1
|
SoundharaPandiyan N, Alphonse CRW, Thanumalaya S, Vincent SGP, Kannan RR. Genome sequencing of Caridina pseudogracilirostris and its comparative analysis with malacostracan crustaceans. 3 Biotech 2024; 14:276. [PMID: 39464522 PMCID: PMC11499489 DOI: 10.1007/s13205-024-04121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
The Caridina pseudogracilirostris is commonly found in the brackish waters of the southwestern coastal regions of India. This study provides a comprehensive genomic investigation of the shrimp species C. pseudogracilirostris, offering insights into its genetic makeup, evolutionary dynamics, and functional annotations. The genomic DNA was isolated from tissue samples, sequenced using next-generation sequencing (NGS), and stored in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database (Accession No: PRJNA847710). De novo sequencing indicated a genome size of 1.31 Gbp with a low heterozygosity of about 0.81%. Repeat masking and annotation revealed that repeated elements constitute 24.60% of the genome, with simple sequence repeats (SSRs) accounting for 7.26%. Gene prediction identified 14,101 genes, with functional annotations indicating involvement in critical biological processes such as development, cellular function, immunological responses, and reproduction. Furthermore, phylogenetic analysis revealed genomic links among Malacostraca species, indicating gene duplication as a strategy for genetic diversity and adaptation. C. pseudogracilirostris has 1,856 duplicated genes, reflecting a distinct genomic architecture and evolutionary strategy within the Malacostraca branch. These findings enhance our understanding of the genetic characteristics and evolutionary relationships of C. pseudogracilirostris, providing significant insights into the overall evolutionary dynamics of the Malacostraca group. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04121-4.
Collapse
Affiliation(s)
- NandhaGopal SoundharaPandiyan
- Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | - Carlton Ranjith Wilson Alphonse
- Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119 India
| | | | | | - Rajaretinam Rajesh Kannan
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Plot No, 32, 34, Knowledge Park III, Greater Noida, Uttar Pradesh 201306 India
| |
Collapse
|
2
|
Koo H, Kim S, Park HS, Lee SJ, Paek NC, Cho J, Yang TJ. Amplification of LTRs of extrachromosomal linear DNAs (ALE-seq) identifies two active Oryco LTR retrotransposons in the rice cultivar Dongjin. Mob DNA 2022; 13:18. [PMID: 35698176 PMCID: PMC9190103 DOI: 10.1186/s13100-022-00274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
Long terminal repeat retrotransposons (LTR-RTs) make up a considerable portion of plant genomes. New insertions of these active LTR-RTs modify gene structures and functions and play an important role in genome evolution. Therefore, identifying active forms of LTR-RTs could uncover the effects of these elements in plants. Extrachromosomal linear DNA (eclDNA) forms during LTR-RT replication; therefore, amplification LTRs of eclDNAs followed by sequencing (ALE-seq) uncover the current transpositional potential of the LTR-RTs. The ALE-seq protocol was validated by identification of Tos17 in callus of Nipponbare cultivar. Here, we identified two active LTR-RTs belonging to the Oryco family on chromosomes 6 and 9 in rice cultivar Dongjin callus based on the ALE-seq technology. Each Oryco family member has paired LTRs with identical sequences and internal domain regions. Comparison of the two LTR-RTs revealed 97% sequence identity in their internal domains and 65% sequence identity in their LTRs. These two putatively active Oryco LTR-RT family members could be used to expand our knowledge of retrotransposition mechanisms and the effects of LTR-RTs on the rice genome.
Collapse
Affiliation(s)
- Hyunjin Koo
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Soomin Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Sang-Ji Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Jungnam Cho
- CAS-JIC Centre of Excellence for Plant and Microbial Science, 200032, Shanghai, China
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Constitutive Heterochromatin in Eukaryotic Genomes: A Mine of Transposable Elements. Cells 2022; 11:cells11050761. [PMID: 35269383 PMCID: PMC8909793 DOI: 10.3390/cells11050761] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are abundant components of constitutive heterochromatin of the most diverse evolutionarily distant organisms. TEs enrichment in constitutive heterochromatin was originally described in the model organism Drosophila melanogaster, but it is now considered as a general feature of this peculiar portion of the genomes. The phenomenon of TE enrichment in constitutive heterochromatin has been proposed to be the consequence of a progressive accumulation of transposable elements caused by both reduced recombination and lack of functional genes in constitutive heterochromatin. However, this view does not take into account classical genetics studies and most recent evidence derived by genomic analyses of heterochromatin in Drosophila and other species. In particular, the lack of functional genes does not seem to be any more a general feature of heterochromatin. Sequencing and annotation of Drosophila melanogaster constitutive heterochromatin have shown that this peculiar genomic compartment contains hundreds of transcriptionally active genes, generally larger in size than that of euchromatic ones. Together, these genes occupy a significant fraction of the genomic territory of heterochromatin. Moreover, transposable elements have been suggested to drive the formation of heterochromatin by recruiting HP1 and repressive chromatin marks. In addition, there are several pieces of evidence that transposable elements accumulation in the heterochromatin might be important for centromere and telomere structure. Thus, there may be more complexity to the relationship between transposable elements and constitutive heterochromatin, in that different forces could drive the dynamic of this phenomenon. Among those forces, preferential transposition may be an important factor. In this article, we present an overview of experimental findings showing cases of transposon enrichment into the heterochromatin and their positive evolutionary interactions with an impact to host genomes.
Collapse
|
4
|
Mokhtar MM, Alsamman AM, Abd-Elhalim HM, El Allali A. CicerSpTEdb: A web-based database for high-resolution genome-wide identification of transposable elements in Cicer species. PLoS One 2021; 16:e0259540. [PMID: 34762703 PMCID: PMC8584679 DOI: 10.1371/journal.pone.0259540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022] Open
Abstract
Recently, Cicer species have experienced increased research interest due to their economic importance, especially in genetics, genomics, and crop improvement. The Cicer arietinum, Cicer reticulatum, and Cicer echinospermum genomes have been sequenced and provide valuable resources for trait improvement. Since the publication of the chickpea draft genome, progress has been made in genome assembly, functional annotation, and identification of polymorphic markers. However, work is still needed to identify transposable elements (TEs) and make them available for researchers. In this paper, we present CicerSpTEdb, a comprehensive TE database for Cicer species that aims to improve our understanding of the organization and structural variations of the chickpea genome. Using structure and homology-based methods, 3942 C. echinospermum, 3579 C. reticulatum, and 2240 C. arietinum TEs were identified. Comparisons between Cicer species indicate that C. echinospermum has the highest number of LTR-RT and hAT TEs. C. reticulatum has more Mutator, PIF Harbinger, Tc1 Mariner, and CACTA TEs, while C. arietinum has the highest number of Helitron. CicerSpTEdb enables users to search and visualize TEs by location and download their results. The database will provide a powerful resource that can assist in developing TE target markers for molecular breeding and answer related biological questions. Database URL: http://cicersptedb.easyomics.org/index.php.
Collapse
Affiliation(s)
- Morad M. Mokhtar
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- * E-mail: (AEA); (MMM)
| | | | - Haytham M. Abd-Elhalim
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- * E-mail: (AEA); (MMM)
| |
Collapse
|
5
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
6
|
Stitzer MC, Anderson SN, Springer NM, Ross-Ibarra J. The genomic ecosystem of transposable elements in maize. PLoS Genet 2021; 17:e1009768. [PMID: 34648488 PMCID: PMC8547701 DOI: 10.1371/journal.pgen.1009768] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/26/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) constitute the majority of flowering plant DNA, reflecting their tremendous success in subverting, avoiding, and surviving the defenses of their host genomes to ensure their selfish replication. More than 85% of the sequence of the maize genome can be ascribed to past transposition, providing a major contribution to the structure of the genome. Evidence from individual loci has informed our understanding of how transposition has shaped the genome, and a number of individual TE insertions have been causally linked to dramatic phenotypic changes. Genome-wide analyses in maize and other taxa have frequently represented TEs as a relatively homogeneous class of fragmentary relics of past transposition, obscuring their evolutionary history and interaction with their host genome. Using an updated annotation of structurally intact TEs in the maize reference genome, we investigate the family-level dynamics of TEs in maize. Integrating a variety of data, from descriptors of individual TEs like coding capacity, expression, and methylation, as well as similar features of the sequence they inserted into, we model the relationship between attributes of the genomic environment and the survival of TE copies and families. In contrast to the wholesale relegation of all TEs to a single category of junk DNA, these differences reveal a diversity of survival strategies of TE families. Together these generate a rich ecology of the genome, with each TE family representing the evolution of a distinct ecological niche. We conclude that while the impact of transposition is highly family- and context-dependent, a family-level understanding of the ecology of TEs in the genome can refine our ability to predict the role of TEs in generating genetic and phenotypic diversity.
Collapse
Affiliation(s)
- Michelle C. Stitzer
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Sarah N. Anderson
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Nathan M. Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Jeffrey Ross-Ibarra
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, California, United States of America
- Genome Center, University of California, Davis, California, United States of America
| |
Collapse
|
7
|
González GE, Poggio L. Intragenomic Conflict between Knob Heterochromatin and B Chromosomes Is the Key to Understand Genome Size Variation along Altitudinal Clines in Maize. PLANTS 2021; 10:plants10091859. [PMID: 34579392 PMCID: PMC8468181 DOI: 10.3390/plants10091859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
In maize, we studied the causes of genome size variation and their correlates with cultivation altitude that suggests the existence of adaptive clines. To discuss the biological role of the genome size variation, we focused on Bolivian maize landraces growing along a broad altitudinal range. These were analyzed together with previously studied populations from altitudinal clines of Northwestern Argentina (NWA). Bolivian populations exhibited numerical polymorphism for B chromosomes (Bs) (from 1 to 5), with frequencies varying from 16.6 to 81.8 and being positively correlated with cultivation altitude. The 2C values of individuals 0B (A-DNA) ranged between 4.73 and 7.71 pg, with 58.33% of variation. The heterochromatic knobs, detected by DAPI staining, were more numerous and larger in individuals 0B than in those with higher doses of Bs. Bolivian and NWA landraces exhibited the same pattern of A-DNA downsizing and fewer and smaller knobs with increasing cultivation altitude, suggesting a mechanistic link among heterochromatin, genome size and phenology. The negative association between the two types of supernumerary DNA (knob heterochromatin and Bs), mainly responsible for the genome size variation, may be considered as an example of intragenomic conflict. It could be postulated that the optimal nucleotype is the result of such conflict, where genome adjustment may lead to an appropriate length of the vegetative cycle for maize landraces growing across altitudinal clines.
Collapse
|
8
|
Drouin M, Hénault M, Hallin J, Landry CR. Testing the Genomic Shock Hypothesis Using Transposable Element Expression in Yeast Hybrids. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:729264. [PMID: 37744137 PMCID: PMC10512236 DOI: 10.3389/ffunb.2021.729264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 09/26/2023]
Abstract
Transposable element (TE) insertions are a source of structural variation and can cause genetic instability and gene expression changes. A host can limit the spread of TEs with various repression mechanisms. Many examples of plant and animal interspecific hybrids show disrupted TE repression leading to TE propagation. Recent studies in yeast did not find any increase in transposition rate in hybrids. However, this does not rule out the possibility that the transcriptional or translational activity of TEs increases following hybridization because of a disruption of the host TE control mechanisms. Thus, whether total expression of a TE family is higher in hybrids than in their parental species remains to be examined. We leveraged publically available RNA-seq and ribosomal profiling data on yeast artificial hybrids of the Saccharomyces genus and performed differential expression analysis of their LTR retrotransposons (Ty elements). Our analyses of total mRNA levels show that Ty elements are generally not differentially expressed in hybrids, even when the hybrids are exposed to a low temperature stress condition. Overall, only 2/26 Ty families show significantly higher expression in the S. cerevisiae × S. uvarum hybrids while there are 3/26 showing significantly lower expression in the S. cerevisiae x S. paradoxus hybrids. Our analysis of ribosome profiling data of S. cerevisiae × S. paradoxus hybrids shows similar translation efficiency of Ty in both parents and hybrids, except for Ty1_cer showing higher translation efficiency. Overall, our results do not support the hypothesis that hybridization could act as a systematic trigger of TE expression in yeast and suggest that the impact of hybridization on TE activity is strain and TE specific.
Collapse
Affiliation(s)
- Marika Drouin
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
- PROTEO - Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
| | - Mathieu Hénault
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
- PROTEO - Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
| | - Johan Hallin
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
- PROTEO - Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
| | - Christian R. Landry
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Québec, QC, Canada
- PROTEO - Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Ebrahimzadegan R, Orooji F, Ma P, Mirzaghaderi G. Differentially Amplified Repetitive Sequences Among Aegilops tauschii Subspecies and Genotypes. FRONTIERS IN PLANT SCIENCE 2021; 12:716750. [PMID: 34490015 PMCID: PMC8417419 DOI: 10.3389/fpls.2021.716750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Genomic repetitive sequences commonly show species-specific sequence type, abundance, and distribution patterns, however, their intraspecific characteristics have been poorly described. We quantified the genomic repetitive sequences and performed single nucleotide polymorphism (SNP) analysis between 29 Ae. tauschii genotypes and subspecies using publicly available raw genomic Illumina sequence reads and used fluorescence in situ hybridization (FISH) to experimentally analyze some repeats. The majority of the identified repetitive sequences had similar contents and proportions between anathera, meyeri, and strangulata subspecies. However, two Ty3/gypsy retrotransposons (CL62 and CL87) showed significantly higher abundances, and CL1, CL119, CL213, CL217 tandem repeats, and CL142 retrotransposon (Ty1/copia type) showed significantly lower abundances in subspecies strangulata compared with the subspecies anathera and meyeri. One tandem repeat and 45S ribosomal DNA (45S rDNA) abundances showed a high variation between genotypes but their abundances were not subspecies specific. Phylogenetic analysis using the repeat abundances of the aforementioned clusters placed the strangulata subsp. in a distinct clade but could not discriminate anathera and meyeri. A near complete differentiation of anathera and strangulata subspecies was observed using SNP analysis; however, var. meyeri showed higher genetic diversity. FISH using major tandem repeats couldn't detect differences between subspecies, although (GAA)10 signal patterns generated two different karyotype groups. Taken together, the different classes of repetitive DNA sequences have differentially accumulated between strangulata and the other two subspecies of Ae. tauschii that is generally in agreement with spike morphology, implying that factors affecting repeatome evolution are variable even among highly closely related lineages.
Collapse
Affiliation(s)
- Rahman Ebrahimzadegan
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Fatemeh Orooji
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, China
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
10
|
Chen DX, Pan Y, Wang Y, Cui YZ, Zhang YJ, Mo RY, Wu XL, Tan J, Zhang J, Guo LA, Zhao X, Jiang W, Sun TL, Hu XD, Li LY. The chromosome-level reference genome of Coptis chinensis provides insights into genomic evolution and berberine biosynthesis. HORTICULTURE RESEARCH 2021; 8:121. [PMID: 34059652 PMCID: PMC8166882 DOI: 10.1038/s41438-021-00559-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/03/2021] [Accepted: 03/14/2021] [Indexed: 05/21/2023]
Abstract
Coptis chinensis Franch, a perennial herb, is mainly distributed in southeastern China. The rhizome of C. chinensis has been used as a traditional medicine for more than 2000 years in China and many other Asian countries. The pharmacological activities of C. chinensis have been validated by research. Here, we present a de novo high-quality genome of C. chinensis with a chromosome-level genome of ~958.20 Mb, a contig N50 of 1.58 Mb, and a scaffold N50 of 4.53 Mb. We found that the relatively large genome size of C. chinensis was caused by the amplification of long terminal repeat (LTR) retrotransposons. In addition, a whole-genome duplication event in ancestral Ranunculales was discovered. Comparative genomic analysis revealed that the tyrosine decarboxylase (TYDC) and (S)-norcoclaurine synthase (NCS) genes were expanded and that the aspartate aminotransferase gene (ASP5) was positively selected in the berberine metabolic pathway. Expression level and HPLC analyses showed that the berberine content was highest in the roots of C. chinensis in the third and fourth years. The chromosome-level reference genome of C. chinensis provides important genomic data for molecular-assisted breeding and active ingredient biosynthesis.
Collapse
Affiliation(s)
- Da-Xia Chen
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Yuan Pan
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Yu Wang
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Yan-Ze Cui
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Ying-Jun Zhang
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Rang-Yu Mo
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Xiao-Li Wu
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Jun Tan
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Jian Zhang
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Lian-An Guo
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Xiao Zhao
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Tian-Lin Sun
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Xiao-Di Hu
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China.
| | - Long-Yun Li
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China.
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China.
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China.
| |
Collapse
|
11
|
Vangelisti A, Simoni S, Usai G, Ventimiglia M, Natali L, Cavallini A, Mascagni F, Giordani T. LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome. BMC PLANT BIOLOGY 2021; 21:221. [PMID: 34000996 PMCID: PMC8127270 DOI: 10.1186/s12870-021-02991-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/15/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Long Terminal Repeat retrotransposons (LTR-REs) are repetitive DNA sequences that constitute a large part of the genome. The improvement of sequencing technologies and sequence assembling strategies has achieved genome sequences with much greater reliability than those of the past, especially in relation to repetitive DNA sequences. RESULTS In this study, we analysed the genome of Ficus carica L., obtained using third generation sequencing technologies and recently released, to characterise the complete complement of full-length LTR-REs to study their dynamics during fig genome evolution. A total of 1867 full-length elements were identified. Those belonging to the Gypsy superfamily were the most abundant; among these, the Chromovirus/Tekay lineage was the most represented. For the Copia superfamily, Ale was the most abundant lineage. Measuring the estimated insertion time of each element showed that, on average, Ivana and Chromovirus/Tekay were the youngest lineages of Copia and Gypsy superfamilies, respectively. Most elements were inactive in transcription, both constitutively and in leaves of plants exposed to an abiotic stress, except for some elements, mostly belonging to the Copia/Ale lineage. A relationship between the inactivity of an element and inactivity of genes lying in close proximity to it was established. CONCLUSIONS The data reported in this study provide one of the first sets of information on the genomic dynamics related to LTR-REs in a plant species with highly reliable genome sequence. Fig LTR-REs are highly heterogeneous in abundance and estimated insertion time, and only a few elements are transcriptionally active. In general, the data suggested a direct relationship between estimated insertion time and abundance of an element and an inverse relationship between insertion time (or abundance) and transcription, at least for Copia LTR-REs.
Collapse
Affiliation(s)
- Alberto Vangelisti
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Samuel Simoni
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Maria Ventimiglia
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Natali
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Flavia Mascagni
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Tommaso Giordani
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
12
|
Tian L, Ku L, Yuan Z, Wang C, Su H, Wang S, Song X, Dou D, Ren Z, Lai J, Liu T, Du C, Chen Y. Large-scale reconstruction of chromatin structures of maize temperate and tropical inbred lines. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3582-3596. [PMID: 33677565 DOI: 10.1093/jxb/erab087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Maize is a model plant species often used for genetics and genomics research because of its genetic diversity. There are prominent morphological, genetic, and epigenetic variations between tropical and temperate maize lines. However, the genome-wide chromatin conformations of these two maize types remain unexplored. We applied a Hi-C approach to compare the genome-wide chromatin interactions between temperate inbred line D132 and tropical line CML288. A reconstructed maize three-dimensional genome model revealed the spatial segregation of the global A and B compartments. The A compartments contain enriched genes and active epigenome marks, whereas the B compartments are gene-poor, transcriptionally silent chromatin regions. Whole-genome analyses indicated that the global A compartment content of CML288 was 3.12% lower than that of D132. Additionally, global and A/B sub-compartments were associated with differential gene expression and epigenetic changes between two inbred lines. About 25.3% of topologically associating domains (TADs) were determined to be associated with complex domain-level modifications that induced transcriptional changes, indicative of a large-scale reorganization of chromatin structures between the inbred maize lines. Furthermore, differences in chromatin interactions between the two lines correlated with epigenetic changes. These findings provide a solid foundation for the wider plant community to further investigate the genome-wide chromatin structures in other plant species.
Collapse
Affiliation(s)
- Lei Tian
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
- Henan Institute of Science and Technology for Development, Zhengzhou, China
| | - Lixia Ku
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Zan Yuan
- Annoroad Gene Technology Co., Ltd, Beijing, China
| | - Cuiling Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Huihui Su
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shunxi Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Xiaoheng Song
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Dandan Dou
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Zhenzhen Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Tao Liu
- Annoroad Gene Technology Co., Ltd, Beijing, China
| | - Chunguang Du
- Department of Biology, Montclair State University, Montclair, NJ, USA
| | - Yanhui Chen
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
13
|
Tyczewska A, Gracz-Bernaciak J, Szymkowiak J, Twardowski T. Herbicide stress-induced DNA methylation changes in two Zea mays inbred lines differing in Roundup® resistance. J Appl Genet 2021; 62:235-248. [PMID: 33512663 PMCID: PMC8032638 DOI: 10.1007/s13353-021-00609-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 01/18/2023]
Abstract
DNA methylation plays a crucial role in the regulation of gene expression, activity of transposable elements, defense against foreign DNA, and inheritance of specific gene expression patterns. The link between stress exposure and sequence-specific changes in DNA methylation was hypothetical until it was shown that stresses can induce changes in the gene expression through hypomethylation or hypermethylation of DNA. To detect changes in DNA methylation under herbicide stress in two local Zea mays inbred lines exhibiting differential susceptibility to Roundup®, the methylation-sensitive amplified polymorphism (MSAP) technique was used. The overall DNA methylation levels were determined at approximately 60% for both tested lines. The most significant changes were observed for the more sensitive Z. mays line, where 6 h after the herbicide application, a large increase in the level of DNA methylation (attributed to the increase in fully methylated bands (18.65%)) was noted. DNA sequencing revealed that changes in DNA methylation profiles occurred in genes encoding heat shock proteins, membrane proteins, transporters, kinases, lipases, methyltransferases, zinc-finger proteins, cytochromes, and transposons. Herbicide stress-induced changes depended on the Z. mays variety, and the large increase in DNA methylation level in the sensitive line resulted in a lower ability to cope with stress conditions.
Collapse
Affiliation(s)
- Agata Tyczewska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | | | - Jakub Szymkowiak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Tomasz Twardowski
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
14
|
Tomita M, Kanzaki T, Tanaka E. Clustered and dispersed chromosomal distribution of the two classes of Revolver transposon family in rye (Secale cereale). J Appl Genet 2021; 62:365-372. [PMID: 33694103 DOI: 10.1007/s13353-021-00617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
The chromosomal locations of a new class of Revolver transposon-like elements were analyzed by using FISH method on the metaphase chromosome in somatic cell division of the rye cultivar Petkus. First, the Revolver standard element probe λ2 was weakly hybridized throughout the rye chromosome, and comparatively large interstitial signals spotted with a dot shape were detected together with several telomeric regions. The dot shape interstitial signal was stably detected at one site on Chromosome (Chr) 1R (middle part of the interstitial region of the short arm), three sites on Chr 2R (distal part of the interstitial region and adjacent to the centromere on the short arm, middle part of the interstitial region of the long arm), and two sites on Chr 5R (middle part of the interstitial region and adjacent to the centromere on the long arm). The Revolver λ2 probe was effective for identification of 1R, 2R, and 5R chromosomes. On the other hand, Revolver nonautonomous element-specific L626-BARE-100 probe was strongly distributed throughout the rye chromosomes, and considerable numbers and diverse lengths of transcripts were detected by RT-PCR. Although the standard elements were found in localized clusters, the nonautonomous elements tended to be dispersed throughout the genome. Clustered nature of Revolver is a significantly rare case in genomics.
Collapse
Affiliation(s)
- Motonori Tomita
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Takaaki Kanzaki
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori, 680-8550, Japan
| | - Eri Tanaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori, 680-8550, Japan
| |
Collapse
|
15
|
Ikhajiagbe B, Ogwu MC, Ogochukwu OF, Odozi EB, Adekunle IJ, Omage ZE. The place of neglected and underutilized legumes in human nutrition and protein security in Nigeria. Crit Rev Food Sci Nutr 2021; 62:3930-3938. [PMID: 33455427 DOI: 10.1080/10408398.2020.1871319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The enormous effects of food insecurity have worsened in Nigeria and are further heightened by internal conflicts combined with ongoing climate change impacts such as drought and floods. Moreover, food availability is affected by economic challenges especially a weakening of foreign exchange and fiscal revenues, which has reduced the rate of food importation and increased local prices. Furthermore, the geometric increase in population especially in the last five decades has placed enormous pressure on the limited food resources, making it more challenging for agricultural and food systems to sustainably meet local food needs. Put together, these indices are contributing significantly to undernourishment. The huge local legume resources if properly harnessed can contribute toward addressing food insecurity. However, most of the legumes are included in the United Nations' Food and Agriculture Organization list of underutilized crops. Also, there is an over-reliance on food high in calorie in Nigeria, which is discouraged by nutritionists worldwide. Plant-based protein from legumes is necessary for effective metabolism and human wellbeing. This work highlights the benefits of the sustainable utilization of neglected and underutilized legume resources in Nigeria. The work discusses potential solutions for food insecurity as well as avenues for improving human nutrition and wellbeing.
Collapse
Affiliation(s)
- Beckley Ikhajiagbe
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Matthew Chidozie Ogwu
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.,School of Biosciences and Veterinary Medicine, University of Camerino - Center for Floristic Research of the Apennine, Barisciano, L'Aquila, Italy
| | | | - Efeota Bright Odozi
- Department of Medical Laboratory Science, School of Basic Medical Sciences, University of Benin, Benin City, Nigeria
| | - Isaac Johnson Adekunle
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Zipporah Emilomo Omage
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| |
Collapse
|
16
|
Realini MF, Poggio L, Cámara-Hernández J, González GE. Genome size and repetitive sequences are driven by artificial selection on the length of the vegetative cycle in maize landraces from Northeastern Argentina. RODRIGUÉSIA 2021. [DOI: 10.1590/2175-7860202172004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Variation in genome size and knob heterochromatin content was explored in relationship to altitudinal cline and length of the vegetative cycle in northern Argentina, USA and Mexico landraces. It was considering that the decrease in DNA and heterochromatin content could be an adaptation to a shorter growing season and the result of artificial selection by man. Guaraní landraces from Northeastern Argentina (NEA) show similar variation in genome size (3.81pg to 7.56pg) and knob heterochromatin content than maize growing across an altitudinal cline. The present analysis offers an overview of the genetic variability of NEA maize to explain why Guaraní landraces and those along an altitudinal cline share this similar variation. Karyotype and flow cytometry data were employed. The DNA content of Guaraní landraces which lacking B chromosomes, showed no significant relationship with knob heterochromatin, suggesting differences in the amount of interspersed DNA. A significant positive relationship was found between the length of the vegetative cycle and both number and percentage of knob heterochromatin. No significant correlation was found between genome size and vegetative cycle. All these results allow us to conclude that the variation in heterochromatin content among Guaraní maize is driven by the selection of farmers for flowering time.
Collapse
Affiliation(s)
- María Florencia Realini
- Universidad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina
| | - Lidia Poggio
- Universidad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET, Argentina
| | | | | |
Collapse
|
17
|
Hsu CC, Chen SY, Lai PH, Hsiao YY, Tsai WC, Liu ZJ, Chung MC, Panaud O, Chen HH. Identification of high-copy number long terminal repeat retrotransposons and their expansion in Phalaenopsis orchids. BMC Genomics 2020; 21:807. [PMID: 33213366 PMCID: PMC7678294 DOI: 10.1186/s12864-020-07221-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are fragments of DNA that can insert into new chromosomal locations. They represent a great proportion of eukaryotic genomes. The identification and characterization of TEs facilitates understanding the transpositional activity of TEs with their effects on the orchid genome structure. RESULTS We combined the draft whole-genome sequences of Phalaenopsis equestris with BAC end sequences, Roche 454, and Illumina/Solexa, and identified long terminal repeat (LTR) retrotransposons in these genome sequences by using LTRfinder and classified by using Gepard software. Among the 10 families Gypsy-like retrotransposons, three families Gypsy1, Gypsy2, and Gypsy3, contained the most copies among these predicted elements. In addition, six high-copy retrotransposons were identified according to their reads in the sequenced raw data. The 12-kb Orchid-rt1 contains 18,000 copies representing 220 Mbp of the P. equestris genome. Southern blot and slot blot assays showed that these four retrotransposons Gypsy1, Gypsy2, Gypsy3, and Orchid-rt1 contained high copies in the large-genome-size/large-chromosome species P. violacea and P. bellina. Both Orchid-rt1 and Gypsy1 displayed various ratios of copy number for the LTR sequences versus coding sequences among four Phalaenopsis species, including P. violacea and P. bellina and small-genome-size/small-chromosome P. equestris and P. ahprodite subsp. formosana, which suggests that Orchid-rt1 and Gypsy1 have been through various mutations and homologous recombination events. FISH results showed amplification of Orchid-rt1 in the euchromatin regions among the four Phalaenopsis species. The expression levels of Peq018599 encoding copper transporter 1 is highly upregulated with the insertion of Orchid-rt1, while it is down regulated for Peq009948 and Peq014239 encoding for a 26S proteasome non-ATP regulatory subunit 4 homolog and auxin-responsive factor AUX/IAA-related. In addition, insertion of Orchid-rt1 in these three genes are all in their intron regions. CONCLUSION Orchid-rt1 and Gypsy1-3 have amplified within Phalaenopsis orchids concomitant with the expanded genome sizes, and Orchid-rt1 and Gypsy1 may have gone through various mutations and homologous recombination events. Insertion of Orchid-rt1 is in the introns and affects gene expression levels.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Yun Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Han Lai
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mei-Chu Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Olivier Panaud
- Institute of Plant Genome and Development, University of Perpignan, Perpignan, France
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan. .,Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
18
|
Dinh HX, Singh D, Periyannan S, Park RF, Pourkheirandish M. Molecular genetics of leaf rust resistance in wheat and barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2035-2050. [PMID: 32128617 DOI: 10.1007/s00122-020-03570-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The demand for cereal grains as a main source of energy continues to increase due to the rapid increase in world population. The leaf rust diseases of cereals cause significant yield losses, posing challenges for global food security. The deployment of resistance genes has long been considered as the most effective and sustainable way to control cereal leaf rust diseases. While genetic resistance has reduced the impact of these diseases in agriculture, losses still occur due to the ability of the respective rust pathogens to change and render resistance genes ineffective plus the slow pace at which resistance genes are discovered and characterized. This article highlights novel recently developed strategies based on advances in genome sequencing that have accelerated gene isolation by overcoming the complexity of cereal genomes. The leaf rust resistance genes cloned so far from wheat and barley belong to various protein families, including nucleotide binding site/leucine-rich repeat receptors and transporters. We review recent studies that are beginning to reveal the defense mechanisms conferred by the leaf rust resistance genes identified to date in cereals and their roles in either pattern-triggered immunity or effector-triggered immunity.
Collapse
Affiliation(s)
- Hoan X Dinh
- Plant Breeding Institute, Faculty of Science, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Davinder Singh
- Plant Breeding Institute, Faculty of Science, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Sambasivam Periyannan
- CSIRO Agriculture and Food, Box 1700, Clunies Ross Street, Canberra, 2601, Australia
| | - Robert F Park
- Plant Breeding Institute, Faculty of Science, The University of Sydney, Cobbitty, NSW, 2570, Australia.
| | | |
Collapse
|
19
|
Identification of Structural Variants in Two Novel Genomes of Maize Inbred Lines Possibly Related to Glyphosate Tolerance. PLANTS 2020; 9:plants9040523. [PMID: 32325671 PMCID: PMC7238182 DOI: 10.3390/plants9040523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/29/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
To study genetic variations between genomes of plants that are naturally tolerant and sensitive to glyphosate, we used two Zea mays L. lines traditionally bred in Poland. To overcome the complexity of the maize genome, two sequencing technologies were employed: Illumina and Single Molecule Real-Time (SMRT) PacBio. Eleven thousand structural variants, 4 million SNPs and approximately 800 thousand indels differentiating the two genomes were identified. Detailed analyses allowed to identify 20 variations within the EPSPS gene, but all of them were predicted to have moderate or unknown effects on gene expression. Other genes of the shikimate pathway encoding bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenase and chorismate synthase were altered by variants predicted to have a high impact on gene expression. Additionally, high-impact variants located within the genes involved in the active transport of glyphosate through the cell membrane encoding phosphate transporters as well as multidrug and toxic compound extrusion have been identified.
Collapse
|
20
|
Low Long Terminal Repeat (LTR)-Retrotransposon Expression in Leaves of the Marine Phanerogam Posidonia Oceanica L. Life (Basel) 2020; 10:life10030030. [PMID: 32213979 PMCID: PMC7151569 DOI: 10.3390/life10030030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/14/2020] [Accepted: 03/21/2020] [Indexed: 12/29/2022] Open
Abstract
Seagrasses as Posidonia oceanica reproduce mostly by vegetative propagation, which can reduce genetic variability within populations. Since, in clonally propagated species, insurgence of genetic variability can be determined by the activity of transposable elements, we have estimated the activity of such repeat elements by measuring their expression level in the leaves of plants from a Mediterranean site, for which Illumina complementary DNA (cDNA) sequence reads (produced from RNAs isolated by leaves of plants from deep and shallow meadows) were publicly available. Firstly, we produced a collection of retrotransposon-related sequences and then mapped Illumina cDNA reads onto these sequences. With this approach, it was evident that Posidonia retrotransposons are, in general, barely expressed; only nine elements resulted transcribed at levels comparable with those of reference genes encoding tubulins and actins. Differences in transcript abundance were observed according to the superfamily and the lineage to which the retrotransposons belonged. Only small differences were observed between retrotransposon expression levels in leaves of shallow and deep Posidonia meadow stands, whereas one TAR/Tork element resulted differentially expressed in deep plants exposed to heat. It can be concluded that, in P. oceanica, the contribution of retrotransposon activity to genetic variability is reduced, although the nine specific active elements could actually produce new structural variations.
Collapse
|
21
|
Mascagni F, Vangelisti A, Usai G, Giordani T, Cavallini A, Natali L. A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.). Genetica 2020; 148:13-23. [PMID: 31960179 DOI: 10.1007/s10709-020-00085-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 01/17/2020] [Indexed: 11/24/2022]
Abstract
Long terminal repeats (LTR) retrotransposons have a major role in determining genome size, structure and function, thanks to their ability to transpose. We performed a meta-analysis of LTR-retrotransposon expression in roots of sunflower plantlets treated with different plant hormones, chemicals and NaCl. By using Illumina cDNA libraries, available from public repositories, we measured the number of reads matching the retrotranscriptase domains isolated from a whole genome library of retrotransposons. LTR-retrotransposons resulted in general barely expressed, except for 4 elements, all belonging to the AleII lineage, which showed high transcription levels in roots of both control and treated plants. The expression of retrotransposons in treated plants was slightly higher than in the control. Transcribed elements belonged to specific chromosomal loci and were not abundant in the genome. A few elements resulted differentially expressed depending on the treatment. Results suggest that, although most retrotransposons are not expressed, the transcription of such elements is related to their abundance, to their position in the chromosome and to their lineage.
Collapse
Affiliation(s)
- Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
22
|
Divashuk MG, Karlov GI, Kroupin PY. Copy Number Variation of Transposable Elements in Thinopyrum intermedium and Its Diploid Relative Species. PLANTS (BASEL, SWITZERLAND) 2019; 9:E15. [PMID: 31877707 PMCID: PMC7020174 DOI: 10.3390/plants9010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Diploid and polyploid wild species of Triticeae have complex relationships, and the understanding of their evolution and speciation could help to increase the usability of them in wheat breeding as a source of genetic diversity. The diploid species Pseudoroegneria spicata (St), Thinopyrum bessarabicum (Jb), Dasypyrum villosum (V) derived from a hypothetical common ancestor are considered to be possible subgenome donors in hexaploid species Th. intermedium (JrJvsSt, where indices r, v, and s stand for the partial relation to the genomes of Secale, Dasypyrum, and Pseudoroegneria, respectively). We quantified 10 families of transposable elements (TEs) in P. spicata, Th. bessarabicum, D. villosum (per one genome), and Th. intermedium (per one average subgenome) using the quantitative real time PCR assay and compared their abundance within the studied genomes as well as between them. Sabrina was the most abundant among all studied elements in P. spicata, D. villosum, and Th. intermedium, and among Ty3/Gypsy elements in all studied species. Among Ty1/Copia elements, Angela-A and WIS-A showed the highest and close abundance with the exception of D. villosum, and comprised the majority of all studied elements in Th. bessarabicum. Sabrina, BAGY2, and Angela-A showed similar abundance among diploids and in Th. intermedium hexaploid; Latidu and Barbara demonstrated sharp differences between diploid genomes. The relationships between genomes of Triticeae species based on the studied TE abundance and the role of TEs in speciation and polyploidization in the light of the current phylogenetic models is discussed.
Collapse
Affiliation(s)
- Mikhail G. Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (M.G.D.)
- Centre for Molecular Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy, Moscow 127550, Russia
| | - Gennady I. Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (M.G.D.)
- Centre for Molecular Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy, Moscow 127550, Russia
| | - Pavel Yu. Kroupin
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (M.G.D.)
- Centre for Molecular Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy, Moscow 127550, Russia
| |
Collapse
|
23
|
Usai G, Mascagni F, Vangelisti A, Giordani T, Ceccarelli M, Cavallini A, Natali L. Interspecific hybridisation and LTR-retrotransposon mobilisation-related structural variation in plants: A case study. Genomics 2019; 112:1611-1621. [PMID: 31605729 DOI: 10.1016/j.ygeno.2019.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/13/2019] [Accepted: 09/12/2019] [Indexed: 11/30/2022]
Abstract
The dynamics of long-terminal-repeat retrotransposons in two poplar species (Populus deltoides and P. nigra) and in an interspecific hybrid, recently synthesized, were investigated by analyzing the genomic abundance and transcription levels of a collection of 828 full-length retroelements identified in the genome sequence of P. trichocarpa, all occurring also in the genomes of P. deltoides and P. nigra. Overall, genomic abundance and transcription levels of many retrotransposons in the hybrid resulted higher or lower than expected by calculating the mean of the parental values. A bioinformatics procedure was established to ascertain the occurrence of the same retrotransposon loci in the three genotypes. The results indicated that retrotransposon abundance variations between the hybrid and the mean value of the parents were due to i) co-segregation of retrotransposon high- or low-abundant haplotypes; ii) new retroelement insertions; iii) retrotransposon loss. Concerning retrotransposon expression, this was generally low, with only 14/828 elements over- or under-expressed in the hybrid than expected by calculating the mean of the parents. It is concluded that interspecific hybridisation between the two poplar species determine quantitative variation and differential expression of some retrotransposons, with possible consequences for the genetic differentiation of the hybrid.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Marilena Ceccarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy.
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy.
| |
Collapse
|
24
|
Palumbo F, Qi P, Pinto VB, Devos KM, Barcaccia G. Construction of the First SNP-Based Linkage Map Using Genotyping-by-Sequencing and Mapping of the Male-Sterility Gene in Leaf Chicory. FRONTIERS IN PLANT SCIENCE 2019; 10:276. [PMID: 30915092 PMCID: PMC6421318 DOI: 10.3389/fpls.2019.00276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/20/2019] [Indexed: 05/12/2023]
Abstract
We report the first high-density linkage map construction through genotyping-by-sequencing (GBS) in leaf chicory (Cichorium intybus subsp. intybus var. foliosum, 2n = 2x = 18) and the SNP-based fine mapping of the linkage group region carrying a recessive gene responsible for male-sterility (ms1). An experimental BC1 population, segregating for the male sterility trait, was specifically generated and 198 progeny plants were preliminary screened through a multiplexed SSR genotyping analysis for the identification of microsatellite markers linked to the ms1 locus. Two backbone SSR markers belonging to linkage group 4 of the available Cichorium consensus map were found genetically associated to the ms1 gene at 5.8 and 12.1 cM apart. A GBS strategy was then used to produce a high-density SNP-based linkage map, containing 727 genomic loci organized into 9 linkage groups and spanning a total length of 1,413 cM. 13 SNPs proved to be tightly linked to the ms1 locus based on a subset of 44 progeny plants analyzed. The map position of these markers was further validated by sequence-specific PCR experiments using an additional set of 64 progeny plants, enabling to verify that four of them fully co-segregated with male-sterility. A mesosynteny analysis revealed that 10 genomic DNA sequences encompassing the 13 selected SNPs of chicory mapped in a peripheral region of chromosome 5 of lettuce (Lactuca sativa L.) spanning about 18 Mbp. Since a MYB103-like gene, encoding for a transcription factor involved in callose dissolution of tetrads and exine development of microspores, was found located in the same chromosomal region, this orthologous was chosen as candidate for male-sterility. The amplification and sequencing of its CDS using accessions with contrasting phenotypes/genotypes (i.e., 4 male sterile mutants, ms1ms1, and 4 male fertile inbreds, Ms1Ms1) enabled to detect an INDEL of 4 nucleotides in its second exon, responsible for an anticipated stop codon in the male sterile mutants. This polymorphism was subsequently validated through allele-specific PCR assays and found to fully co-segregate with male-sterility, using 64 progeny plants of the same mapping BC1 population. Overall, our molecular data could be practically exploited for genotyping plant materials and for marker-assisted breeding schemes in leaf chicory.
Collapse
Affiliation(s)
- Fabio Palumbo
- Laboratory of Genomics for Plant Breeding, Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Peng Qi
- Institute of Plant Breeding, Genetics and Genomics, Department of Plant Biology, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | | | - Katrien M. Devos
- Institute of Plant Breeding, Genetics and Genomics, Department of Plant Biology, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Gianni Barcaccia
- Laboratory of Genomics for Plant Breeding, Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
- *Correspondence: Gianni Barcaccia,
| |
Collapse
|
25
|
Lin J, Cai Y, Huang G, Yang Y, Li Y, Wang K, Wu Z. Analysis of the chromatin binding affinity of retrotransposases reveals novel roles in diploid and tetraploid cotton. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:32-44. [PMID: 30421576 DOI: 10.1111/jipb.12740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
LTR-retrotransposable elements are major components of diploid (Gossypium arboreum) and tetraploid (Gossypium hirsutum) cotton genomes that have undergone dramatic increases in copy number during the course of evolution. However, little is known about the biological functions of LTR-retrotransposable elements in cotton. Here, we show that a copia-like LTR-retrotransposable element has maintained considerable activity in both G. arboreum and G. hirsutum. We identified two functional domains of the retrotransposon and analyzed their expression levels in various cotton tissues, including leaves, ovules, and germinating seeds. ChIP-qPCR (chromatin immunoprecipitation followed by quantitative PCR), using a copia-specific antibody, established that copia-like proteins primarily bind to the first exons of several protein-coding genes in cotton cells. This finding suggests that retrotransposons play a novel, important role in regulating the transcriptional activities of protein-coding genes with various biological activities.
Collapse
Affiliation(s)
- Jing Lin
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Cai
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gai Huang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Yang
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yang Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiguo Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
26
|
Okagaki RJ, Dukowic-Schulze S, Eggleston WB, Muehlbauer GJ. A Critical Assessment of 60 Years of Maize Intragenic Recombination. FRONTIERS IN PLANT SCIENCE 2018; 9:1560. [PMID: 30420864 PMCID: PMC6215864 DOI: 10.3389/fpls.2018.01560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/04/2018] [Indexed: 06/09/2023]
Abstract
Until the mid-1950s, it was believed that genetic crossovers did not occur within genes. Crossovers occurred between genes, the "beads on a string" model. Then in 1956, Seymour Benzer published his classic paper describing crossing over within a gene, intragenic recombination. This result from a bacteriophage gene prompted Oliver Nelson to study intragenic recombination in the maize Waxy locus. His studies along with subsequent work by others working with maize and other organisms described the outcomes of intragenic recombination and provided some of the earliest evidence that genes, not intergenic regions, were recombination hotspots. High-throughput genotyping approaches have since replaced single gene intragenic studies for characterizing the outcomes of recombination. These large-scale studies confirm that genes, or more generally genic regions, are the most active recombinogenic regions, and suggested a pattern of crossovers similar to the budding yeast Saccharomyces cerevisiae. In S. cerevisiae recombination is initiated by double-strand breaks (DSBs) near transcription start sites (TSSs) of genes producing a polarity gradient where crossovers preferentially resolve at the 5' end of genes. Intragenic studies in maize yielded less evidence for either polarity or for DSBs near TSSs initiating recombination and in certain respects resembled Schizosaccharomyces pombe or mouse. These different perspectives highlight the need to draw upon the strengths of different approaches and caution against relying on a single model system or approach for understanding recombination.
Collapse
Affiliation(s)
- Ron J. Okagaki
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | | | - William B. Eggleston
- Department of Biology, Virginia Commonwealth University, St. Paul, MN, United States
| | - Gary J. Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
27
|
Fesenko IA, Kirov IV, Filippova AA. Impact of Noncoding Part of the Genome on the Proteome Plasticity of the Eukaryotic Cell. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
de Souza TB, Chaluvadi SR, Johnen L, Marques A, González-Elizondo MS, Bennetzen JL, Vanzela ALL. Analysis of retrotransposon abundance, diversity and distribution in holocentric Eleocharis (Cyperaceae) genomes. ANNALS OF BOTANY 2018; 122:279-290. [PMID: 30084890 PMCID: PMC6070107 DOI: 10.1093/aob/mcy066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/18/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Long terminal repeat-retrotransposons (LTR-RTs) comprise a large portion of plant genomes, with massive repeat blocks distributed across the chromosomes. Eleocharis species have holocentric chromosomes, and show a positive correlation between chromosome numbers and the amount of nuclear DNA. To evaluate the role of LTR-RTs in karyotype diversity in members of Eleocharis (subgenus Eleocharis), the occurrence and location of different members of the Copia and Gypsy superfamilies were compared, covering interspecific variations in ploidy levels (considering chromosome numbers), DNA C-values and chromosomal arrangements. METHODS The DNA C-value was estimated by flow cytometry. Genomes of Eleocharis elegans and E. geniculata were partially sequenced using Illumina MiSeq assemblies, which were a source for searching for conserved proteins of LTR-RTs. POL domains were used for recognition, comparing families and for probe production, considering different families of Copia and Gypsy superfamilies. Probes were obtained by PCR and used in fluorescence in situ hybridization (FISH) against chromosomes of seven Eleocharis species. KEY RESULTS A positive correlation between ploidy levels and the amount of nuclear DNA was observed, but with significant variations between samples with the same ploidy levels, associated with repetitive DNA fractions. LTR-RTs were abundant in E. elegans and E. geniculata genomes, with a predominance of Copia Sirevirus and Gypsy Athila/Tat clades. FISH using LTR-RT probes exhibited scattered and clustered signals, but with differences in the chromosomal locations of Copia and Gypsy. The diversity in LTR-RT locations suggests that there is no typical chromosomal distribution pattern for retrotransposons in holocentric chromosomes, except the CRM family with signals distributed along chromatids. CONCLUSIONS These data indicate independent fates for each LTR-RT family, including accumulation between and within chromosomes and genomes. Differential activity and small changes in LTR-RTs suggest a secondary role in nuclear DNA variation, when compared with ploidy changes.
Collapse
Affiliation(s)
- Thaíssa B de Souza
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Lucas Johnen
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - André Marques
- Laboratory of Genetic Resources, Campus Arapiraca, Federal University of Alagoas, Arapiraca, Brazil
| | | | | | - André L L Vanzela
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
29
|
Khan MS, Kumar S, Singh RK, Singh J, Duttamajumder SK, Kapur R. Characterization of leaf transcriptome, development and utilization of unigenes-derived microsatellite markers in sugarcane ( Saccharum sp. hybrid). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:665-682. [PMID: 30042621 PMCID: PMC6041238 DOI: 10.1007/s12298-018-0563-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Sugarcane (Saccharum species hybrid) is the major source of sugar (> 80% sugar) in the world and is cultivated in more than 115 countries. It has recently gained attention as a source of biofuel (ethanol). Due to genomic complexity, the development of new genomic resources is imperative in understanding the gene regulation and function, and to fine tune the genetic improvement of sugarcane. In this study, a cDNA library was constructed from mature leaves so as to develop ESTs resources which were further compared with nucleotide and protein databases to explore the functional identity of sugarcane genes. The non-redundant ESTs (unigenes) were categorized into 18 metabolic functions. The major categories were bioenergetics and photosynthesis (4%), cell metabolism (5%), development related protein (3%), membrane-related, mobile genetic elements (5%), signal transduction (2%), DNA (1%), RNA (1%) and protein (2%) metabolism, other metabolic processes (3%), transcription factors (1%), transport (4%) and proteins related to stress/defense (4%). From 540 unique ESTs, 212 simple sequence repeats were identified, of which 206 were from 463 singlets and six were mined from 77 contig sequences. A total of 540 unique EST sequences were used for SSR search of which 97 (17.9%) contained specified SSR motifs, generating 212 unique SSRs. The genes characterized in this study and the EST-derived microsatellite markers identified from the cDNA library will enrich genomic resources for association- and linkage-mapping studies in sugarcane.
Collapse
Affiliation(s)
- Mohammad Suhail Khan
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
| | - Sanjeev Kumar
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
| | - Ram Kewal Singh
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
- Present Address: Division of Crop Science, Indian Council of Agricultural Research, Dr. Rajendra Prasad Road, Krishi Bhawan, New Delhi, 110 001 India
| | - Jyotsnendra Singh
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
| | | | - Raman Kapur
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
| |
Collapse
|
30
|
Harkess A, Frank M. Blake C. Meyers. THE PLANT CELL 2018; 30:1375-1377. [PMID: 29915150 PMCID: PMC6096600 DOI: 10.1105/tpc.18.00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Alex Harkess
- Donald Danforth Plant Science Center, St. Louis, Missouri
| | - Margaret Frank
- Cornell University School of Integrative Plant Science, Ithaca, New York
| |
Collapse
|
31
|
Han MJ, Xu HE, Xiong XM, Zhang HH. Evolutionary dynamics of transposable elements during silkworm domestication. Genes Genomics 2018; 40:1041-1051. [DOI: 10.1007/s13258-018-0713-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/31/2018] [Indexed: 11/24/2022]
|
32
|
Realini MF, Poggio L, Cámara Hernández J, González GE. Exploring karyotype diversity of Argentinian Guaraní maize landraces: Relationship among South American maize. PLoS One 2018; 13:e0198398. [PMID: 29879173 PMCID: PMC5991688 DOI: 10.1371/journal.pone.0198398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/20/2018] [Indexed: 12/04/2022] Open
Abstract
In Argentina there are two different centers of maize diversity, the Northeastern (NEA) and the Northwestern (NWA) regions of the country. In NEA, morphological studies identified 15 landraces cultivated by the Guaraní communities in Misiones Province. In the present study we analyzed the karyotype diversity of 20 populations of Guaraní maize landraces through classical and molecular cytogenetic analyses. Our results demonstrate significant intra and inter-populational variation in the percentage, number, size, chromosome position and frequencies of the heterochromatic blocks, which are called knobs. Knob sequence analysis (180-bp and TR-1) did not show significant differences among Guaraní populations. B chromosomes were not detected, and abnormal 10 (AB10) chromosomes were found with low frequency (0.1≥f ≤0.40) in six populations. Our results allowed karyotypic characterization of each analyzed population, defining for the first time the chromosomal constitution of maize germplasm from NEA. The multivariate analysis (PCoA and UPGMA) of karyotype parameters allowed the distinction between two populations groups: the Popcorn and the Floury maize populations. These results are in agreement with previously published microsatellite and morphological/phenological studies. Finally, we compared our karyotype results with those previously reported for NWA and Central Region of South America maize. Our data suggest that there are important differences between maize from NEA and NWA at the karyotype level, supporting the hypothesis that there are two pathways of input of South America maize. Our results also confirm the existence of two centers of diversification of Argentinian native maize, NWA and NEA. This work contributes new knowledge about maize diversity, which is relevant for future plans to improve commercial maize, and for conservation of agrobiodiversity.
Collapse
Affiliation(s)
- María Florencia Realini
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Departamento de Ecología, Genética y Evolución, Laboratorio de Citogenética y Evolución (LaCyE), Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Ecología, Genética y Evolución (IEGEBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lidia Poggio
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Departamento de Ecología, Genética y Evolución, Laboratorio de Citogenética y Evolución (LaCyE), Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Ecología, Genética y Evolución (IEGEBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Julián Cámara Hernández
- Cátedra de Botánica Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Graciela Esther González
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Departamento de Ecología, Genética y Evolución, Laboratorio de Citogenética y Evolución (LaCyE), Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Ecología, Genética y Evolución (IEGEBA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
33
|
Coan RLB, Martins C. Landscape of Transposable Elements Focusing on the B Chromosome of the Cichlid Fish Astatotilapia latifasciata. Genes (Basel) 2018; 9:genes9060269. [PMID: 29882892 PMCID: PMC6027319 DOI: 10.3390/genes9060269] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/26/2022] Open
Abstract
B chromosomes (Bs) are supernumerary elements found in many taxonomic groups. Most B chromosomes are rich in heterochromatin and composed of abundant repetitive sequences, especially transposable elements (TEs). B origin is generally linked to the A-chromosome complement (A). The first report of a B chromosome in African cichlids was in Astatotilapia latifasciata, which can harbor 0, 1, or 2 Bs Classical cytogenetic studies found high a TE content on this B chromosome. In this study, we aimed to understand TE composition and expression in the A. latifasciata genome and its relation to the B chromosome. We used bioinformatics analysis to explore the genomic organization of TEs and their composition on the B chromosome. The bioinformatics findings were validated by fluorescent in situ hybridization (FISH) and real-time PCR (qPCR). A. latifasciata has a TE content similar to that of other cichlid fishes and several expanded elements on its B chromosome. With RNA sequencing data (RNA-seq), we showed that all major TE classes are transcribed in the brain, muscle, and male and female gonads. An evaluation of TE transcription levels between B- and B+ individuals showed that few elements are differentially expressed between these groups and that the expanded B elements are not highly transcribed. Putative silencing mechanisms may act on the B chromosome of A. latifasciata to prevent the adverse consequences of repeat transcription and mobilization in the genome.
Collapse
Affiliation(s)
- Rafael L B Coan
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), 18618-689 Botucatu, SP, Brazil.
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), 18618-689 Botucatu, SP, Brazil.
| |
Collapse
|
34
|
Zhang M, Liu XK, Fan W, Yan DF, Zhong NS, Gao JY, Zhang WJ. Transcriptome analysis reveals hybridization-induced genome shock in an interspecific F 1 hybrid from Camellia. Genome 2018; 61:477-485. [PMID: 29718690 DOI: 10.1139/gen-2017-0105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The combination of two divergent genomes during hybridization can result in "genome shock". Although genome shock has been reported in the hybrids of some herbaceous plants, the pattern and the principle it follows are far from understood, especially in woody plants. Here, the gene expression patterns were remodeled in the F1 hybrid from the crossing of Camellia azalea × Camellia amplexicaulis compared with the parents as revealed by RNA-seq. About 54.5% of all unigenes were differentially expressed between the F1 hybrid and at least one of the parents, including 6404 unigenes with the highest expression level in the F1 hybrid. A series of genes, related to flower development, essential for RNA-directed DNA methylation and histone methylation, as well as 223 transposable elements, were enriched; and most of them exhibited a higher level of expression in the F1 hybrid. These results indicated that the genome shock induced by interspecific hybridization in Camellia could indeed result in changes of gene expression patterns, potentially through regulating DNA methylation and histone methylation which may be helpful for the maintaining of genome stability and even related to the unique phenotype of the F1 hybrid.
Collapse
Affiliation(s)
- Min Zhang
- a Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin-Kai Liu
- b Palm Eco-Town Development Co., Ltd., Guangzhou, Guangdong 510627, China
| | - Wen Fan
- a Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Dan-Feng Yan
- b Palm Eco-Town Development Co., Ltd., Guangzhou, Guangdong 510627, China
| | - Nai-Sheng Zhong
- b Palm Eco-Town Development Co., Ltd., Guangzhou, Guangdong 510627, China
| | - Ji-Yin Gao
- b Palm Eco-Town Development Co., Ltd., Guangzhou, Guangdong 510627, China.,c Research Institute of Subtropical Forest, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Wen-Ju Zhang
- a Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
35
|
Lin Y, Min J, Lai R, Wu Z, Chen Y, Yu L, Cheng C, Jin Y, Tian Q, Liu Q, Liu W, Zhang C, Lin L, Zhang D, Thu M, Zhang Z, Liu S, Zhong C, Fang X, Wang J, Yang H, Varshney RK, Yin Y, Lai Z. Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics. Gigascience 2018; 6:1-14. [PMID: 28368449 PMCID: PMC5467034 DOI: 10.1093/gigascience/gix023] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 03/23/2017] [Indexed: 11/13/2022] Open
Abstract
Longan (Dimocarpus longan Lour.), an important subtropical fruit in the family Sapindaceae, is grown in more than 10 countries. Longan is an edible drupe fruit and a source of traditional medicine with polyphenol-rich traits. Tree size, alternate bearing, and witches' broom disease still pose serious problems. To gain insights into the genomic basis of longan traits, a draft genome sequence was assembled. The draft genome (about 471.88 Mb) of a Chinese longan cultivar, "Honghezi," was estimated to contain 31 007 genes and 261.88 Mb of repetitive sequences. No recent whole-genome-wide duplication event was detected in the genome. Whole-genome resequencing and analysis of 13 cultivated D. longan accessions revealed the extent of genetic diversity. Comparative transcriptome studies combined with genome-wide analysis revealed polyphenol-rich and pathogen resistance characteristics. Genes involved in secondary metabolism, especially those from significantly expanded (DHS, SDH, F3΄H, ANR, and UFGT) and contracted (PAL, CHS, and F3΄5΄H) gene families with tissue-specific expression, may be important contributors to the high accumulation levels of polyphenolic compounds observed in longan fruit. The high number of genes encoding nucleotide-binding site leucine-rich repeat (NBS-LRR) and leucine-rich repeat receptor-like kinase proteins, as well as the recent expansion and contraction of the NBS-LRR family, suggested a genomic basis for resistance to insects, fungus, and bacteria in this fruit tree. These data provide insights into the evolution and diversity of the longan genome. The comparative genomic and transcriptome analyses provided information about longan-specific traits, particularly genes involved in its polyphenol-rich and pathogen resistance characteristics.
Collapse
Affiliation(s)
- Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | - Ruilian Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lili Yu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | - Qilin Tian
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | - Weihua Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | - Lixia Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dongmin Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Minkyaw Thu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chunshui Zhong
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.,School of Plant Biology, The University of Western Australia, Crawley, Perth, Australia
| | - Ye Yin
- BGI-Shenzhen, Shenzhen 518083, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
36
|
Seifert F, Thiemann A, Grant-Downton R, Edelmann S, Rybka D, Schrag TA, Frisch M, Dickinson HG, Melchinger AE, Scholten S. Parental Expression Variation of Small RNAs Is Negatively Correlated with Grain Yield Heterosis in a Maize Breeding Population. FRONTIERS IN PLANT SCIENCE 2018; 9:13. [PMID: 29441076 PMCID: PMC5797689 DOI: 10.3389/fpls.2018.00013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/04/2018] [Indexed: 05/26/2023]
Abstract
Heterosis refers to a quantitative phenomenon in which F1 hybrid trait values exceed the mean of the parental values in a positive direction. Generally, it is dependent on a high degree of heterozygosity, which is maintained in hybrid breeding by developing parental lines in separate, genetically distinct heterotic groups. The mobility of small RNAs (sRNAs) that mediate epigenetic regulation of gene expression renders them promising candidates for modulating the action of combined diverse genomes in trans-and evidence already indicates their contribution to transgressive phenotypes. By sequencing small RNA libraries of a panel of 21 maize parental inbred lines we found a low overlap of 35% between the sRNA populations from both distinct heterotic groups. Surprisingly, in contrast to genetic or gene expression variation, parental sRNA expression variation is negatively correlated with grain yield (GY) heterosis. Among 0.595 million expressed sRNAs, we identified 9,767, predominantly 22- and 24-nt long sRNAs, which showed an association of their differential expression between parental lines and GY heterosis of the respective hybrids. Of these sRNAs, 3,485 or 6,282 showed an association with high or low GY heterosis, respectively, thus the low heterosis associated group prevailing at 64%. The heterosis associated sRNAs map more frequently to genes that show differential expression between parental lines than reference sets. Together these findings suggest that trans-chromosomal actions of sRNAs in hybrids might add up to a negative contribution in heterosis formation, mediated by unfavorable gene expression regulation. We further revealed an exclusive accumulation of 22-nt sRNAs that are associated with low GY heterosis in pericentromeric genomic regions. That recombinational suppression led to this enrichment is indicated by its close correlation with low recombination rates. The existence of this enrichment, which we hypothesize resulted from the separated breeding of inbred lines within heterotic groups, may have implications for hybrid breeding strategies addressing the recombinational constraints characteristic of complex crop genomes.
Collapse
Affiliation(s)
- Felix Seifert
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | | | | | - Susanne Edelmann
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Dominika Rybka
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Tobias A. Schrag
- Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Matthias Frisch
- Institute of Agronomy and Plant Breeding II, Justus-Liebig University, Giessen, Germany
| | - Hugh G. Dickinson
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Albrecht E. Melchinger
- Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Stefan Scholten
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
- Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
37
|
Manivannan A, Kim JH, Yang EY, Ahn YK, Lee ES, Choi S, Kim DS. Next-Generation Sequencing Approaches in Genome-Wide Discovery of Single Nucleotide Polymorphism Markers Associated with Pungency and Disease Resistance in Pepper. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5646213. [PMID: 29546063 PMCID: PMC5818978 DOI: 10.1155/2018/5646213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/04/2022]
Abstract
Pepper is an economically important horticultural plant that has been widely used for its pungency and spicy taste in worldwide cuisines. Therefore, the domestication of pepper has been carried out since antiquity. Owing to meet the growing demand for pepper with high quality, organoleptic property, nutraceutical contents, and disease tolerance, genomics assisted breeding techniques can be incorporated to develop novel pepper varieties with desired traits. The application of next-generation sequencing (NGS) approaches has reformed the plant breeding technology especially in the area of molecular marker assisted breeding. The availability of genomic information aids in the deeper understanding of several molecular mechanisms behind the vital physiological processes. In addition, the NGS methods facilitate the genome-wide discovery of DNA based markers linked to key genes involved in important biological phenomenon. Among the molecular markers, single nucleotide polymorphism (SNP) indulges various benefits in comparison with other existing DNA based markers. The present review concentrates on the impact of NGS approaches in the discovery of useful SNP markers associated with pungency and disease resistance in pepper. The information provided in the current endeavor can be utilized for the betterment of pepper breeding in future.
Collapse
Affiliation(s)
- Abinaya Manivannan
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Jin-Hee Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Eun-Young Yang
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Yul-Kyun Ahn
- Department of Vegetable Crops, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Eun-Su Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Sena Choi
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| |
Collapse
|
38
|
Qiu F, Ungerer MC. Genomic abundance and transcriptional activity of diverse gypsy and copia long terminal repeat retrotransposons in three wild sunflower species. BMC PLANT BIOLOGY 2018; 18:6. [PMID: 29304730 PMCID: PMC5755311 DOI: 10.1186/s12870-017-1223-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 12/21/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Long terminal repeat (LTR) retrotransposons are highly abundant in plant genomes and require transcriptional activity for their proliferative mode of replication. These sequences exist in plant genomes as diverse sublineages within the main element superfamilies (i.e., gypsy and copia). While transcriptional activity of these elements is increasingly recognized as a regular attribute of plant transcriptomes, it is currently unknown the extent to which different sublineages of these elements are transcriptionally active both within and across species. In the current report, we utilize next generation sequencing methods to examine genomic copy number abundance of diverse LTR retrotransposon sublineages and their corresponding levels of transcriptional activity in three diploid wild sunflower species, Helianthus agrestis, H. carnosus and H. porteri. RESULTS The diploid sunflower species under investigation differ in genome size 2.75-fold, with 2C values of 22.93 for H. agrestis, 12.31 for H. carnosus and 8.33 for H. porteri. The same diverse gypsy and copia sublineages of LTR retrotransposons were identified across species, but with gypsy sequences consistently more abundant than copia and with global gypsy sequence abundance positively correlated with nuclear genome size. Transcriptional activity was detected for multiple copia and gypsy sequences, with significantly higher activity levels detected for copia versus gypsy. Interestingly, of 11 elements identified as transcriptionally active, 5 exhibited detectable expression in all three species and 3 exhibited detectable expression in two species. CONCLUSIONS Combined analyses of LTR retrotransposon genomic abundance and transcriptional activity across three sunflower species provides novel insights into genome size evolution and transposable element dynamics in this group. Despite considerable variation in nuclear genome size among species, relatively conserved patterns of LTR retrotransposon transcriptional activity were observed, with a highly overlapping set of copia and gypsy sequences observed to be transcriptionally active across species. A higher proportion of copia versus gypsy elements were found to be transcriptionally active and these sequences also were expressed at higher levels.
Collapse
Affiliation(s)
- Fan Qiu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Mark C Ungerer
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
39
|
|
40
|
Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang JJ, Mao SY, Jiao JY, Zhang D, Zhao Y, Zhao YJ, Zhang LP, Liu YL, Liu BY, Yu Y, Shao SF, Ni DJ, Eichler EE, Gao LZ. The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis. MOLECULAR PLANT 2017; 10:866-877. [PMID: 28473262 DOI: 10.1016/j.molp.2017.04.002] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 05/18/2023]
Abstract
Tea is the world's oldest and most popular caffeine-containing beverage with immense economic, medicinal, and cultural importance. Here, we present the first high-quality nucleotide sequence of the repeat-rich (80.9%), 3.02-Gb genome of the cultivated tea tree Camellia sinensis. We show that an extraordinarily large genome size of tea tree is resulted from the slow, steady, and long-term amplification of a few LTR retrotransposon families. In addition to a recent whole-genome duplication event, lineage-specific expansions of genes associated with flavonoid metabolic biosynthesis were discovered, which enhance catechin production, terpene enzyme activation, and stress tolerance, important features for tea flavor and adaptation. We demonstrate an independent and rapid evolution of the tea caffeine synthesis pathway relative to cacao and coffee. A comparative study among 25 Camellia species revealed that higher expression levels of most flavonoid- and caffeine- but not theanine-related genes contribute to the increased production of catechins and caffeine and thus enhance tea-processing suitability and tea quality. These novel findings pave the way for further metabolomic and functional genomic refinement of characteristic biosynthesis pathways and will help develop a more diversified set of tea flavors that would eventually satisfy and attract more tea drinkers worldwide.
Collapse
Affiliation(s)
- En-Hua Xia
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Hai-Bin Zhang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Jun Sheng
- Yunnan Agricultural University, Kunming 650204, China
| | - Kui Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Qun-Jie Zhang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Agrobiological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | | | - Yun Zhang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuan Liu
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zhu
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; College of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Wei Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Hui Huang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Yan Tong
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong Nan
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Cong Shi
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Chao Shi
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Jun Jiang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Shu-Yan Mao
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jun-Ying Jiao
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Dan Zhang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zhao
- Yunnan Agricultural University, Kunming 650204, China
| | - You-Jie Zhao
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Li-Ping Zhang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Long Liu
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ben-Ying Liu
- National Tea Tree Germplasm Bank, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Yue Yu
- Macrogene Inc., Seoul 08511, South Korea
| | - Sheng-Fu Shao
- Jinhua International Camellia Germplasm Bank, Jinhua 321000, China
| | - De-Jiang Ni
- Department of Tea Science, Key Lab for Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070 China
| | - Evan E Eichler
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Li-Zhi Gao
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
41
|
Guo C, Spinelli M, Ye C, Li QQ, Liang C. Genome-Wide Comparative Analysis of Miniature Inverted Repeat Transposable Elements in 19 Arabidopsis thaliana Ecotype Accessions. Sci Rep 2017; 7:2634. [PMID: 28572566 PMCID: PMC5454002 DOI: 10.1038/s41598-017-02855-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Miniature inverted repeat transposable elements (MITEs) are prevalent in eukaryotic genomes. They are known to critically influence the process of genome evolution and play a role in gene regulation. As the first study concentrated in the transposition activities of MITEs among different ecotype accessions within a species, we conducted a genome-wide comparative analysis by characterizing and comparing MITEs in 19 Arabidopsis thaliana accessions. A total of 343485 MITE putative sequences, including canonical, diverse and partial ones, were delineated from all 19 accessions. Within the entire population of MITEs sequences, 80.7% of them were previously unclassified MITEs, demonstrating a different genomic distribution and functionality compared to the classified MITEs. The interactions between MITEs and homologous genes across 19 accessions provided a fine source for analyzing MITE transposition activities and their impacts on genome evolution. Moreover, a significant proportion of MITEs were found located in the last exon of genes besides the ordinary intron locality, thus potentially modifying the end of genes. Finally, analysis of the impact of MITEs on gene expression suggests that migrations of MITEs have no detectable effect on the expression level for host genes across accessions.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | | | - Congting Ye
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China.
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
42
|
Stelmach K, Macko-Podgórni A, Machaj G, Grzebelus D. Miniature Inverted Repeat Transposable Element Insertions Provide a Source of Intron Length Polymorphism Markers in the Carrot ( Daucus carota L.). FRONTIERS IN PLANT SCIENCE 2017; 8:725. [PMID: 28536590 PMCID: PMC5422474 DOI: 10.3389/fpls.2017.00725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/19/2017] [Indexed: 05/27/2023]
Abstract
The prevalence of non-autonomous class II transposable elements (TEs) in plant genomes may serve as a tool for relatively rapid and low-cost development of gene-associated molecular markers. Miniature inverted-repeat transposable element (MITE) copies inserted within introns can be exploited as potential intron length polymorphism (ILP) markers. ILPs can be detected by PCR with primers anchored in exon sequences flanking the target introns. Here, we designed primers for 209 DcSto (Daucus carota Stowaway-like) MITE insertion sites within introns along the carrot genome and validated them as candidate ILP markers in order to develop a set of markers for genotyping the carrot. As a proof of concept, 90 biallelic DcS-ILP markers were selected and used to assess genetic diversity of 27 accessions comprising wild Daucus carota and cultivated carrot of different root shape. The number of effective alleles was 1.56, mean polymorphism informative content was 0.27, while the average observed and expected heterozygosity was 0.24 and 0.34, respectively. Sixty-seven loci showed positive values of Wright's fixation index. Using Bayesian approach, two clusters comprising four wild and 23 cultivated accessions, respectively, were distinguished. Within the cultivated carrot gene pool, four subclusters representing accessions from Chantenay, Danvers, Imperator, and Paris Market types were revealed. It is the first molecular evidence for root-type associated diversity structure in western cultivated carrot. DcS-ILPs detected substantial genetic diversity among the studied accessions and, showing considerable discrimination power, may be exploited as a tool for germplasm characterization and analysis of genome relationships. The developed set of DcS-ILP markers is an easily accessible molecular marker genotyping system based on TE insertion polymorphism.
Collapse
|
43
|
Filho JAF, de Brito LS, Leão AP, Alves AA, Formighieri EF, Júnior MTS. In Silico Approach for Characterization and Comparison of Repeats in the Genomes of Oil and Date Palms. Bioinform Biol Insights 2017; 11:1177932217702388. [PMID: 28469420 PMCID: PMC5402704 DOI: 10.1177/1177932217702388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/02/2017] [Indexed: 11/16/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements present in almost all eukaryotic genomes. Due to their typical patterns of repetition, discovery, and characterization, they demand analysis by various bioinformatics software. Probably, as a result of the need for a complex analysis, many genomes publicly available do not have these elements annotated yet. In this study, a de novo and homology-based identification of TEs and microsatellites was performed using genomic data from 3 palm species: Elaeis oleifera (American oil palm, v.1, Embrapa, unpublished; v.8, Malaysian Palm Oil Board [MPOB], public), Elaeis guineensis (African oil palm, v.5, MPOB, public), and Phoenix dactylifera (date palm). The estimated total coverage of TEs was 50.96% (523 572 kb) and 42.31% (593 463 kb), 39.41% (605 015 kb), and 33.67% (187 361 kb), respectively. A total of 155 726 microsatellite loci were identified in the genomes of oil and date palms. This is the first detailed description of repeats in the genomes of oil and date palms. A relatively high diversity and abundance of TEs were found in the genomes, opening a range of further opportunities for applied research in these genera. The development of molecular markers (mainly simple sequence repeat), which may be immediately applied in breeding programs of those species to support the selection of superior genotypes and to enhance knowledge of the genetic structure of the breeding and natural populations, is the most notable opportunity.
Collapse
Affiliation(s)
- Jaire Alves Ferreira Filho
- Graduate Program in Plant Biotechnology, Federal University of Lavras (UFLA), Lavras, Brazil.,Embrapa Agroenergia, Parque Estação Biológica (PqEB), Brasília, Brazil.,Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | | | | - Manoel Teixeira Souza Júnior
- Graduate Program in Plant Biotechnology, Federal University of Lavras (UFLA), Lavras, Brazil.,Embrapa Agroenergia, Parque Estação Biológica (PqEB), Brasília, Brazil
| |
Collapse
|
44
|
Rey-Baños R, Sáenz de Miera LE, García P, Pérez de la Vega M. Obtaining retrotransposon sequences, analysis of their genomic distribution and use of retrotransposon-derived genetic markers in lentil (Lens culinaris Medik.). PLoS One 2017; 12:e0176728. [PMID: 28448614 PMCID: PMC5407846 DOI: 10.1371/journal.pone.0176728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/14/2017] [Indexed: 12/02/2022] Open
Abstract
Retrotransposons with long terminal repeats (LTR-RTs) are widespread mobile elements in eukaryotic genomes. We obtained a total of 81 partial LTR-RT sequences from lentil corresponding to internal retrotransposon components and LTRs. Sequences were obtained by PCR from genomic DNA. Approximately 37% of the LTR-RT internal sequences presented premature stop codons, pointing out that these elements must be non-autonomous. LTR sequences were obtained using the iPBS technique which amplifies sequences between LTR-RTs. A total of 193 retrotransposon-derived genetic markers, mainly iPBS, were used to obtain a genetic linkage map from 94 F7 inbred recombinant lines derived from the cross between the cultivar Lupa and the wild ancestor L. culinaris subsp. orientalis. The genetic map included 136 markers located in eight linkage groups. Clusters of tightly linked retrotransposon-derived markers were detected in linkage groups LG1, LG2, and LG6, hence denoting a non-random genomic distribution. Phylogenetic analyses identified the LTR-RT families in which internal and LTR sequences are included. Ty3-gypsy elements were more frequent than Ty1-copia, mainly due to the high Ogre element frequency in lentil, as also occurs in other species of the tribe Vicieae. LTR and internal sequences were used to analyze in silico their distribution among the contigs of the lentil draft genome. Up to 8.8% of the lentil contigs evidenced the presence of at least one LTR-RT similar sequence. A statistical analysis suggested a non-random distribution of these elements within of the lentil genome. In most cases (between 97% and 72%, depending on the LTR-RT type) none of the internal sequences flanked by the LTR sequence pair was detected, suggesting that defective and non-autonomous LTR-RTs are very frequent in lentil. Results support that LTR-RTs are abundant and widespread throughout of the lentil genome and that they are a suitable source of genetic markers useful to carry out further genetic analyses.
Collapse
Affiliation(s)
- Rita Rey-Baños
- Área de Genética, Dpto. de Biología Molecular, Universidad de León, León, Spain
| | - Luis E. Sáenz de Miera
- Área de Genética, Dpto. de Biología Molecular, Universidad de León, León, Spain
- * E-mail:
| | - Pedro García
- Área de Genética, Dpto. de Biología Molecular, Universidad de León, León, Spain
| | | |
Collapse
|
45
|
Protein-Coding Genes' Retrocopies and Their Functions. Viruses 2017; 9:v9040080. [PMID: 28406439 PMCID: PMC5408686 DOI: 10.3390/v9040080] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Transposable elements, often considered to be not important for survival, significantly contribute to the evolution of transcriptomes, promoters, and proteomes. Reverse transcriptase, encoded by some transposable elements, can be used in trans to produce a DNA copy of any RNA molecule in the cell. The retrotransposition of protein-coding genes requires the presence of reverse transcriptase, which could be delivered by either non-long terminal repeat (non-LTR) or LTR transposons. The majority of these copies are in a state of “relaxed” selection and remain “dormant” because they are lacking regulatory regions; however, many become functional. In the course of evolution, they may undergo subfunctionalization, neofunctionalization, or replace their progenitors. Functional retrocopies (retrogenes) can encode proteins, novel or similar to those encoded by their progenitors, can be used as alternative exons or create chimeric transcripts, and can also be involved in transcriptional interference and participate in the epigenetic regulation of parental gene expression. They can also act in trans as natural antisense transcripts, microRNA (miRNA) sponges, or a source of various small RNAs. Moreover, many retrocopies of protein-coding genes are linked to human diseases, especially various types of cancer.
Collapse
|
46
|
Useful parasites: the evolutionary biology and biotechnology applications of transposable elements. J Genet 2017; 95:1039-1052. [PMID: 27994207 DOI: 10.1007/s12041-016-0702-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Transposable elements usually comprise the most abundant nongenic fraction of eukaryotic genomes. Because of their capacity to selfreplicate and to induce a wide range of mutations, transposable elements have long been considered as 'parasitic' or 'selfish'. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work. Numerous studies have provided evidences that mobile elements have the potential to act as agents of evolution by increasing, rearranging and diversifying the genetic repertoire of their hosts. With large-scale sequencing becoming increasingly available, more and more scientists come across transposable element sequences in their data. I will provide examples that transposable elements, although having signatures of 'selfish' DNA, play a significant biological role in the maintainance of genome integrity and providing novel regulatoty networks. These features, along with the transpositional and mutagenic capacity to produce a raw genetic diversity, make the genome mobile fraction, a key player in species adaptation and microevolution. The last but not least, transposable elements stand as informative DNA markers that may complement other conventional DNA markers. Altogether, transposable elements represent a promising, but still largely unexplored research niche and deserve to be included into the agenda of molecular ecologists, evolutionary geneticists, conservation biologists and plant breeders.
Collapse
|
47
|
Fu S, Liu X, Luo M, Xie K, Nice EC, Zhang H, Huang C. Proteogenomic studies on cancer drug resistance: towards biomarker discovery and target identification. Expert Rev Proteomics 2017; 14:351-362. [PMID: 28276747 DOI: 10.1080/14789450.2017.1299006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Chemoresistance is a major obstacle for current cancer treatment. Proteogenomics is a powerful multi-omics research field that uses customized protein sequence databases generated by genomic and transcriptomic information to identify novel genes (e.g. noncoding, mutation and fusion genes) from mass spectrometry-based proteomic data. By identifying aberrations that are differentially expressed between tumor and normal pairs, this approach can also be applied to validate protein variants in cancer, which may reveal the response to drug treatment. Areas covered: In this review, we will present recent advances in proteogenomic investigations of cancer drug resistance with an emphasis on integrative proteogenomic pipelines and the biomarker discovery which contributes to achieving the goal of using precision/personalized medicine for cancer treatment. Expert commentary: The discovery and comprehensive understanding of potential biomarkers help identify the cohort of patients who may benefit from particular treatments, and will assist real-time clinical decision-making to maximize therapeutic efficacy and minimize adverse effects. With the development of MS-based proteomics and NGS-based sequencing, a growing number of proteogenomic tools are being developed specifically to investigate cancer drug resistance.
Collapse
Affiliation(s)
- Shuyue Fu
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Xiang Liu
- b Department of Pathology , Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital , Chengdu , P.R. China
| | - Maochao Luo
- c West China School of Public Health, Sichuan University , Chengdu , P.R.China
| | - Ke Xie
- d Department of Oncology , Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital , Chengdu , P.R. China
| | - Edouard C Nice
- e Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Haiyuan Zhang
- f School of Medicine , Yangtze University , P. R. China
| | - Canhua Huang
- a State Key Laboratory of Biotherapy and Cancer Center , West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| |
Collapse
|
48
|
Ali SS, Shao J, Lary DJ, Kronmiller BA, Shen D, Strem MD, Amoako-Attah I, Akrofi AY, Begoude BD, ten Hoopen GM, Coulibaly K, Kebe BI, Melnick RL, Guiltinan MJ, Tyler BM, Meinhardt LW, Bailey BA. Phytophthora megakarya and P. palmivora, closely related causal agents of cacao black pod rot, underwent increases in genome sizes and gene numbers by different mechanisms. Genome Biol Evol 2017; 9:2982378. [PMID: 28186564 PMCID: PMC5381587 DOI: 10.1093/gbe/evx021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/21/2016] [Accepted: 02/04/2017] [Indexed: 12/13/2022] Open
Abstract
Phytophthora megakarya (Pmeg) and Phytophthora palmivora (Ppal) are closely related species causing cacao black pod rot. Although Ppal is a cosmopolitan pathogen, cacao is the only known host of economic importance for Pmeg. Pmeg is more virulent on cacao than Ppal. We sequenced and compared the Pmeg and Ppal genomes and identified virulence-related putative gene models (PGeneM) that may be responsible for their differences in host specificities and virulence. Pmeg and Ppal have estimated genome sizes of 126.88 and 151.23 Mb and PGeneM numbers of 42,036 and 44,327, respectively. The evolutionary histories of Pmeg and Ppal appear quite different. Postspeciation, Ppal underwent whole-genome duplication whereas Pmeg has undergone selective increases in PGeneM numbers, likely through accelerated transposable element-driven duplications. Many PGeneMs in both species failed to match transcripts and may represent pseudogenes or cryptic genetic reservoirs. Pmeg appears to have amplified specific gene families, some of which are virulence-related. Analysis of mycelium, zoospore, and in planta transcriptome expression profiles using neural network self-organizing map analysis generated 24 multivariate and nonlinear self-organizing map classes. Many members of the RxLR, necrosis-inducing phytophthora protein, and pectinase genes families were specifically induced in planta . Pmeg displays a diverse virulence-related gene complement similar in size to and potentially of greater diversity than Ppal but it remains likely that the specific functions of the genes determine each species’ unique characteristics as pathogens.
Collapse
Affiliation(s)
- Shahin S. Ali
- Sustainable Perennial Crops Laboratory, Plant Sciences Institute, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, Maryland
| | - Jonathan Shao
- Sustainable Perennial Crops Laboratory, Plant Sciences Institute, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, Maryland
| | | | | | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, China
| | - Mary D. Strem
- Sustainable Perennial Crops Laboratory, Plant Sciences Institute, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, Maryland
| | | | | | - B.A. Didier Begoude
- Regional Laboratory for Biological and Applied Microbiology (IRAD), Yaoundé, Cameroon
| | - G. Martijn ten Hoopen
- Regional Laboratory for Biological and Applied Microbiology (IRAD), Yaoundé, Cameroon
- CIRAD, UPR 106 Bioagresseurs, Montpellier, France
| | | | | | - Rachel L. Melnick
- Sustainable Perennial Crops Laboratory, Plant Sciences Institute, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, Maryland
| | | | - Brett M. Tyler
- Center for Genome Research and Biocomputing, Oregon State University
- Department of Botany and Plant Pathology, Oregon State University
| | - Lyndel W. Meinhardt
- Sustainable Perennial Crops Laboratory, Plant Sciences Institute, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, Maryland
| | - Bryan A. Bailey
- Sustainable Perennial Crops Laboratory, Plant Sciences Institute, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, Maryland
| |
Collapse
|
49
|
Zeng FC, Zhao YJ, Zhang QJ, Gao LZ. LTRtype, an Efficient Tool to Characterize Structurally Complex LTR Retrotransposons and Nested Insertions on Genomes. FRONTIERS IN PLANT SCIENCE 2017; 8:402. [PMID: 28421083 PMCID: PMC5379124 DOI: 10.3389/fpls.2017.00402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/09/2017] [Indexed: 05/14/2023]
Abstract
The amplification and recombination of long terminal repeat (LTR) retrotransposons have proven to determine the size, organization, function, and evolution of most host genomes, especially very large plant genomes. However, the limitation of tools for an efficient discovery of structural complexity of LTR retrotransposons and the nested insertions is a great challenge to confront ever-growing amount of genomic sequences for many organisms. Here we developed a novel software, called as LTRtype, to characterize different types of structurally complex LTR retrotransposon elements as well as nested events. This system is capable of rapidly scanning large-scale genomic sequences and appropriately characterizing the five complex types of LTR retrotransposon elements. After testing on the Arabidopsis thaliana genome, we found that this program is able to properly annotate a large number of structurally complex elements as well as the nested insertions. Thus, LTRtype can be employed as an automatic and efficient tool that will help to reconstruct the evolutionary history of LTR retrotransposons and better understand the evolution of host genomes. LTRtype is publicly available at: http://www.plantkingdomgdb.com/LTRtype/index.html.
Collapse
Affiliation(s)
- Fan-Chun Zeng
- Institution of Genomics and Bioinformatics, South China Agricultural UniversityGuangzhou, China
| | - You-Jie Zhao
- Institution of Genomics and Bioinformatics, South China Agricultural UniversityGuangzhou, China
| | - Que-Jie Zhang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Li-Zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural UniversityGuangzhou, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- *Correspondence: Li-Zhi Gao,
| |
Collapse
|
50
|
Epigenetic Control of Gene Expression in Maize. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 328:25-48. [DOI: 10.1016/bs.ircmb.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|