1
|
Yao Q, Zhu L, Shi Z, Banerjee S, Chen C. Topoisomerase-modulated genome-wide DNA supercoiling domains colocalize with nuclear compartments and regulate human gene expression. Nat Struct Mol Biol 2024:10.1038/s41594-024-01377-5. [PMID: 39152238 DOI: 10.1038/s41594-024-01377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
DNA supercoiling is a biophysical feature of the double helix with a pivotal role in biological processes. However, understanding of DNA supercoiling in the chromatin remains limited. Here, we developed azide-trimethylpsoralen sequencing (ATMP-seq), a DNA supercoiling assay offering quantitative accuracy while minimizing genomic bias and background noise. Using ATMP-seq, we directly visualized transcription-dependent negative and positive twin-supercoiled domains around genes and mapped kilobase-resolution DNA supercoiling throughout the human genome. Remarkably, we discovered megabase-scale supercoiling domains (SDs) across all chromosomes that are modulated mainly by topoisomerases I and IIβ. Transcription activities, but not the consequent supercoiling accumulation in the local region, contribute to SD formation, indicating the long-range propagation of transcription-generated supercoiling. Genome-wide SDs colocalize with A/B compartments in both human and Drosophila cells but are distinct from topologically associating domains (TADs), with negative supercoiling accumulation at TAD boundaries. Furthermore, genome-wide DNA supercoiling varies between cell states and types and regulates human gene expression, underscoring the importance of supercoiling dynamics in chromatin regulation and function.
Collapse
Affiliation(s)
- Qian Yao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linying Zhu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhen Shi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Subhadra Banerjee
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Mellis IA, Melzer ME, Bodkin N, Goyal Y. Prevalence of and gene regulatory constraints on transcriptional adaptation in single cells. Genome Biol 2024; 25:217. [PMID: 39135102 PMCID: PMC11320884 DOI: 10.1186/s13059-024-03351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Cells and tissues have a remarkable ability to adapt to genetic perturbations via a variety of molecular mechanisms. Nonsense-induced transcriptional compensation, a form of transcriptional adaptation, has recently emerged as one such mechanism, in which nonsense mutations in a gene trigger upregulation of related genes, possibly conferring robustness at cellular and organismal levels. However, beyond a handful of developmental contexts and curated sets of genes, no comprehensive genome-wide investigation of this behavior has been undertaken for mammalian cell types and conditions. How the regulatory-level effects of inherently stochastic compensatory gene networks contribute to phenotypic penetrance in single cells remains unclear. RESULTS We analyze existing bulk and single-cell transcriptomic datasets to uncover the prevalence of transcriptional adaptation in mammalian systems across diverse contexts and cell types. We perform regulon gene expression analyses of transcription factor target sets in both bulk and pooled single-cell genetic perturbation datasets. Our results reveal greater robustness in expression of regulons of transcription factors exhibiting transcriptional adaptation compared to those of transcription factors that do not. Stochastic mathematical modeling of minimal compensatory gene networks qualitatively recapitulates several aspects of transcriptional adaptation, including paralog upregulation and robustness to mutation. Combined with machine learning analysis of network features of interest, our framework offers potential explanations for which regulatory steps are most important for transcriptional adaptation. CONCLUSIONS Our integrative approach identifies several putative hits-genes demonstrating possible transcriptional adaptation-to follow-up on experimentally and provides a formal quantitative framework to test and refine models of transcriptional adaptation.
Collapse
Affiliation(s)
- Ian A Mellis
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Madeline E Melzer
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nicholas Bodkin
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- CZ Biohub Chicago, LLC, Chicago, IL, USA.
| |
Collapse
|
3
|
Fukute J, Maki K, Adachi T. The nucleolar shell provides anchoring sites for DNA untwisting. Commun Biol 2024; 7:83. [PMID: 38263258 PMCID: PMC10805735 DOI: 10.1038/s42003-023-05750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024] Open
Abstract
DNA underwinding (untwisting) is a crucial step in transcriptional activation. DNA underwinding occurs between the site where torque is generated by RNA polymerase (RNAP) and the site where the axial rotation of DNA is constrained. However, what constrains DNA axial rotation in the nucleus is yet unknown. Here, we show that the anchorage to the nuclear protein condensates constrains DNA axial rotation for DNA underwinding in the nucleolus. In situ super-resolution imaging of underwound DNA reveal that underwound DNA accumulates in the nucleolus, a nuclear condensate with a core-shell structure. Specifically, underwound DNA is distributed in the nucleolar core owing to RNA polymerase I (RNAPI) activities. Furthermore, underwound DNA in the core decreases when nucleolar shell components are prevented from binding to their recognition structure, G-quadruplex (G4). Taken together, these results suggest that the nucleolar shell provides anchoring sites that constrain DNA axial rotation for RNAPI-driven DNA underwinding in the core. Our findings will contribute to understanding how nuclear protein condensates make up constraints for the site-specific regulation of DNA underwinding and transcription.
Collapse
Affiliation(s)
- Jumpei Fukute
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan
| | - Koichiro Maki
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan.
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan.
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Sakyo, Kyoto, Japan.
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan.
| | - Taiji Adachi
- Laboratory of Cellular and Molecular Biomechanics, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Sakyo, Kyoto, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
4
|
Terrón-Bautista J, Martínez-Sánchez MDM, López-Hernández L, Vadusevan AA, García-Domínguez M, Williams RS, Aguilera A, Millán-Zambrano G, Cortés-Ledesma F. Topological regulation of the estrogen transcriptional response by ZATT-mediated inhibition of TOP2B activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576640. [PMID: 38328138 PMCID: PMC10849543 DOI: 10.1101/2024.01.22.576640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Human type-II topoisomerases, TOP2A and TOP2B, remove transcription associated DNA supercoiling, thereby affecting gene-expression programs, and have recently been associated with 3D genome architecture. Here, we study the regulatory roles of TOP2 paralogs in response to estrogen, which triggers an acute transcriptional induction that involves rewiring of genome organization. We find that, whereas TOP2A facilitates transcription, as expected for a topoisomerase, TOP2B limits the estrogen response. Consistent with this, TOP2B activity is locally downregulated upon estrogen treatment to favor the establishment and stabilization of regulatory chromatin contacts, likely through an accumulation of DNA supercoiling. We show that estrogen-mediated inhibition of TOP2B requires estrogen receptor α (ERα), a non-catalytic function of TOP2A, and the action of the atypical SUMO-ligase ZATT. This mechanism of topological transcriptional-control, which may be shared by additional gene-expression circuits, highlights the relevance of DNA topoisomerases as central actors of genome dynamics.
Collapse
Affiliation(s)
- José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | | | - Laura López-Hernández
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Spain
| | - Ananda Ayyappan Vadusevan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario García-Domínguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - R. Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Spain
| | - Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Spain
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
- Lead contact
| |
Collapse
|
5
|
Visser BJ, Bates D. In Vivo Genomic Supercoiling Mapping Using Psora-seq. Methods Mol Biol 2024; 2819:147-156. [PMID: 39028506 DOI: 10.1007/978-1-0716-3930-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Supercoiling is a fundamental property of DNA that governs all strand opening reactions, including DNA replication, transcription, and homologous recombination. However, traditional genomic supercoiling assays are difficult and lack sensitivity. Building on prior assays using the DNA intercalator psoralen, we developed a supercoil mapping assay that is robust and sensitive to a wide range of supercoiling while requiring only commercially available reagents and common laboratory equipment. This method, psoralen affinity purification with genomic sequencing (Psora-seq), utilizes biotinylated psoralen and streptavidin-conjugated magnetic beads to facilitate efficient pull-down of psoralen-bound DNA, followed by deep sequencing to identify and quantify supercoiling at 1 kb resolution. Psora-seq overcomes two major bottlenecks associated with existing psoralen pull-down assays, inefficient photo-binding of psoralen-bound molecules, and poor recovery of cross-linked DNA.
Collapse
Affiliation(s)
- Bryan J Visser
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David Bates
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Mellis IA, Bodkin N, Melzer ME, Goyal Y. Prevalence of and gene regulatory constraints on transcriptional adaptation in single cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553318. [PMID: 37645989 PMCID: PMC10462021 DOI: 10.1101/2023.08.14.553318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Cells and tissues have a remarkable ability to adapt to genetic perturbations via a variety of molecular mechanisms. Nonsense-induced transcriptional compensation, a form of transcriptional adaptation, has recently emerged as one such mechanism, in which nonsense mutations in a gene can trigger upregulation of related genes, possibly conferring robustness at cellular and organismal levels. However, beyond a handful of developmental contexts and curated sets of genes, to date, no comprehensive genome-wide investigation of this behavior has been undertaken for mammalian cell types and contexts. Moreover, how the regulatory-level effects of inherently stochastic compensatory gene networks contribute to phenotypic penetrance in single cells remains unclear. Here we combine computational analysis of existing datasets with stochastic mathematical modeling and machine learning to uncover the widespread prevalence of transcriptional adaptation in mammalian systems and the diverse single-cell manifestations of minimal compensatory gene networks. Regulon gene expression analysis of a pooled single-cell genetic perturbation dataset recapitulates important model predictions. Our integrative approach uncovers several putative hits-genes demonstrating possible transcriptional adaptation-to follow up on experimentally, and provides a formal quantitative framework to test and refine models of transcriptional adaptation.
Collapse
Affiliation(s)
- Ian A. Mellis
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Nicholas Bodkin
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madeline E. Melzer
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Wang G, Vasquez KM. Dynamic alternative DNA structures in biology and disease. Nat Rev Genet 2023; 24:211-234. [PMID: 36316397 DOI: 10.1038/s41576-022-00539-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
8
|
Martin L, Neguembor MV, Cosma MP. Women’s contribution in understanding how topoisomerases, supercoiling, and transcription control genome organization. Front Mol Biosci 2023; 10:1155825. [PMID: 37051322 PMCID: PMC10083264 DOI: 10.3389/fmolb.2023.1155825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
One of the biggest paradoxes in biology is that human genome is roughly 2 m long, while the nucleus containing it is almost one million times smaller. To fit into the nucleus, DNA twists, bends and folds into several hierarchical levels of compaction. Still, DNA has to maintain a high degree of accessibility to be readily replicated and transcribed by proteins. How compaction and accessibility co-exist functionally in human cells is still a matter of debate. Here, we discuss how the torsional stress of the DNA helix acts as a buffer, regulating both chromatin compaction and accessibility. We will focus on chromatin supercoiling and on the emerging role of topoisomerases as pivotal regulators of genome organization. We will mainly highlight the major breakthrough studies led by women, with the intention of celebrating the work of this group that remains a minority within the scientific community.
Collapse
Affiliation(s)
- Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Technical Contact, Guangzhou, China
- *Correspondence: Maria Victoria Neguembor, ; Maria Pia Cosma,
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Barcelona, Spain
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Lead Contact, Guangzhou, China
- *Correspondence: Maria Victoria Neguembor, ; Maria Pia Cosma,
| |
Collapse
|
9
|
Meyer BJ. The X chromosome in C. elegans sex determination and dosage compensation. Curr Opin Genet Dev 2022; 74:101912. [PMID: 35490475 DOI: 10.1016/j.gde.2022.101912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
Abnormalities in chromosome dose can reduce organismal fitness and viability by disrupting the balance of gene expression. Unlike imbalances in chromosome dose that cause pathologies, differences in X-chromosome dose that determine sex are well tolerated. Dosage compensation mechanisms have evolved in diverse species to balance X-chromosome gene expression between sexes. Mechanisms underlying nematode X-chromosome counting to determine sex revealed how small quantitative differences in molecular signals are translated into dramatically different developmental fates. Mechanisms underlying X-chromosome dosage compensation revealed the interplay between chromatin modification and three-dimensional chromosome structure imposed by an X-specific condensin complex to regulate gene expression over vast chromosomal territories. In a surprising twist of evolution, this dosage-compensation condensin complex also regulates lifespan and tolerance to proteotoxic stress.
Collapse
Affiliation(s)
- Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, 16 Barker Hall, Berkeley, CA 94720-3204, USA.
| |
Collapse
|
10
|
Meyer BJ. Mechanisms of sex determination and X-chromosome dosage compensation. Genetics 2022; 220:6498458. [PMID: 35100381 PMCID: PMC8825453 DOI: 10.1093/genetics/iyab197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Abnormalities in chromosome number have the potential to disrupt the balance of gene expression and thereby decrease organismal fitness and viability. Such abnormalities occur in most solid tumors and also cause severe developmental defects and spontaneous abortions. In contrast to the imbalances in chromosome dose that cause pathologies, the difference in X-chromosome dose used to determine sexual fate across diverse species is well tolerated. Dosage compensation mechanisms have evolved in such species to balance X-chromosome gene expression between the sexes, allowing them to tolerate the difference in X-chromosome dose. This review analyzes the chromosome counting mechanism that tallies X-chromosome number to determine sex (XO male and XX hermaphrodite) in the nematode Caenorhabditis elegans and the associated dosage compensation mechanism that balances X-chromosome gene expression between the sexes. Dissecting the molecular mechanisms underlying X-chromosome counting has revealed how small quantitative differences in intracellular signals can be translated into dramatically different fates. Dissecting the process of X-chromosome dosage compensation has revealed the interplay between chromatin modification and chromosome structure in regulating gene expression over vast chromosomal territories.
Collapse
Affiliation(s)
- Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| |
Collapse
|