1
|
Weatherup EF, Carnegie R, Strand AE, Sotka EE. Co-phylogeographic structure in a disease-causing parasite and its oyster host. Parasitology 2024; 151:671-678. [PMID: 38769826 PMCID: PMC11474014 DOI: 10.1017/s0031182024000611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
With the increasing affordability of next-generation sequencing technologies, genotype-by-sequencing has become a cost-effective tool for ecologists and conservation biologists to describe a species' evolutionary history. For host–parasite interactions, genotype-by-sequencing can allow the simultaneous examination of host and parasite genomes and can yield insight into co-evolutionary processes. The eastern oyster, Crassostrea virginica, is among the most important aquacultured species in the United States. Natural and farmed oyster populations can be heavily impacted by ‘dermo’ disease caused by an alveolate protist, Perkinsus marinus. Here, we used restricted site-associated DNA sequencing (RADseq) to simultaneously examine spatial population genetic structure of host and parasite. We analysed 393 single-nucleotide polymorphisms (SNPs) for P. marinus and 52,100 SNPs for C. virginica from 36 individual oysters from the Gulf of Mexico (GOM) and mid-Atlantic coastline. All analyses revealed statistically significant genetic differentiation between the GOM and mid-Atlantic coast populations for both C. virginica and P. marinus, and genetic divergence between Chesapeake Bay and the outer coast of Virginia for C. virginica, but not for P. marinus. A co-phylogenetic analysis confirmed significant coupled evolutionary change between host and parasite across large spatial scales. The strong genetic divergence between marine basins raises the possibility that oysters from either basin would not be well adapted to parasite genotypes and phenotypes from the other, which would argue for caution with regard to both oyster and parasite transfers between the Atlantic and GOM regions. More broadly, our results demonstrate the potential of RADseq to describe spatial patterns of genetic divergence consistent with coupled evolution.
Collapse
Affiliation(s)
- Elizabeth Faye Weatherup
- Virgina Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Ryan Carnegie
- Virgina Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| | - Allan E. Strand
- College of Charleston Marine Laboratory and Department of Biology, College of Charleston, Charleston, SC, USA
| | - Erik E. Sotka
- College of Charleston Marine Laboratory and Department of Biology, College of Charleston, Charleston, SC, USA
| |
Collapse
|
2
|
Xing Y, Liang J, Dong F, Wu J, Shi J, Xu J, Wang J. Rapid Visual LAMP Method for Detection of Genetically Modified Organisms. ACS OMEGA 2023; 8:29608-29614. [PMID: 37599972 PMCID: PMC10433496 DOI: 10.1021/acsomega.3c03567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
We developed a novel loop-mediated isothermal amplification (LAMP) method using DNA captured on polyacrylamide microparticles (PAMMPs) as templates (PAMMPs@DNA-LAMP) for rapid qualitative detection of genetically modified organisms (GMOs). Here, DNA was extracted by a fast and cost-effective method using PAMMPs. Four LAMP primers were designed for the PAMMPs@DNA-LAMP method to detect the cauliflower mosaic virus 35S (CaMV35S) promotor in GMOs. We thus developed this method for rapid extraction of DNA (5-10 min) and fast amplification of DNA within ∼30 min at a constant temperature of 63 °C. Moreover, the DNA captured by PAMMPs (PAMMPs@DNA) could be effectively detected by both conventional and quantitative PCR (qPCR) and LAMP. The PAMMPs@DNA-LAMP method was validated with high specificity, sensitivity, and performance for practical sample analysis. This assay detected 0.01% target sequences, which had a high specificity like qPCR and better than the conventional PCR (cPCR). Furthermore, PAMMPs@DNA-LAMP was successfully used to extract and detect DNA from food samples of the major crops (soybean, maize, rice, etc.). In summary, a novel PAMMPs@DNA-LAMP assay has been developed, which has higher sensitivity and spends less time than the cPCR detection using the conventional DNA extracted process. This method offers a novel approach for rapid detection of GMOs in the field.
Collapse
Affiliation(s)
- Yujun Xing
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base, Ministry of Science and Technology/Key Laboratory for Control/Technology
and Standard for Agro-Product Safety and Quality, Ministry of Agriculture
and Rural Affairs/Collaborative Innovation Center for Modern Grain
Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jie Liang
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base, Ministry of Science and Technology/Institute of Food Safety
and Nutrition, Jiangsu Academy of Agricultural
Sciences, Nanjing 210014, China
| | - Fei Dong
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base, Ministry of Science and Technology/Institute of Food Safety
and Nutrition, Jiangsu Academy of Agricultural
Sciences, Nanjing 210014, China
| | - Jirong Wu
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base, Ministry of Science and Technology/Institute of Food Safety
and Nutrition, Jiangsu Academy of Agricultural
Sciences, Nanjing 210014, China
| | - Jianrong Shi
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base, Ministry of Science and Technology/Institute of Food Safety
and Nutrition, Jiangsu Academy of Agricultural
Sciences, Nanjing 210014, China
| | - Jianhong Xu
- Jiangsu
Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation
Base, Ministry of Science and Technology/Key Laboratory for Control/Technology
and Standard for Agro-Product Safety and Quality, Ministry of Agriculture
and Rural Affairs/Collaborative Innovation Center for Modern Grain
Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinke Wang
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering, Southeast
University, Nanjing 210096, China
| |
Collapse
|
3
|
Ortiz M, Jauset-Rubio M, Skouridou V, Machado D, Viveiros M, Clark TG, Simonova A, Kodr D, Hocek M, O’Sullivan CK. Electrochemical Detection of Single-Nucleotide Polymorphism Associated with Rifampicin Resistance in Mycobacterium tuberculosis Using Solid-Phase Primer Elongation with Ferrocene-Linked Redox-Labeled Nucleotides. ACS Sens 2021; 6:4398-4407. [PMID: 34797987 PMCID: PMC8715531 DOI: 10.1021/acssensors.1c01710] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Here, we report the
electrochemical detection of single-point mutations
using solid-phase isothermal primer elongation with redox-labeled
oligonucleotides. A single-base mutation associated with resistance
to rifampicin, an antibiotic commonly used for the treatment of Mycobacterium tuberculosis, was used as a model system
to demonstrate a proof-of-concept of the approach. Four 5′-thiolated
primers, designed to be complementary with the same fragment of the
target sequence and differing only in the last base, addressing the
polymorphic site, were self-assembled via chemisorption on individual
gold electrodes of an array. Following hybridization with single-stranded
DNA, Klenow (exo-) DNA polymerase-mediated primer extension with ferrocene-labeled
2′-deoxyribonucleoside triphosphates (dNFcTPs) was
only observed to proceed at the electrode where there was full complementarity
between the surface-tethered probe and the target DNA being interrogated.
We tested all four ferrocenylethynyl-linked dNTPs and optimized the
ratio of labeled/natural nucleotides to achieve maximum sensitivity.
Following a 20 min hybridization step, Klenow (exo-) DNA polymerase-mediated
primer elongation at 37 °C for 5 min was optimal for the enzymatic
incorporation of a ferrocene-labeled nucleotide, achieving unequivocal
electrochemical detection of a single-point mutation in 14 samples
of genomic DNA extracted from Mycobacterium tuberculosis strains. The approach is rapid, cost-effective, facile, and can
be extended to multiplexed electrochemical single-point mutation genotyping.
Collapse
Affiliation(s)
- Mayreli Ortiz
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Miriam Jauset-Rubio
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Vasso Skouridou
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
| | - Taane G. Clark
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, WC1E 7HT London, U.K
| | - Anna Simonova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam.2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Prague 2, Czech Republic
| | - David Kodr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam.2, 16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam.2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Prague 2, Czech Republic
| | - Ciara K. O’Sullivan
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
4
|
Jauset-Rubio M, Ortiz M, O'Sullivan CK. Solid-Phase Primer Elongation Using Biotinylated dNTPs for the Detection of a Single Nucleotide Polymorphism from a Fingerprick Blood Sample. Anal Chem 2021; 93:14578-14585. [PMID: 34704755 PMCID: PMC8581964 DOI: 10.1021/acs.analchem.1c03419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isothermal recombinase polymerase amplification-based solid-phase primer extension is used for the optical detection of a hypertrophic cardiomyopathy associated single nucleotide polymorphism (SNP) in a fingerprick blood sample. The assay exploits four thiolated primers which have the same sequences with the exception of the 3'-terminal base. Target DNA containing the SNP site hybridizes to all four of the immobilized probes, with primer extension only taking place from the primer containing the terminal base that is complementary to the SNP under interrogation. Biotinylated deoxynucleotide triphosphates are used in the primer extension, allowing postextension addition of streptavidin-poly-horseradish peroxidase to bind to the incorporated biotinylated dNTPs. The signal generated following substrate addition can then be measured optically. The percentage of biotinylated dNTPs and the duration of primer extension is optimized and the system applied to the identification of a SNP in a fingerprick blood sample. A methodology of thermal lysis using a 1 in 5 dilution of the fingerprick blood sample prior to application of 95 °C for 30 s is used to extract genomic DNA, which is directly used as a template for solid-phase primer extension on microtiter plates, followed by optical detection. The SNP in the fingerprick sample was identified and its identity corroborated using ion torrent next generation sequencing. Ongoing work is focused on extension to the multiplexed detection of SNPs in fingerprick and other biological samples.
Collapse
Affiliation(s)
- Miriam Jauset-Rubio
- INTERFIBIO Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Mayreli Ortiz
- INTERFIBIO Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Ciara K O'Sullivan
- INTERFIBIO Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain.,InstitucióCatalana de Recerca i Estudis Avancats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
5
|
Wang J, Zhang S, Xu X, Xing Y, Li Z, Wang J. Fast DNA Extraction with Polyacrylamide Microspheres for Polymerase Chain Reaction Detection. ACS OMEGA 2020; 5:13829-13839. [PMID: 32566849 PMCID: PMC7301550 DOI: 10.1021/acsomega.0c01181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 05/31/2023]
Abstract
The fast and cost-effective DNA extraction is critical for all DNA-based detections. Here, we fabricated a new kind of polyacrylamide microsphere (PAMMP) in various sizes with two methods, spot polymerization (large size but low yield) and modified inverse microemulsion polymerization (small size but high yield). The fabricated PAMMPs have strong autofluorescence (fPAMMPs), including both visible fluorescence (VF) and near-infrared fluorescence (NIRF), which can remain very stable in various stringent conditions including strong acid and alkali and high temperature. The fabricated fPAMMPs were also highly positively charged, which could be used to effectively capture various biomolecules such as IRDye 800-labeled streptavidin and DNA. We thus developed a new method for rapid extraction (3-5 min) of DNA from various samples including bacteria, mammalian cells, plant and animal solid tissues, and human blood plasma using fPAMMPs. Moreover, the DNA captured on fPAMMPs (fPAMMP@DNA) could be effectively detected by both normal and quantitative PCR amplifications. Finally, we showed that NaBH4 treatment removed autofluorescence in fPAMMPs (PAMMPs), which could also be applied to DNA extraction and PCR detection. In conclusion, we here fabricated new kinds of fPAMMPs and PAMMPs, developed a new rapid DNA extraction method, and demonstrated their useful applications in PCR detection.
Collapse
Affiliation(s)
- Jun Wang
- State
Key Laboratory of Bioelectronics, Southeast
University, Nanjing 210096, China
| | - Shuyan Zhang
- State
Key Laboratory of Bioelectronics, Southeast
University, Nanjing 210096, China
| | - Xinhui Xu
- State
Key Laboratory of Bioelectronics, Southeast
University, Nanjing 210096, China
| | - Yujun Xing
- Institute
of Food Quality Safety and Nutrition, Jiangsu
Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zongru Li
- Department
of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston 60208-3109, Illinois, United States
| | - Jinke Wang
- State
Key Laboratory of Bioelectronics, Southeast
University, Nanjing 210096, China
| |
Collapse
|
6
|
Mayboroda O, Katakis I, O'Sullivan CK. Multiplexed isothermal nucleic acid amplification. Anal Biochem 2018; 545:20-30. [PMID: 29353064 DOI: 10.1016/j.ab.2018.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Multiplexed isothermal amplification and detection of nucleic acid sequences and biomarkers is of increasing importance in diverse areas including advanced diagnostics, food quality control and environmental monitoring. Whilst there are several very elegant isothermal amplification approaches, multiplexed amplification remains a challenge, requiring careful experimental design and optimisation, from judicious primer design in order to avoid the formation of primer dimers and non-specific amplification, applied temperature as well as the ratio and concentration of primers. In this review, we describe the various approaches that have been reported to date for multiplexed isothermal amplification, for both "one-pot" multiplexing as well as parallelised multiplexing using loop-mediated isothermal amplification, strand-displacement amplification, helicase-dependent amplification, rolling circle amplification, nucleic acid sequence-based amplification, with a particular focus on recombinase polymerase amplification.
Collapse
Affiliation(s)
- Olena Mayboroda
- Interfibio Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Ioanis Katakis
- Interfibio Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain.
| | - Ciara K O'Sullivan
- Interfibio Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
7
|
Jung S, Kim J, Kim J, Yang SH, Kim SK. Extensible multiplex real-time PCR for rapid bacterial identification with carbon nanotube composite microparticles. Biosens Bioelectron 2017; 94:256-262. [PMID: 28285204 DOI: 10.1016/j.bios.2017.02.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/14/2017] [Accepted: 02/28/2017] [Indexed: 01/08/2023]
Abstract
The early diagnosis of pathogenic bacteria is significant for bacterial identification and antibiotic resistance. Implementing rapid, sensitive, and specific detection, molecular diagnosis has been considered complementary to the conventional bacterial culture. Composite microparticles of a primer-immobilized network (cPIN) are developed for multiplex detection of pathogenic bacteria with real-time polymerase chain reaction (qPCR). A pair of specific primers are incorporated and stably conserved in a cPIN particle. One primer is crosslinked to the polymer network, and the other is bound to carbon nanotubes (CNTs) in the particle. At the initiation of qPCR, the latter primer is released from the CNTs and participates in the amplification. The amplification efficiency of this cPIN qPCR is estimated at more than 90% with suppressed non-specific signals from complex samples. In multiplexing, four infective pathogens are successfully discriminated using this cPIN qPCR. Multiplex qPCR conforms with the corresponding singleplex assays, proving independent amplification in each particle. Four bacterial targets from clinical samples are differentially analyzed in 30min of a single qPCR trial with multiple cPIN particles.
Collapse
Affiliation(s)
- Seungwon Jung
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jungmin Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Chemical & Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Junsun Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Chemical & Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang Hwa Yang
- MD Healthcare Co., Ltd., Seoul 03923, Republic of Korea
| | - Sang Kyung Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
8
|
Damin F, Galbiati S, Ferrari M, Chiari M. DNA microarray-based solid-phase PCR on copoly (DMA-NAS-MAPS) silicon coated slides: An example of relevant clinical application. Biosens Bioelectron 2015; 78:367-373. [PMID: 26655175 DOI: 10.1016/j.bios.2015.11.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
In a previous study we developed a highly sensitive DNA microarray for the detection of common KRAS oncogenic mutations, which has been proven to be highly specific in assigning the correct genotype without any enrichment strategy even in the presence of minority mutated alleles. However, in this approach, the need of a spotter for the deposition of the purified PCR products on the substrates and the purification step of the conventional PCR are serious drawbacks. To overcome these limitations we have introduced the solid-phase polymerase chain reaction (SP-PCR) to form the array of PCR products starting from the oligonucleotide primers. This work was possible thanks to the great thermal stability of the copoly (DMA-NAS-MAPS) coating which withstands PCR thermal cycling temperatures. As an example of the application of this platform we performed the analysis of six common mutations in the codon 12 of KRAS gene (G12A, G12C, G12D, G12R, G12S, and G12V). In conclusion solid-phase PCR, combined with dual-color hybridization, allows mutation analysis in a shorter time span and is more suitable for automation.
Collapse
Affiliation(s)
- Francesco Damin
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco, 9, 20131 Milano, Italy.
| | - Silvia Galbiati
- Unit of Genomic for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maurizio Ferrari
- Unit of Genomic for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Laboratory of Clinical Molecular Biology, IRCCS Ospedale San Raffaele, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Marcella Chiari
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| |
Collapse
|
9
|
|
10
|
Rödiger S, Liebsch C, Schmidt C, Lehmann W, Resch-Genger U, Schedler U, Schierack P. Nucleic acid detection based on the use of microbeads: a review. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1243-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
del Río JS, Yehia Adly N, Acero-Sánchez JL, Henry OY, O'Sullivan CK. Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification. Biosens Bioelectron 2014; 54:674-8. [DOI: 10.1016/j.bios.2013.11.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/02/2013] [Accepted: 11/08/2013] [Indexed: 11/15/2022]
|
12
|
Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Mikrochim Acta 2014; 181:1715-1723. [PMID: 25253912 PMCID: PMC4167443 DOI: 10.1007/s00604-014-1198-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/30/2014] [Indexed: 12/24/2022]
Abstract
We report on the development of an on-chip RPA (recombinase polymerase amplification) with simultaneous multiplex isothermal amplification and detection on a solid surface. The isothermal RPA was applied to amplify specific target sequences from the pathogens Neisseria gonorrhoeae, Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) using genomic DNA. Additionally, a positive plasmid control was established as an internal control. The four targets were amplified simultaneously in a quadruplex reaction. The amplicon is labeled during on-chip RPA by reverse oligonucleotide primers coupled to a fluorophore. Both amplification and spatially resolved signal generation take place on immobilized forward primers bount to expoxy-silanized glass surfaces in a pump-driven hybridization chamber. The combination of microarray technology and sensitive isothermal nucleic acid amplification at 38 °C allows for a multiparameter analysis on a rather small area. The on-chip RPA was characterized in terms of reaction time, sensitivity and inhibitory conditions. A successful enzymatic reaction is completed in <20 min and results in detection limits of 10 colony-forming units for methicillin-resistant Staphylococcus aureus and Salmonella enterica and 100 colony-forming units for Neisseria gonorrhoeae. The results show this method to be useful with respect to point-of-care testing and to enable simplified and miniaturized nucleic acid-based diagnostics. The combination of multiplex isothermal nucleic acid amplification with RPA and spatially-resolved signal generation on specific immobilized oligonucleotides ![]()
Collapse
Affiliation(s)
- Sebastian Kersting
- Fraunhofer Institute for Biomedical Engineering IBMT, Branch Potsdam, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
| | - Valentina Rausch
- Fraunhofer Institute for Biomedical Engineering IBMT, Branch Potsdam, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany
| | - Frank F. Bier
- Fraunhofer Institute for Biomedical Engineering IBMT, Branch Potsdam, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
| | - Markus von Nickisch-Rosenegk
- Fraunhofer Institute for Biomedical Engineering IBMT, Branch Potsdam, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany
| |
Collapse
|
13
|
Khodakov DA, Ellis AV. Recent developments in nucleic acid identification using solid-phase enzymatic assays. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1167-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Patterson AS, Hsieh K, Soh HT, Plaxco KW. Electrochemical real-time nucleic acid amplification: towards point-of-care quantification of pathogens. Trends Biotechnol 2013; 31:704-12. [DOI: 10.1016/j.tibtech.2013.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/18/2013] [Accepted: 09/25/2013] [Indexed: 01/03/2023]
|
15
|
Chen JY, Xu H, Shi P, Culbertson A, Meslin EM. Ethics and Privacy Considerations for Systems Biology Applications in Predictive and Personalized Medicine. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Integrative analysis and modeling of the omics data using systems biology have led to growing interests in the development of predictive and personalized medicine. Personalized medicine enables future physicians to prescribe the right drug to the right patient at the right dosage, by helping them link each patient’s genotype to their specific disease conditions. This chapter shares technological, ethical, and social perspectives on emerging personalized medicine applications. First, it examines the history and research trends of pharmacogenomics, systems biology, and personalized medicine. Next, it presents bioethical concerns that arise from dealing with the increasing accumulation of biological samples in many biobanking projects today. Lastly, the chapter describes growing concerns over patient privacy when large amount of individuals’ genetic data and clinical data are managed electronically and accessible online.
Collapse
Affiliation(s)
- Jake Y. Chen
- Indiana Center for Systems Biology and Personalized Medicine, USA, Indiana University, USA & Purdue University, USA
| | - Heng Xu
- The Pennsylvania State University, USA
| | - Pan Shi
- The Pennsylvania State University, USA
| | | | - Eric M. Meslin
- Indiana University Center for Bioethics, USA & Indiana University, USA
| |
Collapse
|
16
|
Massively parallel sequencing of enriched target amplicons for high-resolution genotyping of Salmonella serovars. Mol Cell Probes 2013. [DOI: 10.1016/j.mcp.2012.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Profiling in situ microbial community structure with an amplification microarray. Appl Environ Microbiol 2012; 79:799-807. [PMID: 23160129 DOI: 10.1128/aem.02664-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO(3)(-)) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO(3), but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications.
Collapse
|
18
|
Chandler DP, Bryant L, Griesemer SB, Gu R, Knickerbocker C, Kukhtin A, Parker J, Zimmerman C, George KS, Cooney CG. Integrated Amplification Microarrays for Infectious Disease Diagnostics. MICROARRAYS 2012; 1:107-24. [PMID: 27605339 PMCID: PMC5003434 DOI: 10.3390/microarrays1030107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/31/2012] [Accepted: 11/07/2012] [Indexed: 11/17/2022]
Abstract
This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.
Collapse
Affiliation(s)
- Darrell P Chandler
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Lexi Bryant
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Sara B Griesemer
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | - Rui Gu
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | | | - Alexander Kukhtin
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Jennifer Parker
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Cynthia Zimmerman
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Kirsten St George
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | - Christopher G Cooney
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| |
Collapse
|
19
|
Multilocus sequence typing of Salmonella strains by high-throughput sequencing of selectively amplified target genes. J Microbiol Methods 2011; 88:127-33. [PMID: 22108494 DOI: 10.1016/j.mimet.2011.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 11/01/2011] [Accepted: 11/01/2011] [Indexed: 11/20/2022]
Abstract
Rapid development of next generation sequencing (NGS) technologies in recent years has made whole genome sequencing of bacterial genomes widely accessible. However, it is often unnecessary or not feasible to sequence the whole genome for most applications of genetic analyses in bacteria. Selectively capturing defined genomic regions followed by NGS analysis could be a promising approach for high-resolution molecular typing of a large set of strains. In this study, we describe a novel and straightforward PCR-based target-capturing method, hairpin-primed multiplex amplification (HPMA), which allows for simultaneous amplification of numerous target genes. To test the feasibility of NGS-based strain typing using HPMA, 20 target gene sequences were simultaneously amplified with barcode tagging in each of 41 Salmonella strains. The amplicons were then pooled and analyzed by 454 pyrosequencing. Analysis of the sequence data, as an extension of multilocus sequence typing (MLST), demonstrated the utility and potential of this novel typing method, MLST-seq, as a high-resolution strain typing method. With the rapidly increasing sequencing capacity of NGS, MLST-seq or its variations using different target enrichment methods can be expected to become a high-resolution typing method in the near future for high-throughput analysis of a large collection of bacterial strains.
Collapse
|
20
|
Svensen N, Díaz-Mochón JJ, Bradley M. Microarray generation of thousand-member oligonucleotide libraries. PLoS One 2011; 6:e24906. [PMID: 21966380 PMCID: PMC3179494 DOI: 10.1371/journal.pone.0024906] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/19/2011] [Indexed: 01/23/2023] Open
Abstract
The ability to efficiently and economically generate libraries of defined pieces of DNA would have a myriad of applications, not least in the area of defined or directed sequencing and synthetic biology, but also in applications associated with encoding and tagging. In this manuscript DNA microarrays were used to allow the linear amplification of immobilized DNA sequences from the array followed by PCR amplification. Arrays of increasing sophistication (1, 10, 3,875, 10,000 defined sequences) were used to validate the process, with sequences verified by selective hybridization to a complementary DNA microarray and DNA sequencing, which demonstrated a PCR error rate of 9.7×10−3/site/duplication. This technique offers an economical and efficient way of producing specific DNA libraries of hundreds to thousands of members with the DNA-arrays being used as “factories” allowing specific DNA oligonucleotide pools to be generated. We also found substantial variance observed between the sequence frequencies found via Solexa sequencing and microarray analysis, highlighting the care needed in the interpretation of profiling data.
Collapse
Affiliation(s)
- Nina Svensen
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Mark Bradley
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Sun Y, Dhumpa R, Bang DD, Høgberg J, Handberg K, Wolff A. A lab-on-a-chip device for rapid identification of avian influenza viral RNA by solid-phase PCR. LAB ON A CHIP 2011; 11:1457-63. [PMID: 21369571 DOI: 10.1039/c0lc00528b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The endemic of Avian Influenza Virus (AIV) in Asia and epizootics in some European regions have caused serious economic losses. Multiplex reverse-transcriptase (RT) PCR has been developed to detect and subtype AIV. However, the number of targets that can be amplified in a single run is limited because of uncontrollable primer-primer interferences. In this paper, we describe a lab-on-a-chip device for fast AIV screening by integrating DNA microarray-based solid-phase PCR on a microfluidic chip. A simple UV cross-linking method was used to immobilize the DNA probes on unmodified glass surface, which makes it convenient to integrate microarray with microfluidics. This solid-phase RT-PCR method combined RT amplification of extracted RNA in the liquid phase and species-specific nested PCR on the solid phase. Using the developed approach, AIV viruses and their subtypes were unambiguously identified by the distinct patterns of amplification products. The whole process was reduced to less than 1 hour and the sample volume used in the microfluidic chip was at least 10 times less than in the literature. By spatially separating the primers, highly multiplexed amplification can be performed in solid-phase PCR. Moreover, multiplex PCR and sequence detection were done in one step, which greatly simplified the assay and reduced the processing time. Furthermore, by incorporating the microarray into a microchamber-based PCR chip, the sample and the reagent consumption were greatly reduced, and the problems of bubble formation and solution evaporation were effectively prevented. This microarray-based PCR microchip can be widely employed for virus detection and effective surveillance in wild avian and in poultry productions.
Collapse
Affiliation(s)
- Yi Sun
- DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), Kgs Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
22
|
Sun Y, Dhumpa R, Bang DD, Handberg K, Wolff A. DNA microarray-based solid-phase RT-PCR for rapid detection and identification of influenza virus type A and subtypes H5 and H7. Diagn Microbiol Infect Dis 2011; 69:432-9. [DOI: 10.1016/j.diagmicrobio.2010.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/04/2010] [Accepted: 11/12/2010] [Indexed: 10/18/2022]
|
23
|
Chetverina EV, Chetverin AB. Nanocolonies and diagnostics of oncological diseases associated with chromosomal translocations. BIOCHEMISTRY (MOSCOW) 2011; 75:1667-91. [DOI: 10.1134/s0006297910130109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Won BY, Shin S, Baek S, Jung YL, Li T, Shin SC, Cho DY, Lee SB, Park HG. Investigation of the signaling mechanism and verification of the performance of an electrochemical real-time PCR system based on the interaction of methylene blue with DNA. Analyst 2011; 136:1573-9. [DOI: 10.1039/c0an00695e] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Park DJ. Enhanced solid phase PCR for increased loading of amplicon onto solid support. Methods Mol Biol 2011; 687:257-64. [PMID: 20967614 DOI: 10.1007/978-1-60761-944-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The loading of amplicons onto solid supports such as beads during multiplex PCR or emulsion PCR conventionally has been performed by use of Solid Phase PCR or asymmetric Solid Phase PCR. These approaches are restrictive with respect to amplification efficiency and degree of amplicon loading. This chapter details Enhanced Solid Phase PCR principles and methodologies to enable higher amplicon -loading in the context of uncompromised amplification efficiency.
Collapse
Affiliation(s)
- Daniel J Park
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
26
|
Stirling D, Stear MJ. g you The direct determination of haplotypes from extended regions of genomic DNA. BMC Genomics 2010; 11:223. [PMID: 20370899 PMCID: PMC2996965 DOI: 10.1186/1471-2164-11-223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 04/06/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND One of the major obstacles to the exploitation of genetic variation in human medicine, veterinary medicine, and animal breeding is the difficulty in defining haplotypes in unrelated individuals. RESULTS We have developed a Multiplex Double Amplification Refractory Mutation System combined with Solid Phase PCR on Fluorescently labelled beads. The process is inherently amenable to automation. It provides a high degree of internal Quality Control, as each PCR product is represented in duplicate on the bead array, and each SNP is tested against multiple partners. This technique can resolve very complex genotypes into their constituent haplotypes; it defined all the alleles at 60 SNP in exon 2 of the ovine DRB1 MHC locus in a sample of 109 rams. These 60 SNP formed 33 DRB1 exon 2 alleles; two of which had not been previously identified; although both of them have been independently confirmed. CONCLUSION This technique has the same resolution as allele specific sequencing. Sequencing has the advantage of identifying novel polymorphic sites but where all SNP sites have been identified this novel procedure can resolve all alleles and haplotypes and identify novel combinations of polymorphisms. This method is similar in price to direct sequencing and provides a low cost system for direct haplotyping of extended DNA sequences.
Collapse
Affiliation(s)
- David Stirling
- Department of Haematology, Royal Infirmary of Edinburgh, Little France Crescent, Edinburgh EH16 4SA, UK
| | - Michael J Stear
- Division of Animal Production and Public Health, Faculty of Veterinary Medicine, Glasgow University, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
27
|
Palanisamy R, Connolly AR, Trau M. Considerations of Solid-Phase DNA Amplification. Bioconjug Chem 2010; 21:690-5. [DOI: 10.1021/bc900491s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ramkumar Palanisamy
- Centre for Biomarker Research and Development, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane Qld-4072, Australia
| | - Ashley R. Connolly
- Centre for Biomarker Research and Development, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane Qld-4072, Australia
| | - Matt Trau
- Centre for Biomarker Research and Development, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane Qld-4072, Australia
| |
Collapse
|
28
|
Deféver T, Druet M, Rochelet-Dequaire M, Joannes M, Grossiord C, Limoges B, Marchal D. Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis. J Am Chem Soc 2009; 131:11433-41. [PMID: 19722651 DOI: 10.1021/ja901368m] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We described the proof-of-principle of a nonoptical real-time PCR that uses cyclic voltammetry for indirectly monitoring the amplified DNA product generated in the PCR reaction solution after each PCR cycle. To enable indirect measurement of the amplicon produced throughout PCR, we monitor electrochemically the progressive consumption (i.e., the decrease of concentration) of free electroactive deoxynucleoside triphosphates (dNTPs) used for DNA synthesis. This is accomplished by exploiting the fast catalytic oxidation of native deoxyguanosine triphosphate (dGTP) or its unnatural analogue 7-deaza-dGTP by the one-electron redox catalysts Ru(bpy)(3)(3+) (with bpy = 2,2'-bipyridine) or Os(bpy)(3)(3+) generated at an electrode. To demonstrate the feasibility of the method, a disposable array of eight miniaturized self-contained electrochemical cells (working volume of 50 microL) has been developed and implemented in a classical programmable thermal cycler and then tested with the PCR amplification of two illustrated examples of real-world biological target DNA sequences (i.e., a relatively long 2300-bp sequence from the bacterial genome of multidrug-resistant Achromobacter xylosoxidans and a shorter 283-bp target from the human cytomegalovirus). Although the method works with both mediator/base couples, the catalytic peak current responses recorded with the Ru(bpy)(3)(3+)/dGTP couple under real-time PCR conditions are significantly affected by a continuous current drift and interference with the background solvent discharge, thus leading to poorly reproducible data. Much more reproducible and reliable results are finally obtained with the Os(bpy)(3)(3+)/7-deaza-dGTP, a result that is attributed to the much lower anodic potential at which the catalytic oxidation of 7-deaza-dGTP by Os(bpy)(3)(3+) is detected. Under these conditions, an exponential decrease of the catalytic signal as a function of the number of PCR cycles is obtained, allowing definition of a cycle threshold value (C(t)) that correlates inversely with the initial amount of target DNA. A semilogarithmic plot of C(t) with the initial copy number of target DNA gives a standard linear curve similar to that obtained with fluorescent-based real-time PCR. Although the detection limit (10(3) molecules of target DNA in 50 microL) and sensitivity of the electrochemical method is not as high as conventional optical-based real-time PCR, the methodology described here offers many of the advantages of real-time PCR, such as a high dynamic range (over 8-log(10)) and speed, high amplification efficiency (close to 2), and the elimination of post-PCR processing. The method also has the advantage of being very simple, just requiring the use of low-cost single-use electrodes and the addition of a minute amount of redox catalyst into the PCR mixture. Moreover, compared to the other recently developed electrochemical real-time PCR based on solid-phase amplification, the present approach does not require electrode functionalization by a DNA probe. Finally, on account of the relative insensitivity of electrochemical methods to downscaling, the detection scheme is quite promising for use in miniaturized devices and in the development of point-of-care diagnosis applications.
Collapse
Affiliation(s)
- Thibaut Deféver
- Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, UMR CNRS 7591, 75205 Paris Cedex 13, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Drobyshev AL, Nasedkina TV, Zakharova NV. The role of DNA diffusion in solid phase polymerase chain reaction with gel-immobilized primers in planar and capillary microarray format. BIOMICROFLUIDICS 2009; 3:44112. [PMID: 20216974 PMCID: PMC2835292 DOI: 10.1063/1.3271461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 11/13/2009] [Indexed: 05/11/2023]
Abstract
The solid phase polymerase chain reaction (PCR) on a gel-based microarray system was studied under various durations of individual stages of the PCR cycle and spatial restriction of the reaction volume. Combining the experimental study with numerical modeling, we demonstrated that the diffusion of the PCR product in and out of a microarray element during the annealing and melting stages, respectively, is the main factor responsible for distinctive features of the studied type of PCR. The restriction of reaction volume leads to faster PCR signal growth. Particularly, the capillary array, whereby gel-based microarray elements are located on a glass bar inserted into capillary chamber, was found to be a suitable format for the development of the platform.
Collapse
|
30
|
Tang J, Xiao P. Polymerizing immobilization of acrylamide-modified nucleic acids and its application. Biosens Bioelectron 2009; 24:1817-24. [DOI: 10.1016/j.bios.2008.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 11/29/2022]
|
31
|
Chetverina HV, Chetverin AB. Nanocolonies: Detection, cloning, and analysis of individual molecules. BIOCHEMISTRY (MOSCOW) 2009; 73:1361-87. [DOI: 10.1134/s0006297908130014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Huang H, Xiao P, Qi Z, Bu Y, Liu W, Zhou G. A gel-based solid-phase amplification and its application for SNP typing and sequencing on-chip. Analyst 2009; 134:2434-40. [DOI: 10.1039/b915121d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Ollikka P, Ylikoski A, Kaatrasalo A, Harvala H, Hakala H, Hovinen J. Minisequencing with acyclonucleoside triphosphates tethered to lanthanide(III) chelates. Bioconjug Chem 2008; 19:1269-73. [PMID: 18505280 DOI: 10.1021/bc800081n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four acyclic nucleoside triphosphates (derivatives of cytosine, thymine, 7-deazaadenine, and 7-deazaguanine) labeled with nonluminescent europium, terbium, dysprosium, and samarium chelates of 2,2',2'',2'''-[[4-(4-isothiocyanatophenyl)ethyl]pyridine-2,6-diyl]bis(methylenenitrilo)]tetrakis(acetic acid) were applied to minisequencing using two mutations (Delta F 508 and 1717-1 G to A) of cystic fibrosis as a model system. When synthetic targets were used, all four alleles involved could be analyzed in a single reaction using four terminating substrates labeled with four different lanthanide(III) chelates and DELFIA technology for detection. Blood spot samples without DNA isolations were used for PCR amplification and genotyping the target mutations by minisequencing. The single- and dual-labeled minisequencing assays were robust, while the four-label assay still requires further optimization of the multiplexed PCR amplification.
Collapse
Affiliation(s)
- Pia Ollikka
- PerkinElmer Life and Analytical Sciences, Turku Site, POB 10, FI-20101 Turku, Finland
| | | | | | | | | | | |
Collapse
|
34
|
Zhou D, Zhang R, Fang R, Cheng L, Xiao P, Lu Z. Methylation pattern analysis using high-throughput microarray of solid-phase hyperbranched rolling circle amplification products. Electrophoresis 2008; 29:626-33. [PMID: 18228535 DOI: 10.1002/elps.200700375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monitoring the methylation pattern of a single tumor cell might be important in understanding the mechanism of tumor initiation and progression. In this study, we developed a method based on molecular cloning microarray strategy for analyzing methylation patterns of a single DNA fragment from a group of tumor cells. In the method, a microarray of single monoclones of bisulfate-treated PCR products was fabricated by two-primer hyperbranched rolling circle amplification (HRCA) in polyacrylamide gel, in which a library of the bisulfate-treated PCR products with different methylated status from tumor cells were ligated to circle molecules to form HRCA templates, and one of the HRCA primers was modified with acrylamide on its 5'-end. Due to the diffusion retardation of HRCA products in a polyacrylamide matrix, the HRCA products are localized near their respective templates, and formed to a microarray of monoclones. After the nonimmobilized strands were removed, three pairs of probes were used to detect different CpG sites of each clone simultaneously by hybridization. We successfully analyzed the methylation patterns of P16 gene for three cases of stomach tumor tissues. This method could provide a significant tool in detecting the distribution of cells with different methylation patterns in one tumor tissue.
Collapse
Affiliation(s)
- Dongrui Zhou
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, P R China
| | | | | | | | | | | |
Collapse
|
35
|
Khan Z, Poetter K, Park DJ. Enhanced solid phase PCR: mechanisms to increase priming by solid support primers. Anal Biochem 2008; 375:391-3. [PMID: 18267099 DOI: 10.1016/j.ab.2008.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/15/2008] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
Abstract
Conventional solid phase amplification regimens such as solid phase PCR (SP-PCR), asymmetric SP-PCR, and bridge PCR are mechanistically limited with respect to amplification efficiency and solid support primer involvement. Here we present enhanced solid phase PCR (ESP-PCR) in which solid support primer priming is facilitated by its nesting and high melting temperature (T(m)) relative to the aqueous counterpart. In the study, we demonstrated increased solid support surface loading using ESP-PCR versus standard SP-PCR for three diagnostic targets: Neisseria gonorrhoeaeopa (9.89-fold), N. gonorrhoeae pilS (2.14-fold), and Chlamydia trachomatis cryptic plasmid orf3 (1.41-fold). Furthermore, we applied ESP-PCR to detect five copies of N. gonorrhoeae and C. trachomatis DNA.
Collapse
Affiliation(s)
- Zaheer Khan
- Genera Biosystems, Walter and Eliza Hall Institute Biotechnology Centre, Bundoora, Victoria 3083, Australia
| | | | | |
Collapse
|
36
|
Chetverin AB, Chetverina HV. Molecular Colony Technique: A New Tool for Biomedical Research and Clinical Practice. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2008; 82:219-55. [DOI: 10.1016/s0079-6603(08)00007-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Abstract
Single nucleotide polymorphisms (SNPs) are the most frequently occurring genetic variation in the human genome, with the total number of SNPs reported in public SNP databases currently exceeding 9 million. SNPs are important markers in many studies that link sequence variations to phenotypic changes; such studies are expected to advance the understanding of human physiology and elucidate the molecular bases of diseases. For this reason, over the past several years a great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis, yielding a large number of distinct approaches. This article presents a review of SNP genotyping techniques and examines their principles of genotype determination in terms of allele differentiation strategies and detection methods. Further, several current biomedical applications of SNP genotyping are discussed.
Collapse
Affiliation(s)
- Sobin Kim
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
38
|
Meuzelaar LS, Lancaster O, Pasche JP, Kopal G, Brookes AJ. MegaPlex PCR: a strategy for multiplex amplification. Nat Methods 2007; 4:835-7. [PMID: 17873887 DOI: 10.1038/nmeth1091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 08/23/2007] [Indexed: 11/08/2022]
Abstract
'MegaPlex PCR' is a robust technology for highly multiplexed amplification of specific DNA sequences. It uses target-specific pairs of PCR primers that are physically separated by surface immobilization. Initial surface-based amplification cycles are then coupled to efficient solution-phase PCR using one common primer pair. We demonstrate this method by co-amplifying and genotyping 75 unselected human single-nucleotide polymorphism (SNP) loci.
Collapse
|
39
|
Kinoshita K, Fujimoto K, Yakabe T, Saito S, Hamaguchi Y, Kikuchi T, Nonaka K, Murata S, Masuda D, Takada W, Funaoka S, Arai S, Nakanishi H, Yokoyama K, Fujiwara K, Matsubara K. Multiple primer extension by DNA polymerase on a novel plastic DNA array coated with a biocompatible polymer. Nucleic Acids Res 2006; 35:e3. [PMID: 17135189 PMCID: PMC1747182 DOI: 10.1093/nar/gkl939] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 10/01/2006] [Accepted: 10/16/2006] [Indexed: 11/14/2022] Open
Abstract
DNA microarrays are routinely used to monitor gene expression profiling and single nucleotide polymorphisms (SNPs). However, for practically useful high performance, the detection sensitivity is still not adequate, leaving low expression genes undetected. To resolve this issue, we have developed a new plastic S-BIO PrimeSurface with a biocompatible polymer; its surface chemistry offers an extraordinarily stable thermal property for a lack of pre-activated glass slide surface. The oligonucleotides immobilized on this substrate are robust in boiling water and show no significant loss of hybridization activity during dissociation treatment. This allowed us to hybridize the templates, extend the 3' end of the immobilized DNA primers on the S-Bio by DNA polymerase using deoxynucleotidyl triphosphates (dNTP) as extender units, release the templates by denaturalization and use the same templates for a second round of reactions similar to that of the PCR method. By repeating this cycle, the picomolar concentration range of the template oligonucleotide can be detected as stable signals via the incorporation of labeled dUTP into primers. This method of Multiple Primer EXtension (MPEX) could be further extended as an alternative route for producing DNA microarrays for SNP analyses via simple template preparation such as reverse transcript cDNA or restriction enzyme treatment of genome DNA.
Collapse
Affiliation(s)
- Kenji Kinoshita
- Sumitomo Bakelite Co., Ltd. 1-1-5 Muroya, Nishi-ku, Kobe 651-2241, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Recent developments in highly parallel genome-wide assays are transforming the study of human health and disease. High-resolution whole-genome association studies of complex diseases are finally being undertaken after much hypothesizing about their merit for finding disease loci. The availability of inexpensive high-density SNP-genotyping arrays has made this feasible. Cancer biology will also be transformed by high-resolution genomic and epigenomic analysis. In the future, most cancers might be staged by high-resolution molecular profiling rather than by gross cytological analysis. Here, we describe the key developments that enable highly parallel genomic assays.
Collapse
Affiliation(s)
- Jian-Bing Fan
- Illumina Inc., 9885 Towne Centre Drive, San Diego, California 92121, USA
| | | | | |
Collapse
|
41
|
Abstract
Insects comprise the largest species composition in the entire animal kingdom and possess a vast undiscovered genetic diversity and gene pool that can be better explored using molecular marker techniques. Current trends of application of DNA marker techniques in diverse domains of insect ecological studies show that mitochondrial DNA (mtDNA), microsatellites, random amplified polymorphic DNA (RAPD), expressed sequence tags (EST) and amplified fragment length polymorphism (AFLP) markers have contributed significantly for progresses towards understanding genetic basis of insect diversity and for mapping medically and agriculturally important genes and quantitative trait loci in insect pests. Apart from these popular marker systems, other novel approaches including transposon display, sequence-specific amplification polymorphism (S-SAP), repeat-associated polymerase chain reaction (PCR) markers have been identified as alternate marker systems in insect studies. Besides, whole genome microarray and single nucleotide polymorphism (SNP) assays are becoming more popular to screen genome-wide polymorphisms in fast and cost effective manner. However, use of such methodologies has not gained widespread popularity in entomological studies. The current study highlights the recent trends of applications of molecular markers in insect studies and explores the technological advancements in molecular marker tools and modern high throughput genotyping methodologies that may be applied in entomological researches for better understanding of insect ecology at molecular level.
Collapse
Affiliation(s)
- Susanta K Behura
- Department of Entomology, 505 S Goodwin Avenue, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
42
|
Gilbride KA, Lee DY, Beaudette LA. Molecular techniques in wastewater: Understanding microbial communities, detecting pathogens, and real-time process control. J Microbiol Methods 2006; 66:1-20. [PMID: 16635533 DOI: 10.1016/j.mimet.2006.02.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 01/30/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
Traditionally, the detection of pathogens in water, wastewater, and other environmental samples is restricted by the ability to culture such organisms from complex environmental samples. During the last decade the use of molecular methods have supplied the means for examining microbial diversity and detecting specific organisms without the need for cultivation. The application of molecular techniques to the study of natural and engineered environmental systems has increased our insight into the vast diversity and interaction of microorganisms present in complex environments. In this paper, we will review the current and emerging molecular approaches for characterizing microbial community composition and structure in wastewater processes. Recent studies show that advances in microarray assays are increasing our capability of detecting hundreds and even thousands of DNA sequences simultaneously and rapidly. With the current progress in microfluidics and optoelectronics, the ability to automate a detection/identification system is now being realized. The status of such a system for wastewater monitoring is discussed.
Collapse
Affiliation(s)
- K A Gilbride
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St. Toronto, ON, Canada M4B 2K3.
| | | | | |
Collapse
|
43
|
Abstract
We have developed a highly sensitive method for DNA analysis on 3D gel element microarrays, a technique we call multiplex microarray-enhanced PCR (MME-PCR). Two amplification strategies are carried out simultaneously in the reaction chamber: on or within gel elements, and in bulk solution over the gel element array. MME-PCR is initiated by multiple complex primers containing gene-specific, forward and reverse, sequences appended to the 3′ end of a universal amplification primer. The complex primer pair is covalently tethered through its 5′ end to the polyacryl- amide backbone. In the bulk solution above the gel element array, a single pair of unattached universal primers simultaneously directs pseudo-monoplex PCR of all targets according to normal solution-phase PCR. The presence of a single universal PCR primer pair in solution accelerates amplification within gel elements and eliminates the problem of primer interference that is common to conventional multiplex PCR. We show 106-fold amplification of targeted DNA after 50 cycles with average amplification efficiency 1.34 per cycle, and demonstrate specific on-chip amplification of six genes in Bacillus subtilis. All six genes were detected at 4.5 pg of bacterial genomic DNA (equivalent to 103 genomes) in 60 independent amplification reactions performed simultaneously in single reaction chamber.
Collapse
Affiliation(s)
| | | | | | - S. Bavykin
- To whom correspondence should be addressed. Tel: +1 630 252 3980; Fax: +1 630 252 9155;
| |
Collapse
|
44
|
Shapero MH, Zhang J, Loraine A, Liu W, Di X, Liu G, Jones KW. MARA: a novel approach for highly multiplexed locus-specific SNP genotyping using high-density DNA oligonucleotide arrays. Nucleic Acids Res 2004; 32:e181. [PMID: 15601992 PMCID: PMC545476 DOI: 10.1093/nar/gnh178] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 11/10/2004] [Accepted: 11/24/2004] [Indexed: 11/12/2022] Open
Abstract
We have developed a locus-specific DNA target preparation method for highly multiplexed single nucleotide polymorphism (SNP) genotyping called MARA (Multiplexed Anchored Runoff Amplification). The approach uses a single primer per SNP in conjunction with restriction enzyme digested, adapter-ligated human genomic DNA. Each primer is composed of common sequence at the 5' end followed by locus-specific sequence at the 3' end. Following a primary reaction in which locus-specific products are generated, a secondary universal amplification is carried out using a generic primer pair corresponding to the oligonucleotide and genomic DNA adapter sequences. Allele discrimination is achieved by hybridization to high-density DNA oligonucleotide arrays. Initial multiplex reactions containing either 250 primers or 750 primers across nine DNA samples demonstrated an average sample call rate of approximately 95% for 250- and 750-plex MARA. We have also evaluated >1000- and 4000-primer plex MARA to genotype SNPs from human chromosome 21. We have identified a subset of SNPs corresponding to a primer conversion rate of approximately 75%, which show an average call rate over 95% and concordance >99% across seven DNA samples. Thus, MARA may potentially improve the throughput of SNP genotyping when coupled with allele discrimination on high-density arrays by allowing levels of multiplexing during target generation that far exceed the capacity of traditional multiplex PCR.
Collapse
Affiliation(s)
- Michael H Shapero
- Affymetrix, Inc., Genotyping Research, 3380 Central Expressway, Santa Clara, CA 95051, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Integration of DNA isolation, amplification, and sequencing can be achieved by the use of polymerase colonies (polonies) and cycles of fluorescent dNTP incorporation. In this paper, we present four advances that bring us closer to sequencing genomes cost-effectively using the polony technology. First, a polymerase trapping technique enables efficient nucleotide extension by DNA polymerase in a polyacrylamide matrix and eliminates loss of enzyme during sequencing cycles. Next, we present two novel types of reversibly dye-labeled nucleotide analogues, show that DNA polymerase can incorporate these analogues, and demonstrate that the dyes can be removed by thiol reduction or light exposure. Using these nucleotides, we have sequenced multiple polonies in parallel. In addition, we have found that a high density of polonies can be achieved with minimal overlap between adjacent polonies by limiting the concentration of free primer in the polony amplification reactions. Finally, we have developed software for automated image alignment and sequence calling.
Collapse
Affiliation(s)
- Robi D Mitra
- Lipper Center for Computational Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
46
|
Di Giusto D, King GC. Single base extension (SBE) with proofreading polymerases and phosphorothioate primers: improved fidelity in single-substrate assays. Nucleic Acids Res 2003; 31:e7. [PMID: 12560510 PMCID: PMC149219 DOI: 10.1093/nar/gng007] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Model single base extension (SBE) genotyping reactions with individual deoxy-, dideoxy- and acyclonucleoside triphosphates are monitored by MALDI-TOF mass spectrometry. Three non-proofreading DNA polymerases display remarkably high misincorporation (up to 64% of correct incorporation) when extending primers with single substrates at saturating concentrations. Introduction of one phosphorothioate (PS) linkage into the primer 3' terminus reduces misincorporation by these enzymes an average 1.4-fold (range 0- to 3.5-fold) versus correct incorporation. Combined use of 3'-PS primers with strongly proofreading DNA polymerases yields order of magnitude improvements in SBE fidelity over those produced by the equivalent non-proofreading enzymes. Errors are reduced to below MALDI-TOF detectable levels in almost all cases. The Sp diastereomer of the 3'-PS primer, which can be prepared in situ by incubation with proofreading polymerase, is stable to 3'-exonuclease activity over periods longer than 16 h. Products of correct extension by T7 DNAP are retained over 30-60 min during idling turnover at a dNTP concentration of 2.5 micro M, indicating that the assay can be applied over a broad range of substrate concentrations. These results suggest that the use of PS primers and proofreading polymerases will offer a simple and cost-effective means to improve fidelity in a range of single-substrate SBE assay formats.
Collapse
Affiliation(s)
- Daniel Di Giusto
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
47
|
Abstract
EU regulations stipulate the labeling of food products containing genetically modified organisms (GMOs) unless the GMO content is due to adventitious and unintended 'contamination' and not exceeding the 1% level at ingredient basis. In addition, member states have to ensure full traceability at all stages of the placing on the market of GMOs. Both requirements ensure consumers 'right to know', facilitate enforcement of regulatory requirements and are of importance for environmental monitoring and postmarket surveillance. Besides administrative procedures, such as used in quality certification systems, the significance of adequate molecular methods becomes more and more apparent. During the last decade a considerable number of molecular methods have been developed and validated that enable the detection, identification and quantification of GMO impurities. Most of them rely on the PCR technology and can only detect one specific stretch of DNA. It can, however, be anticipated that in the near future the situation will become more complex. The number of GMO varieties, including 'stacked-gene' varieties, which will enter the European Market will increase and it is likely that these varieties will harbor more variable constructs. New tools will be necessary to keep up with these developments. One of the most promising techniques is microarray analysis. This technique enables the screening for a large number of different GMOs within a single experiment.
Collapse
|