Affiliation(s)
- Frank Schmidt
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
High-throughput biology has been pioneered by genomics through the application of robotics to expedite DNA-sequencing projects. Advances in high-throughput protein methods are needed to drive the protein production line for high-throughput structural and functional analysis of newly discovered genes. This will require the development and application of a variety of recombinant-protein expression systems to produce the diversity of proteins from both humans and model organisms.
Collapse
Affiliation(s)
- Michele Gilbert
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | |
Collapse
|
27
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2447253 DOI: 10.1002/cfg.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|