1
|
Pranavathiyani G, Pan A. Prediction of Essential Proteins of Klebsiella pneumoniae using Integrative Bioinformatics and Systems Biology Approach: Unveiling New Avenues for Drug Discovery. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:138-147. [PMID: 38478777 DOI: 10.1089/omi.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Klebsiella pneumoniae is an opportunistic multidrug-resistant bacterial pathogen responsible for various health care-associated infections. The prediction of proteins that are essential for the survival of bacterial pathogens can greatly facilitate the drug development and discovery pipeline toward target identification. To this end, the present study reports a comprehensive computational approach integrating bioinformatics and systems biology-based methods to identify essential proteins of K. pneumoniae involved in vital processes. From the proteome of this pathogen, we predicted a total of 854 essential proteins based on sequence, protein-protein interaction (PPI) and genome-scale metabolic model methods. These predicted essential proteins are involved in vital processes for cellular regulation such as translation, metabolism, and biosynthesis of essential factors, among others. Cluster analysis of the PPI network revealed the highly connected modules involved in the basic functionality of the organism. Further, the predicted consensus set of essential proteins of K. pneumoniae was evaluated by comparing them with existing resources (NetGenes and PATHOgenex) and literature. The findings of this study offer guidance toward understanding cell functionality, thereby facilitating the understanding of pathogen systems and providing a way forward to shortlist potential therapeutic candidates for developing novel antimicrobial agents against K. pneumoniae. In addition, the research strategy presented herein is a fusion of sequence and systems biology-based approaches that offers prospects as a model to predict essential proteins for other pathogens.
Collapse
Affiliation(s)
- Gnanasekar Pranavathiyani
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, India
| | - Archana Pan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, India
| |
Collapse
|
2
|
Cooper HB, Vezina B, Hawkey J, Passet V, López-Fernández S, Monk JM, Brisse S, Holt KE, Wyres KL. A validated pangenome-scale metabolic model for the Klebsiella pneumoniae species complex. Microb Genom 2024; 10:001206. [PMID: 38376382 PMCID: PMC10926698 DOI: 10.1099/mgen.0.001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
The Klebsiella pneumoniae species complex (KpSC) is a major source of nosocomial infections globally with high rates of resistance to antimicrobials. Consequently, there is growing interest in understanding virulence factors and their association with cellular metabolic processes for developing novel anti-KpSC therapeutics. Phenotypic assays have revealed metabolic diversity within the KpSC, but metabolism research has been neglected due to experiments being difficult and cost-intensive. Genome-scale metabolic models (GSMMs) represent a rapid and scalable in silico approach for exploring metabolic diversity, which compile genomic and biochemical data to reconstruct the metabolic network of an organism. Here we use a diverse collection of 507 KpSC isolates, including representatives of globally distributed clinically relevant lineages, to construct the most comprehensive KpSC pan-metabolic model to date, KpSC pan v2. Candidate metabolic reactions were identified using gene orthology to known metabolic genes, prior to manual curation via extensive literature and database searches. The final model comprised a total of 3550 reactions, 2403 genes and can simulate growth on 360 unique substrates. We used KpSC pan v2 as a reference to derive strain-specific GSMMs for all 507 KpSC isolates, and compared these to GSMMs generated using a prior KpSC pan-reference (KpSC pan v1) and two single-strain references. We show that KpSC pan v2 includes a greater proportion of accessory reactions (8.8 %) than KpSC pan v1 (2.5 %). GSMMs derived from KpSC pan v2 also generate more accurate growth predictions, with high median accuracies of 95.4 % (aerobic, n=37 isolates) and 78.8 % (anaerobic, n=36 isolates) for 124 matched carbon substrates. KpSC pan v2 is freely available at https://github.com/kelwyres/KpSC-pan-metabolic-model, representing a valuable resource for the scientific community, both as a source of curated metabolic information and as a reference to derive accurate strain-specific GSMMs. The latter can be used to investigate the relationship between KpSC metabolism and traits of interest, such as reservoirs, epidemiology, drug resistance or virulence, and ultimately to inform novel KpSC control strategies.
Collapse
Affiliation(s)
- Helena B. Cooper
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Ben Vezina
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Virginie Passet
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, 75015 Paris, France
| | - Sebastián López-Fernández
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, 75015 Paris, France
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, California 92093, USA
| | - Sylvain Brisse
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, 75015 Paris, France
| | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
3
|
Bäuerle F, Döbel GO, Camus L, Heilbronner S, Dräger A. Genome-scale metabolic models consistently predict in vitro characteristics of Corynebacterium striatum. FRONTIERS IN BIOINFORMATICS 2023; 3:1214074. [PMID: 37936955 PMCID: PMC10626998 DOI: 10.3389/fbinf.2023.1214074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction: Genome-scale metabolic models (GEMs) are organism-specific knowledge bases which can be used to unravel pathogenicity or improve production of specific metabolites in biotechnology applications. However, the validity of predictions for bacterial proliferation in in vitro settings is hardly investigated. Methods: The present work combines in silico and in vitro approaches to create and curate strain-specific genome-scale metabolic models of Corynebacterium striatum. Results: We introduce five newly created strain-specific genome-scale metabolic models (GEMs) of high quality, satisfying all contemporary standards and requirements. All these models have been benchmarked using the community standard test suite Metabolic Model Testing (MEMOTE) and were validated by laboratory experiments. For the curation of those models, the software infrastructure refineGEMs was developed to work on these models in parallel and to comply with the quality standards for GEMs. The model predictions were confirmed by experimental data and a new comparison metric based on the doubling time was developed to quantify bacterial growth. Discussion: Future modeling projects can rely on the proposed software, which is independent of specific environmental conditions. The validation approach based on the growth rate calculation is now accessible and closely aligned with biological questions. The curated models are freely available via BioModels and a GitHub repository and can be used. The open-source software refineGEMs is available from https://github.com/draeger-lab/refinegems.
Collapse
Affiliation(s)
- Famke Bäuerle
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karl University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Gwendolyn O. Döbel
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Laura Camus
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, Eberhard Karl University of Tübingen, Tübingen, Germany
- Faculty of Biology, Microbiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, Eberhard Karl University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Vezina B, Watts SC, Hawkey J, Cooper HB, Judd LM, Jenney AWJ, Monk JM, Holt KE, Wyres KL. Bactabolize is a tool for high-throughput generation of bacterial strain-specific metabolic models. eLife 2023; 12:RP87406. [PMID: 37815531 PMCID: PMC10564454 DOI: 10.7554/elife.87406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Metabolic capacity can vary substantially within a bacterial species, leading to ecological niche separation, as well as differences in virulence and antimicrobial susceptibility. Genome-scale metabolic models are useful tools for studying the metabolic potential of individuals, and with the rapid expansion of genomic sequencing there is a wealth of data that can be leveraged for comparative analysis. However, there exist few tools to construct strain-specific metabolic models at scale. Here, we describe Bactabolize, a reference-based tool which rapidly produces strain-specific metabolic models and growth phenotype predictions. We describe a pan reference model for the priority antimicrobial-resistant pathogen, Klebsiella pneumoniae, and a quality control framework for using draft genome assemblies as input for Bactabolize. The Bactabolize-derived model for K. pneumoniae reference strain KPPR1 performed comparatively or better than currently available automated approaches CarveMe and gapseq across 507 substrate and 2317 knockout mutant growth predictions. Novel draft genomes passing our systematically defined quality control criteria resulted in models with a high degree of completeness (≥99% genes and reactions captured compared to models derived from matched complete genomes) and high accuracy (mean 0.97, n=10). We anticipate the tools and framework described herein will facilitate large-scale metabolic modelling analyses that broaden our understanding of diversity within bacterial species and inform novel control strategies for priority pathogens.
Collapse
Affiliation(s)
- Ben Vezina
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Stephen C Watts
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Helena B Cooper
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| | | | - Jonathan M Monk
- Department of Bioengineering, University of California, San DiegoSan DiegoUnited States
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
- Department of Infection Biology, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| | - Kelly L Wyres
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| |
Collapse
|
5
|
Vezina B, Judd LM, McDougall FK, Boardman WSJ, Power ML, Hawkey J, Brisse S, Monk JM, Holt KE, Wyres KL. Transmission of Klebsiella strains and plasmids within and between grey-headed flying fox colonies. Environ Microbiol 2022; 24:4425-4436. [PMID: 35590448 PMCID: PMC9790207 DOI: 10.1111/1462-2920.16047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/11/2022] [Indexed: 12/30/2022]
Abstract
The grey-headed flying fox (Pteropus poliocephalus) is an endemic Australian fruit bat, known to carry zoonotic pathogens. We recently showed they harbour bacterial pathogen Klebsiella pneumoniae and closely related species in the K. pneumoniae species complex (KpSC); however, the dynamics of KpSC transmission and gene flow within flying fox colonies are poorly understood. High-resolution genome comparisons of 39 KpSC isolates from grey-headed flying foxes identified five putative strain transmission clusters (four intra- and one inter-colony). The instance of inter-colony strain transmission of K. africana was found between two flying fox populations within flying distance, indicating either direct or indirect transmission through a common food/water source. All 11 plasmids identified within the KpSC isolates showed 73% coverage (mean) and ≥95% identity to human-associated KpSC plasmids, indicating gene flow between human clinical and grey-headed flying fox isolates. Along with strain transmission, inter-species horizontal plasmid transmission between K. pneumoniae and Klebsiella africana was also identified within a flying fox colony. Finally, genome-scale metabolic models were generated to predict and compare substrate usage to previously published KpSC models, from human and environmental sources. These models indicated no distinction on the basis of metabolic capabilities. Instead, metabolic capabilities were consistent with population structure and ST/lineage.
Collapse
Affiliation(s)
- Ben Vezina
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
| | - Louise M. Judd
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
| | | | | | - Michelle L. Power
- Department of Biological SciencesMacquarie UniversityNSW2109Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
| | - Sylvain Brisse
- Institut PasteurUniversité de Paris, Biodiversity and Epidemiology of Bacterial PathogensParisFrance
| | | | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVic.Australia
| |
Collapse
|
6
|
Rocha J, Henriques I, Gomila M, Manaia CM. Common and distinctive genomic features of Klebsiella pneumoniae thriving in the natural environment or in clinical settings. Sci Rep 2022; 12:10441. [PMID: 35729190 PMCID: PMC9213442 DOI: 10.1038/s41598-022-14547-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/08/2022] [Indexed: 01/17/2023] Open
Abstract
The Klebsiella pneumoniae complex is comprised of ubiquitous bacteria that can be found in soils, plants or water, and as humans' opportunistic pathogens. This study aimed at inferring common and distinctive features in clinical and environmental K. pneumoniae. Whole genome sequences of members of the K. pneumoniae complex (including K. variicola, n = 6; and K. quasipneumoniae, n = 7), of clinical (n = 78) and environmental (n = 61) origin from 21 countries were accessed from the GenBank. These genomes were compared based on phylogeny, pangenome and selected clinically relevant traits. Phylogenetic analysis based on 2704 genes of the core genome showed close relatedness between clinical and environmental strains, in agreement with the multi-locus sequence typing. Eight out of the 62 sequence types (STs) identified, included both clinical and environmental genomes (ST11, ST14, ST15, ST37, ST45, ST147, ST348, ST437). Pangenome-wide association studies did not evidence significant differences between clinical and environmental genomes. However, the genomes of clinical isolates presented significantly more exclusive genes related to antibiotic resistance/plasmids, while the environmental isolates yielded significantly higher allelic diversity of genes related with functions such as efflux or oxidative stress. The study suggests that K. pneumoniae can circulate among the natural environment and clinical settings, probably under distinct adaptation pressures.
Collapse
Affiliation(s)
- Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Isabel Henriques
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal.,CESAM, University of Aveiro, Aveiro, Portugal
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|