1
|
Warren WC, Rice ES, X M, Roback E, Keene A, Martin F, Ogeh D, Haggerty L, Carroll RA, McGaugh S, Rohner N. Astyanax mexicanus surface and cavefish chromosome-scale assemblies for trait variation discovery. G3 (BETHESDA, MD.) 2024; 14:jkae103. [PMID: 38771704 PMCID: PMC11304944 DOI: 10.1093/g3journal/jkae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
The ability of organisms to adapt to sudden extreme environmental changes produces some of the most drastic examples of rapid phenotypic evolution. The Mexican Tetra, Astyanax mexicanus, is abundant in the surface waters of northeastern Mexico, but repeated colonizations of cave environments have resulted in the independent evolution of troglomorphic phenotypes in several populations. Here, we present three chromosome-scale assemblies of this species, for one surface and two cave populations, enabling the first whole-genome comparisons between independently evolved cave populations to evaluate the genetic basis for the evolution of adaptation to the cave environment. Our assemblies represent the highest quality of sequence completeness with predicted protein-coding and noncoding gene metrics far surpassing prior resources and, to our knowledge, all long-read assembled teleost genomes, including zebrafish. Whole-genome synteny alignments show highly conserved gene order among cave forms in contrast to a higher number of chromosomal rearrangements when compared with other phylogenetically close or distant teleost species. By phylogenetically assessing gene orthology across distant branches of amniotes, we discover gene orthogroups unique to A. mexicanus. When compared with a representative surface fish genome, we find a rich amount of structural sequence diversity, defined here as the number and size of insertions and deletions as well as expanding and contracting repeats across cave forms. These new more complete genomic resources ensure higher trait resolution for comparative, functional, developmental, and genetic studies of drastic trait differences within a species.
Collapse
Affiliation(s)
- Wesley C Warren
- Department of Animal Sciences, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
- Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Edward S Rice
- Department of Animal Sciences, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
- Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Maggs X
- Department of Animal Sciences, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
- Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Emma Roback
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Alex Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Fergal Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Denye Ogeh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Rachel A Carroll
- Department of Animal Sciences, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
- Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Suzanne McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Du K, Ricci JMB, Lu Y, Garcia-Olazabal M, Walter RB, Warren WC, Dodge TO, Schumer M, Park H, Meyer A, Schartl M. Phylogenomic analyses of all species of swordtail fishes (genus Xiphophorus) show that hybridization preceded speciation. Nat Commun 2024; 15:6609. [PMID: 39098897 PMCID: PMC11298535 DOI: 10.1038/s41467-024-50852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/16/2024] [Indexed: 08/06/2024] Open
Abstract
Hybridization has been recognized to play important roles in evolution, however studies of the genetic consequence are still lagging behind in vertebrates due to the lack of appropriate experimental systems. Fish of the genus Xiphophorus are proposed to have evolved with multiple ancient and ongoing hybridization events. They have served as an informative research model in evolutionary biology and in biomedical research on human disease for more than a century. Here, we provide the complete genomic resource including annotations for all described 26 Xiphophorus species and three undescribed taxa and resolve all uncertain phylogenetic relationships. We investigate the molecular evolution of genes related to cancers such as melanoma and for the genetic control of puberty timing, focusing on genes that are predicted to be involved in pre-and postzygotic isolation and thus affect hybridization. We discovered dramatic size-variation of some gene families. These persisted despite reticulate evolution, rapid speciation and short divergence time. Finally, we clarify the hybridization history in the entire genus settling disputed hybridization history of two Southern swordtails. Our comparative genomic analyses revealed hybridization ancestries that are manifested in the mosaic fused genomes and show that hybridization often preceded speciation.
Collapse
Affiliation(s)
- Kang Du
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, TX, USA
| | | | - Yuan Lu
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, TX, USA
| | - Mateo Garcia-Olazabal
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, TX, USA
| | - Ronald B Walter
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, TX, USA
| | - Wesley C Warren
- Department of Animal Sciences, Department of Surgery, Institute for Data Science and Informatics, University of Missouri, Bond Life Sciences Center, Columbia, MI, USA
| | - Tristram O Dodge
- Department of Biology & Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Molly Schumer
- Department of Biology & Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Hyun Park
- Division of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, TX, USA.
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, Wuerzburg, Germany.
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria.
| |
Collapse
|
3
|
Langdon QK, Groh JS, Aguillon SM, Powell DL, Gunn T, Payne C, Baczenas JJ, Donny A, Dodge TO, Du K, Schartl M, Ríos-Cárdenas O, Gutiérrez-Rodríguez C, Morris M, Schumer M. Swordtail fish hybrids reveal that genome evolution is surprisingly predictable after initial hybridization. PLoS Biol 2024; 22:e3002742. [PMID: 39186811 PMCID: PMC11379403 DOI: 10.1371/journal.pbio.3002742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/06/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Over the past 2 decades, biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common-not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past approximately 40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni × X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Jeffrey S. Groh
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| | - Stepfanie M. Aguillon
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States of America
| | - Daniel L. Powell
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Theresa Gunn
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Cheyenne Payne
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - John J. Baczenas
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Alex Donny
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Tristram O. Dodge
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Kang Du
- Xiphophorus Genetic Stock Center, Texas State University San Marcos, San Marcos, United States of America
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University San Marcos, San Marcos, United States of America
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Oscar Ríos-Cárdenas
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | | | - Molly Morris
- Department of Biological Sciences, Ohio University, Athens, Ohio, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
- Freeman Hrabowski Fellow, Howard Hughes Medical Institute, Stanford, California, United States of America
| |
Collapse
|
4
|
Yusuf LH, Lemus YS, Thorpe P, Garcia CM, Ritchie MG. Evidence for gene flow and trait reversal during radiation of Mexican Goodeid fish. Heredity (Edinb) 2024; 133:78-87. [PMID: 38858547 PMCID: PMC11286751 DOI: 10.1038/s41437-024-00694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024] Open
Abstract
Understanding the phylogeographic history of a group and identifying the factors contributing to speciation is an important challenge in evolutionary biology. The Goodeinae are a group of live-bearing fishes endemic to Mexico. Here, we develop genomic resources for species within the Goodeinae and use phylogenomic approaches to characterise their evolutionary history. We sequenced, assembled and annotated the genomes of four Goodeinae species, including Ataeniobius toweri, the only matrotrophic live-bearing fish without a trophotaenia in the group. We estimated timings of species divergence and examined the extent and timing of introgression between the species to assess if this may have occurred during an early radiation, or in more recent episodes of secondary contact. We used branch-site models to detect genome-wide positive selection across Goodeinae, and we specifically asked whether this differs in A. toweri, where loss of placental viviparity has recently occurred. We found evidence of gene flow between geographically isolated species, suggesting vicariant speciation was supplemented by limited post-speciation gene flow, and gene flow may explain previous uncertainties about Goodeid phylogeny. Genes under positive selection in the group are likely to be associated with the switch to live-bearing. Overall, our studies suggest that both volcanism-driven vicariance and changes in reproductive mode influenced radiation in the Goodeinae.
Collapse
Affiliation(s)
- Leeban H Yusuf
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK.
| | - Yolitzi Saldívar Lemus
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
- Department of Biology, Texas State University, San Marcos, TX, USA
| | - Peter Thorpe
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Constantino Macías Garcia
- Instituto de Ecologia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito exterior s/n anexo al Jardín Botánico C. P. 04510, Mexico City CdMx, Mexico
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
5
|
Hubert JN, Perret M, Riquet J, Demars J. Livestock species as emerging models for genomic imprinting. Front Cell Dev Biol 2024; 12:1348036. [PMID: 38500688 PMCID: PMC10945557 DOI: 10.3389/fcell.2024.1348036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 03/20/2024] Open
Abstract
Genomic imprinting is an epigenetically-regulated process of central importance in mammalian development and evolution. It involves multiple levels of regulation, with spatio-temporal heterogeneity, leading to the context-dependent and parent-of-origin specific expression of a small fraction of the genome. Genomic imprinting studies have therefore been essential to increase basic knowledge in functional genomics, evolution biology and developmental biology, as well as with regard to potential clinical and agrigenomic perspectives. Here we offer an overview on the contribution of livestock research, which features attractive resources in several respects, for better understanding genomic imprinting and its functional impacts. Given the related broad implications and complexity, we promote the use of such resources for studying genomic imprinting in a holistic and integrative view. We hope this mini-review will draw attention to the relevance of livestock genomic imprinting studies and stimulate research in this area.
Collapse
Affiliation(s)
| | | | | | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
6
|
Langdon QK, Groh JS, Aguillon SM, Powell DL, Gunn T, Payne C, Baczenas JJ, Donny A, Dodge TO, Du K, Schartl M, Ríos-Cárdenas O, Gutierrez-Rodríguez C, Morris M, Schumer M. Genome evolution is surprisingly predictable after initial hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572897. [PMID: 38187753 PMCID: PMC10769416 DOI: 10.1101/2023.12.21.572897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Over the past two decades, evolutionary biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common - not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past ~40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni×X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California
| | - Jeffrey S. Groh
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis
| | - Stepfanie M. Aguillon
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
| | - Daniel L. Powell
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Theresa Gunn
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Cheyenne Payne
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | | | - Alex Donny
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Tristram O. Dodge
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Kang Du
- Xiphophorus Genetic Stock Center, Texas State University San Marcos
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University San Marcos
- Developmental Biochemistry, Biocenter, University of Würzburg
| | | | | | | | - Molly Schumer
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Freeman Hrabowski Fellow, Howard Hughes Medical Institute
| |
Collapse
|
7
|
Warren WC, Rice ES, Maggs X, Roback E, Keene A, Martin F, Ogeh D, Haggerty L, Carroll RA, McGaugh S, Rohner N. Astyanax mexicanus surface and cavefish chromosome-scale assemblies for trait variation discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567450. [PMID: 38014157 PMCID: PMC10680795 DOI: 10.1101/2023.11.16.567450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The ability of organisms to adapt to sudden extreme environmental changes produces some of the most drastic examples of rapid phenotypic evolution. The Mexican Tetra, Astyanax mexicanus, is abundant in the surface waters of northeastern Mexico, but repeated colonizations of cave environments have resulted in the independent evolution of troglomorphic phenotypes in several populations. Here, we present three chromosome-scale assemblies of this species, for one surface and two cave populations, enabling the first whole-genome comparisons between independently evolved cave populations to evaluate the genetic basis for the evolution of adaptation to the cave environment. Our assemblies represent the highest quality of sequence completeness with predicted protein-coding and non-coding gene metrics far surpassing prior resources and, to our knowledge, all long-read assembled teleost genomes, including zebrafish. Whole genome synteny alignments show highly conserved gene order among cave forms in contrast to a higher number of chromosomal rearrangements when compared to other phylogenetically close or distant teleost species. By phylogenetically assessing gene orthology across distant branches of amniotes, we discover gene orthogroups unique to A. mexicanus. When compared to a representative surface fish genome, we find a rich amount of structural sequence diversity, defined here as the number and size of insertions and deletions as well as expanding and contracting repeats across cave forms. These new more complete genomic resources ensure higher trait resolution for comparative, functional, developmental, and genetic studies of drastic trait differences within a species.
Collapse
Affiliation(s)
- Wesley C. Warren
- Department of Animal Sciences, Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO
| | - Edward S. Rice
- Department of Animal Sciences, Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO
| | - X Maggs
- Department of Animal Sciences, Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO
| | - Emma Roback
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN
| | - Alex Keene
- Department of Biology, Texas AM University, College Station, TX
| | - Fergal Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Denye Ogeh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Rachel A. Carroll
- Department of Animal Sciences, Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO
| | - Suzanne McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City, KS
| |
Collapse
|
8
|
Sendell-Price AT, Tulenko FJ, Pettersson M, Kang D, Montandon M, Winkler S, Kulb K, Naylor GP, Phillippy A, Fedrigo O, Mountcastle J, Balacco JR, Dutra A, Dale RE, Haase B, Jarvis ED, Myers G, Burgess SM, Currie PD, Andersson L, Schartl M. Low mutation rate in epaulette sharks is consistent with a slow rate of evolution in sharks. Nat Commun 2023; 14:6628. [PMID: 37857613 PMCID: PMC10587355 DOI: 10.1038/s41467-023-42238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate. Here, we provide a direct estimate of the nuclear mutation rate in the epaulette shark (Hemiscyllium ocellatum). We generate a high-quality reference genome, and resequence the whole genomes of parents and nine offspring to detect de novo mutations. Using stringent criteria, we estimate a mutation rate of 7×10-10 per base pair, per generation. This represents one of the lowest directly estimated mutation rates for any vertebrate clade, indicating that this basal vertebrate group is indeed a slowly evolving lineage whose ability to restore genetic diversity following a sustained population bottleneck may be hampered by a low mutation rate.
Collapse
Affiliation(s)
- Ashley T Sendell-Price
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - Frank J Tulenko
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden
| | - Du Kang
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Sylke Winkler
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Kathleen Kulb
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Gavin P Naylor
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Adam Phillippy
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Jacquelyn Mountcastle
- Research Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Jennifer R Balacco
- Research Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Amalia Dutra
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Rebecca E Dale
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Bettina Haase
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Gene Myers
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center of Systems Biology Dresden, 01307, Dresden, Germany
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia.
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria, 3800, Australia.
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77483, USA.
| | - Manfred Schartl
- Developmental Biochemistry, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
9
|
Yusuf LH, Saldívar Lemus Y, Thorpe P, Macías Garcia C, Ritchie MG. Genomic Signatures Associated with Transitions to Viviparity in Cyprinodontiformes. Mol Biol Evol 2023; 40:msad208. [PMID: 37789509 PMCID: PMC10568250 DOI: 10.1093/molbev/msad208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
The transition from oviparity to viviparity has occurred independently over 150 times across vertebrates, presenting one of the most compelling cases of phenotypic convergence. However, whether the repeated, independent evolution of viviparity is driven by redeployment of similar genetic mechanisms and whether these leave a common signature in genomic divergence remains largely unknown. Although recent investigations into the evolution of viviparity have demonstrated striking similarity among the genes and molecular pathways involved across disparate vertebrate groups, quantitative tests for genome-wide convergent have provided ambivalent answers. Here, we investigate the potential role of molecular convergence during independent transitions to viviparity across an order of ray-finned freshwater fish (Cyprinodontiformes). We assembled de novo genomes and utilized publicly available genomes of viviparous and oviparous species to test for molecular convergence across both coding and noncoding regions. We found no evidence for an excess of molecular convergence in amino acid substitutions and in rates of sequence divergence, implying independent genetic changes are associated with these transitions. However, both statistical power and biological confounds could constrain our ability to detect significant correlated evolution. We therefore identified candidate genes with potential signatures of molecular convergence in viviparous Cyprinodontiformes lineages. Motif enrichment and gene ontology analyses suggest transcriptional changes associated with early morphogenesis, brain development, and immunity occurred alongside the evolution of viviparity. Overall, however, our findings indicate that independent transitions to viviparity in these fish are not strongly associated with an excess of molecular convergence, but a few genes show convincing evidence of convergent evolution.
Collapse
Affiliation(s)
- Leeban H Yusuf
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Yolitzi Saldívar Lemus
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
- Department of Biology, Texas State University, San Marcos, TX, USA
| | - Peter Thorpe
- The Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, UK
- School of Medicine, University of North Haugh, St Andrews KY16 9TF, UK
| | - Constantino Macías Garcia
- Instituto de Ecologia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City CdMx, Mexico
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
10
|
Foster CS, Van Dyke JU, Thompson MB, Smith NM, Simpfendorfer CA, Murphy CR, Whittington CM. Different Genes are Recruited During Convergent Evolution of Pregnancy and the Placenta. Mol Biol Evol 2022; 39:msac077. [PMID: 35388432 PMCID: PMC9048886 DOI: 10.1093/molbev/msac077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The repeated evolution of the same traits in distantly related groups (convergent evolution) raises a key question in evolutionary biology: do the same genes underpin convergent phenotypes? Here, we explore one such trait, viviparity (live birth), which, qualitative studies suggest, may indeed have evolved via genetic convergence. There are >150 independent origins of live birth in vertebrates, providing a uniquely powerful system to test the mechanisms underpinning convergence in morphology, physiology, and/or gene recruitment during pregnancy. We compared transcriptomic data from eight vertebrates (lizards, mammals, sharks) that gestate embryos within the uterus. Since many previous studies detected qualitative similarities in gene use during independent origins of pregnancy, we expected to find significant overlap in gene use in viviparous taxa. However, we found no more overlap in uterine gene expression associated with viviparity than we would expect by chance alone. Each viviparous lineage exhibits the same core set of uterine physiological functions. Yet, contrary to prevailing assumptions about this trait, we find that none of the same genes are differentially expressed in all viviparous lineages, or even in all viviparous amniote lineages. Therefore, across distantly related vertebrates, different genes have been recruited to support the morphological and physiological changes required for successful pregnancy. We conclude that redundancies in gene function have enabled the repeated evolution of viviparity through recruitment of different genes from genomic "toolboxes", which are uniquely constrained by the ancestries of each lineage.
Collapse
Affiliation(s)
- Charles S.P. Foster
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - James U. Van Dyke
- School of Molecular Sciences, La Trobe University, Albury-Wodonga Campus, VIC, Australia
| | - Michael B. Thompson
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Nicholas M.A. Smith
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Colin A. Simpfendorfer
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Christopher R. Murphy
- School of Medical Sciences and The Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|