1
|
Kaucka M. Cis-regulatory landscapes in the evolution and development of the mammalian skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220079. [PMID: 37183897 PMCID: PMC10184250 DOI: 10.1098/rstb.2022.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Extensive morphological variation found in mammals reflects the wide spectrum of their ecological adaptations. The highest morphological diversity is present in the craniofacial region, where geometry is mainly dictated by the bony skull. Mammalian craniofacial development represents complex multistep processes governed by numerous conserved genes that require precise spatio-temporal control. A central question in contemporary evolutionary biology is how a defined set of conserved genes can orchestrate formation of fundamentally different structures, and therefore how morphological variability arises. In principle, differential gene expression patterns during development are the source of morphological variation. With the emergence of multicellular organisms, precise regulation of gene expression in time and space is attributed to cis-regulatory elements. These elements contribute to higher-order chromatin structure and together with trans-acting factors control transcriptional landscapes that underlie intricate morphogenetic processes. Consequently, divergence in cis-regulation is believed to rewire existing gene regulatory networks and form the core of morphological evolution. This review outlines the fundamental principles of the genetic code and genomic regulation interplay during development. Recent work that deepened our comprehension of cis-regulatory element origin, divergence and function is presented here to illustrate the state-of-the-art research that uncovered the principles of morphological novelty. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
2
|
Panigrahi A, O'Malley BW. Mechanisms of enhancer action: the known and the unknown. Genome Biol 2021; 22:108. [PMID: 33858480 PMCID: PMC8051032 DOI: 10.1186/s13059-021-02322-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Differential gene expression mechanisms ensure cellular differentiation and plasticity to shape ontogenetic and phylogenetic diversity of cell types. A key regulator of differential gene expression programs are the enhancers, the gene-distal cis-regulatory sequences that govern spatiotemporal and quantitative expression dynamics of target genes. Enhancers are widely believed to physically contact the target promoters to effect transcriptional activation. However, our understanding of the full complement of regulatory proteins and the definitive mechanics of enhancer action is incomplete. Here, we review recent findings to present some emerging concepts on enhancer action and also outline a set of outstanding questions.
Collapse
Affiliation(s)
- Anil Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Touceda-Suárez M, Kita EM, Acemel RD, Firbas PN, Magri MS, Naranjo S, Tena JJ, Gómez-Skarmeta JL, Maeso I, Irimia M. Ancient Genomic Regulatory Blocks Are a Source for Regulatory Gene Deserts in Vertebrates after Whole-Genome Duplications. Mol Biol Evol 2020; 37:2857-2864. [PMID: 32421818 PMCID: PMC7530604 DOI: 10.1093/molbev/msaa123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We investigated how the two rounds of whole-genome duplication that occurred at the base of the vertebrate lineage have impacted ancient microsyntenic associations involving developmental regulators (known as genomic regulatory blocks, GRBs). We showed that the majority of GRBs identified in the last common ancestor of chordates have been maintained as a single copy in humans. We found evidence that dismantling of the duplicated GRB copies occurred early in vertebrate evolution often through the differential retention of the regulatory gene but loss of the bystander gene’s exonic sequences. Despite the large evolutionary scale, the presence of duplicated highly conserved noncoding regions provided unambiguous proof for this scenario for multiple ancient GRBs. Remarkably, the dismantling of ancient GRB duplicates has contributed to the creation of large gene deserts associated with regulatory genes in vertebrates, providing a potentially widespread mechanism for the origin of these enigmatic genomic traits.
Collapse
Affiliation(s)
- María Touceda-Suárez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, pain
| | - Elizabeth M Kita
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, pain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Panos N Firbas
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Marta S Magri
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Jose Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, pain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
4
|
Miller WB, Baluška F, Torday JS. Cellular senomic measurements in Cognition-Based Evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 156:20-33. [PMID: 32738355 DOI: 10.1016/j.pbiomolbio.2020.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/20/2020] [Accepted: 07/04/2020] [Indexed: 12/27/2022]
Abstract
All living entities are cognitive and dependent on ambiguous information. Any assessment of that imprecision is necessarily a measuring function. Individual cells measure information to sustain self-referential homeostatic equipoise (self-identity) in juxtaposition to the external environment. The validity of that information is improved by its collective assessment. The reception of cellular information obliges thermodynamic reactions that initiate a self-reinforcing work channel. This expresses as natural cellular engineering and niche constructions which become the complex interrelated tissue ecologies of holobionts. Multicellularity is collaborative cellular information management directed towards the optimization of information quality through its collective measured assessment. Biology and its evolution can now be re-framed as the continuous process of self-referential cellular measurement in the perpetual defense of individual cellular self-identities through the collective form.
Collapse
Affiliation(s)
| | | | - John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, USA.
| |
Collapse
|
5
|
Ancestrally Duplicated Conserved Noncoding Element Suggests Dual Regulatory Roles of HOTAIR in cis and trans. iScience 2020; 23:101008. [PMID: 32268280 PMCID: PMC7139118 DOI: 10.1016/j.isci.2020.101008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/06/2020] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
HOTAIR was proposed to regulate either HoxD cluster genes in trans or HoxC cluster genes in cis, a mechanism that remains unclear. We have identified a 32-nucleotide conserved noncoding element (CNE) as HOTAIR ancient sequence that likely originated at the root of vertebrate. The second round of whole-genome duplication resulted in one copy of the CNE within HOTAIR and another copy embedded in noncoding transcript of HOXD11. Paralogous CNEs underwent compensatory mutations, exhibit sequence complementarity with respect to transcripts directionality, and have high affinity in vitro. The HOTAIR CNE resembled a poised enhancer in stem cells and an active enhancer in HOTAIR-expressing cells. HOTAIR expression is positively correlated with HOXC11 in cis and negatively correlated with HOXD11 in trans. We propose a dual modality of HOTAIR regulation where transcription of HOTAIR and its embedded enhancer regulates HOXC11 in cis and sequence complementarity between paralogous CNEs suggests HOXD11 regulation in trans.
Collapse
|
6
|
Sakuma Y, Matsunami M, Takada T, Suzuki H. Multiple Conserved Elements Structuring Inverted Repeats in the Mammalian Coat Color-Related Gene Asip. Zoolog Sci 2019; 36:23-30. [PMID: 31116535 DOI: 10.2108/zs180081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/17/2018] [Indexed: 11/17/2022]
Abstract
In the agouti signaling gene protein (Asip) of the house mouse (Mus musculus), inverted repeat (IR) arrays are known to exist in a non-coding region adjacent to the ventral-specific promoter region and the accompanying two exons (exons 1A and 1A'), which are around 100 kb upstream from the amino acid coding regions of exons 2, 3, and 4. To determine the gene structure of mammalian Asip and to elucidate trends in its evolution, non-coding sequences of six rodent (mouse, rat, Chinese hamster, squirrel, guinea pig, and naked mole rat) and three non-rodent (rabbit, human, and cow) species were retrieved from databases and compared. Our homology search analyses revealed the presence of three to five highly conserved non-coding elements (CNE). These CNEs were found to form IRs in rodents and lagomorphs. Combinations of IRs were further shown to build symmetric, long IR arrays. Intra- and inter-specific comparisons of the sequences of three universal CNEs showed homogeneity between CNE pairs within species. This implies that certain evolutionary constraints maintained the IR structure in the rodent and rabbit species.
Collapse
Affiliation(s)
- Yuki Sakuma
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Masatoshi Matsunami
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan, .,Graduate School of Medicine, University of the Ryukyus, Nishihara-cho 903-0215, Japan,
| | - Toyoyuki Takada
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hitoshi Suzuki
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
7
|
Polychronopoulos D, King JWD, Nash AJ, Tan G, Lenhard B. Conserved non-coding elements: developmental gene regulation meets genome organization. Nucleic Acids Res 2018; 45:12611-12624. [PMID: 29121339 PMCID: PMC5728398 DOI: 10.1093/nar/gkx1074] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Comparative genomics has revealed a class of non-protein-coding genomic sequences that display an extraordinary degree of conservation between two or more organisms, regularly exceeding that found within protein-coding exons. These elements, collectively referred to as conserved non-coding elements (CNEs), are non-randomly distributed across chromosomes and tend to cluster in the vicinity of genes with regulatory roles in multicellular development and differentiation. CNEs are organized into functional ensembles called genomic regulatory blocks–dense clusters of elements that collectively coordinate the expression of shared target genes, and whose span in many cases coincides with topologically associated domains. CNEs display sequence properties that set them apart from other sequences under constraint, and have recently been proposed as useful markers for the reconstruction of the evolutionary history of organisms. Disruption of several of these elements is known to contribute to diseases linked with development, and cancer. The emergence, evolutionary dynamics and functions of CNEs still remain poorly understood, and new approaches are required to enable comprehensive CNE identification and characterization. Here, we review current knowledge and identify challenges that need to be tackled to resolve the impasse in understanding extreme non-coding conservation.
Collapse
Affiliation(s)
- Dimitris Polychronopoulos
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - James W D King
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Alexander J Nash
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Ge Tan
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| |
Collapse
|
8
|
Zhang R, Knapp M, Kause F, Reutter H, Ludwig M. Role of the LF-SINE-Derived Distal ISL1 Enhancer in Patients with Classic Bladder Exstrophy. J Pediatr Genet 2017; 6:169-173. [PMID: 28794909 DOI: 10.1055/s-0037-1602387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
Abstract
A genome-wide association study and meta-analysis identified ISL1 as the first genome-wide significant susceptibility gene for classic bladder exstrophy (CBE). A short interspersed repetitive element (SINE), first detected in lobe-finned fishes (LF-SINE), was shown to drive Isl1 expression in embryonic mouse genital eminence. Hence, we assumed this enhancer a conclusive target for mutations associated with CBE formation and analyzed a cohort of 200 CBE patients. Although we identified two enhancer variants in five CBE patients, their clinical significance seems unlikely, implying that sequence variants in the ISL1 LF-SINE enhancer are not frequently associated with CBE.
Collapse
Affiliation(s)
- Rong Zhang
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Michael Knapp
- Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany
| | - Franziska Kause
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Evaluation of IRX Genes and Conserved Noncoding Elements in a Region on 5p13.3 Linked to Families with Familial Idiopathic Scoliosis and Kyphosis. G3-GENES GENOMES GENETICS 2016; 6:1707-12. [PMID: 27172222 PMCID: PMC4889666 DOI: 10.1534/g3.116.029975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because of genetic heterogeneity present in idiopathic scoliosis, we previously defined clinical subsets (a priori) from a sample of families with idiopathic scoliosis to find genes involved with spinal curvature. Previous genome-wide linkage analysis of seven families with at least two individuals with kyphoscoliosis found linkage (P-value = 0.002) in a 3.5-Mb region on 5p13.3 containing only three known genes, IRX1, IRX2, and IRX4. In this study, the exons of IRX1, IRX2, and IRX4, the conserved noncoding elements in the region, and the exons of a nonprotein coding RNA, LOC285577, were sequenced. No functional sequence variants were identified. An intrafamilial test of association found several associated noncoding single nucleotide variants. The strongest association was with rs12517904 (P = 0.00004), located 6.5 kb downstream from IRX1. In one family, the genotypes of nine variants differed from the reference allele in all individuals with kyphoscoliosis, and two of three individuals with scoliosis, but did not differ from the reference allele in all other genotyped individuals. One of these variants, rs117273909, was located in a conserved noncoding region that functions as an enhancer in mice. To test whether the variant allele at rs117273909 had an effect on enhancer activity, zebrafish transgenesis was performed with overlapping fragments of 198 and 687 bp containing either the wild type or the variant allele. Our data suggests that this region acts as a regulatory element; however, its size and target gene(s) need to be identified to determine its role in idiopathic scoliosis.
Collapse
|
10
|
Maeso I, Tena JJ. Favorable genomic environments for cis-regulatory evolution: A novel theoretical framework. Semin Cell Dev Biol 2015; 57:2-10. [PMID: 26673387 DOI: 10.1016/j.semcdb.2015.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/02/2015] [Accepted: 12/05/2015] [Indexed: 12/22/2022]
Abstract
Cis-regulatory changes are arguably the primary evolutionary source of animal morphological diversity. With the recent explosion of genome-wide comparisons of the cis-regulatory content in different animal species is now possible to infer general principles underlying enhancer evolution. However, these studies have also revealed numerous discrepancies and paradoxes, suggesting that the mechanistic causes and modes of cis-regulatory evolution are still not well understood and are probably much more complex than generally appreciated. Here, we argue that the mutational mechanisms and genomic regions generating new regulatory activities must comply with the constraints imposed by the molecular properties of cis-regulatory elements (CREs) and the organizational features of long-range chromatin interactions. Accordingly, we propose a new integrative evolutionary framework for cis-regulatory evolution based on two major premises for the origin of novel enhancer activity: (i) an accessible chromatin environment and (ii) compatibility with the 3D structure and interactions of pre-existing CREs. Mechanisms and DNA sequences not fulfilling these premises, will be less likely to have a measurable impact on gene expression and as such, will have a minor contribution to the evolution of gene regulation. Finally, we discuss current comparative cis-regulatory data under the light of this new evolutionary model, and propose that the two most prominent mechanisms for the evolution of cis-regulatory changes are the overprinting of ancestral CREs and the exaptation of transposable elements.
Collapse
Affiliation(s)
- Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Universidad Pablo de Olavide, 41013 Seville, Spain.
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Universidad Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
11
|
Mi X, Yang J, Cao L, Wei X, Zhu Y, Li Q, Liu X, He X, Liao Q, Yan Z. Potential DNA markers as a rapid tracing tool for animal adulterants in vegetarian food. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Minhas R, Pauls S, Ali S, Doglio L, Khan MR, Elgar G, Abbasi AA. Cis-regulatory control of human GLI2 expression in the developing neural tube and limb bud. Dev Dyn 2015; 244:681-92. [DOI: 10.1002/dvdy.24266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/29/2015] [Accepted: 02/16/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rashid Minhas
- National Center for Bioinformatics; Program of Comparative and Evolutionary Genomics; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Stefan Pauls
- Division of Systems Biology; MRC National Institute for Medical Research; The Ridgeway, Mill Hill London NW7 1AA United Kingdom
| | - Shahid Ali
- National Center for Bioinformatics; Program of Comparative and Evolutionary Genomics; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Laura Doglio
- Division of Systems Biology; MRC National Institute for Medical Research; The Ridgeway, Mill Hill London NW7 1AA United Kingdom
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology; National Agricultural Research Center; Park Road Islamabad Pakistan
| | - Greg Elgar
- Division of Systems Biology; MRC National Institute for Medical Research; The Ridgeway, Mill Hill London NW7 1AA United Kingdom
| | - Amir Ali Abbasi
- National Center for Bioinformatics; Program of Comparative and Evolutionary Genomics; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad 45320 Pakistan
| |
Collapse
|
13
|
De Silva DR, Nichols R, Elgar G. Purifying selection in deeply conserved human enhancers is more consistent than in coding sequences. PLoS One 2014; 9:e103357. [PMID: 25062004 PMCID: PMC4111549 DOI: 10.1371/journal.pone.0103357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 07/01/2014] [Indexed: 12/30/2022] Open
Abstract
Comparison of polymorphism at synonymous and non-synonymous sites in protein-coding DNA can provide evidence for selective constraint. Non-coding DNA that forms part of the regulatory landscape presents more of a challenge since there is not such a clear-cut distinction between sites under stronger and weaker selective constraint. Here, we consider putative regulatory elements termed Conserved Non-coding Elements (CNEs) defined by their high level of sequence identity across all vertebrates. Some mutations in these regions have been implicated in developmental disorders; we analyse CNE polymorphism data to investigate whether such deleterious effects are widespread in humans. Single nucleotide variants from the HapMap and 1000 Genomes Projects were mapped across nearly 2000 CNEs. In the 1000 Genomes data we find a significant excess of rare derived alleles in CNEs relative to coding sequences; this pattern is absent in HapMap data, apparently obscured by ascertainment bias. The distribution of polymorphism within CNEs is not uniform; we could identify two categories of sites by exploiting deep vertebrate alignments: stretches that are non-variant, and those that have at least one substitution. The conserved category has fewer polymorphic sites and a greater excess of rare derived alleles, which can be explained by a large proportion of sites under strong purifying selection within humans--higher than that for non-synonymous sites in most protein coding regions, and comparable to that at the strongly conserved trans-dev genes. Conversely, the more evolutionarily labile CNE sites have an allele frequency distribution not significantly different from non-synonymous sites. Future studies should exploit genome-wide re-sequencing to obtain better coverage in selected non-coding regions, given the likelihood that mutations in evolutionarily conserved enhancer sequences are deleterious. Discovery pipelines should validate non-coding variants to aid in identifying causal and risk-enhancing variants in complex disorders, in contrast to the current focus on exome sequencing.
Collapse
Affiliation(s)
- Dilrini R. De Silva
- Systems Biology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Greg Elgar
- Systems Biology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| |
Collapse
|
14
|
Molecular Evolution and Functional Divergence of the Metallothionein Gene Family in Vertebrates. J Mol Evol 2014; 78:217-33. [DOI: 10.1007/s00239-014-9612-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/01/2014] [Indexed: 10/25/2022]
|
15
|
Parker HJ, Sauka-Spengler T, Bronner M, Elgar G. A reporter assay in lamprey embryos reveals both functional conservation and elaboration of vertebrate enhancers. PLoS One 2014; 9:e85492. [PMID: 24416417 PMCID: PMC3887057 DOI: 10.1371/journal.pone.0085492] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/05/2013] [Indexed: 11/27/2022] Open
Abstract
The sea lamprey is an important model organism for investigating the evolutionary origins of vertebrates. As more vertebrate genome sequences are obtained, evolutionary developmental biologists are becoming increasingly able to identify putative gene regulatory elements across the breadth of the vertebrate taxa. The identification of these regions makes it possible to address how changes at the genomic level have led to changes in developmental gene regulatory networks and ultimately to the evolution of morphological diversity. Comparative genomics approaches using sea lamprey have already predicted a number of such regulatory elements in the lamprey genome. Functional characterisation of these sequences and other similar elements requires efficient reporter assays in lamprey. In this report, we describe the development of a transient transgenesis method for lamprey embryos. Focusing on conserved non-coding elements (CNEs), we use this method to investigate their functional conservation across the vertebrate subphylum. We find instances of both functional conservation and lineage-specific functional evolution of CNEs across vertebrates, emphasising the utility of functionally testing homologous CNEs in their host species.
Collapse
Affiliation(s)
- Hugo J. Parker
- Division of Systems Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Tatjana Sauka-Spengler
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Marianne Bronner
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Greg Elgar
- Division of Systems Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Harmston N, Baresic A, Lenhard B. The mystery of extreme non-coding conservation. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130021. [PMID: 24218634 PMCID: PMC3826495 DOI: 10.1098/rstb.2013.0021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regions of several dozen to several hundred base pairs of extreme conservation have been found in non-coding regions in all metazoan genomes. The distribution of these elements within and across genomes has suggested that many have roles as transcriptional regulatory elements in multi-cellular organization, differentiation and development. Currently, there is no known mechanism or function that would account for this level of conservation at the observed evolutionary distances. Previous studies have found that, while these regions are under strong purifying selection, and not mutational coldspots, deletion of entire regions in mice does not necessarily lead to identifiable changes in phenotype during development. These opposing findings lead to several questions regarding their functional importance and why they are under strong selection in the first place. In this perspective, we discuss the methods and techniques used in identifying and dissecting these regions, their observed patterns of conservation, and review the current hypotheses on their functional significance.
Collapse
Affiliation(s)
- Nathan Harmston
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London and MRC Clinical Sciences Centre, , Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
17
|
Matsunami M, Saitou N. Vertebrate paralogous conserved noncoding sequences may be related to gene expressions in brain. Genome Biol Evol 2013; 5:140-50. [PMID: 23267051 PMCID: PMC3595034 DOI: 10.1093/gbe/evs128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vertebrate genomes include gene regulatory elements in protein-noncoding regions. A part of gene regulatory elements are expected to be conserved according to their functional importance, so that evolutionarily conserved noncoding sequences (CNSs) might be good candidates for those elements. In addition, paralogous CNSs, which are highly conserved among both orthologous loci and paralogous loci, have the possibility of controlling overlapping expression patterns of their adjacent paralogous protein-coding genes. The two-round whole-genome duplications (2R WGDs), which most probably occurred in the vertebrate common ancestors, generated large numbers of paralogous protein-coding genes and their regulatory elements. These events could contribute to the emergence of vertebrate features. However, the evolutionary history and influences of the 2R WGDs are still unclear, especially in noncoding regions. To address this issue, we identified paralogous CNSs. Region-focused Basic Local Alignment Search Tool (BLAST) search of each synteny block revealed 7,924 orthologous CNSs and 309 paralogous CNSs conserved among eight high-quality vertebrate genomes. Paralogous CNSs we found contained 115 previously reported ones and newly detected 194 ones. Through comparisons with VISTA Enhancer Browser and available ChIP-seq data, one-third (103) of paralogous CNSs detected in this study showed gene regulatory activity in the brain at several developmental stages. Their genomic locations are highly enriched near the transcription factor-coding regions, which are expressed in brain and neural systems. These results suggest that paralogous CNSs are conserved mainly because of maintaining gene expression in the vertebrate brain.
Collapse
Affiliation(s)
- Masatoshi Matsunami
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
- Present address: Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Naruya Saitou
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- *Corresponding author: E-mail:
| |
Collapse
|
18
|
Harmston N, Lenhard B. Chromatin and epigenetic features of long-range gene regulation. Nucleic Acids Res 2013; 41:7185-99. [PMID: 23766291 PMCID: PMC3753629 DOI: 10.1093/nar/gkt499] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The precise regulation of gene transcription during metazoan development is controlled by a complex system of interactions between transcription factors, histone modifications and modifying enzymes and chromatin conformation. Developments in chromosome conformation capture technologies have revealed that interactions between regions of chromatin are pervasive and highly cell-type specific. The movement of enhancers and promoters in and out of higher-order chromatin structures within the nucleus are associated with changes in expression and histone modifications. However, the factors responsible for mediating these changes and determining enhancer:promoter specificity are still not completely known. In this review, we summarize what is known about the patterns of epigenetic and chromatin features characteristic of elements involved in long-range interactions. In addition, we review the insights into both local and global patterns of chromatin interactions that have been revealed by the latest experimental and computational methods.
Collapse
Affiliation(s)
- Nathan Harmston
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, London W12 0NN, UK, Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London W12 0NN, UK and Department of Informatics, University of Bergen, Thromøhlensgate 55, N-5008 Bergen, Norway
| | | |
Collapse
|
19
|
Dimitrieva S, Bucher P. Genomic context analysis reveals dense interaction network between vertebrate ultraconserved non-coding elements. Bioinformatics 2013; 28:i395-i401. [PMID: 22962458 PMCID: PMC3436827 DOI: 10.1093/bioinformatics/bts400] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Motivation: Genomic context analysis, also known as phylogenetic profiling, is widely used to infer functional interactions between proteins but rarely applied to non-coding cis-regulatory DNA elements. We were wondering whether this approach could provide insights about utlraconserved non-coding elements (UCNEs). These elements are organized as large clusters, so-called gene regulatory blocks (GRBs) around key developmental genes. Their molecular functions and the reasons for their high degree of conservation remain enigmatic. Results: In a special setting of genomic context analysis, we analyzed the fate of GRBs after a whole-genome duplication event in five fish genomes. We found that in most cases all UCNEs were retained together as a single block, whereas the corresponding target genes were often retained in two copies, one completely devoid of UCNEs. This ‘winner-takes-all’ pattern suggests that UCNEs of a GRB function in a highly cooperative manner. We propose that the multitude of interactions between UCNEs is the reason for their extreme sequence conservation. Supplementary information:Supplementary data are available at Bioinformatics online and at http://ccg.vital-it.ch/ucne/
Collapse
Affiliation(s)
- Slavica Dimitrieva
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
20
|
Identification of two evolutionarily conserved 5' cis-elements involved in regulating spatiotemporal expression of Nolz-1 during mouse embryogenesis. PLoS One 2013; 8:e54485. [PMID: 23349903 PMCID: PMC3551757 DOI: 10.1371/journal.pone.0054485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 12/12/2012] [Indexed: 01/13/2023] Open
Abstract
Proper development of vertebrate embryos depends not only on the crucial funtions of key evolutionarily conserved transcriptional regulators, but also on the precisely spatiotemporal expression of these transcriptional regulators. The mouse Nolz-1/Znf503/Zfp503 gene is a mammalian member of the conserved zinc-finger containing NET family. The expression pattern of Nolz-1 in mouse embryos is highly correlated with that of its homologues in different species. To study the spatiotemporal regulation of Nolz-1, we first identified two evolutionarily conserved cis-elements, UREA and UREB, in 5' upstream regions of mouse Nolz-1 locus. We then generated UREA-LacZ and UREB-LacZ transgenic reporter mice to characterize the putative enhancer activity of UREA and UREB. The results indicated that both UREA and UREB contained tissue-specific enhancer activity for directing LacZ expression in selective tissue organs during mouse embryogensis. UREA directed LacZ expression preferentially in selective regions of developing central nervous system, including the forebrain, hindbrain and spinal cord, whereas UREB directed LacZ expression mainly in other developing tissue organs such as the Nolz-1 expressing branchial arches and its derivatives, the apical ectodermal ridge of limb buds and the urogenital tissues. Both UREA and UREB directed strong LacZ expression in the lateral plate mesoderm where endogenous Nolz-1 was also expressed. Despite that the LacZ expression pattern did not full recapitulated the endogenous Nolz-1 expression and some mismatched expression patterns were observed, co-expression of LacZ and Nolz-1 did occur in many cells of selective tissue organs, such as in the ventrolateral cortex and ventral spinal cord of UREA-LacZ embryos, and the urogenital tubes of UREB-LacZ embryos. Taken together, our study suggests that UREA and UREB may function as evolutionarily conserved cis-regulatory elements that coordinate with other cis-elements to regulate spatiotemporal expression of Nolz-1 in different tissue organs during mouse embryogenesis.
Collapse
|
21
|
Dimitrieva S, Bucher P. UCNEbase--a database of ultraconserved non-coding elements and genomic regulatory blocks. Nucleic Acids Res 2012. [PMID: 23193254 PMCID: PMC3531063 DOI: 10.1093/nar/gks1092] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UCNEbase (http://ccg.vital-it.ch/UCNEbase) is a free, web-accessible information resource on the evolution and genomic organization of ultra-conserved non-coding elements (UCNEs). It currently covers 4351 such elements in 18 different species. The majority of UCNEs are supposed to be transcriptional regulators of key developmental genes. As most of them occur as clusters near potential target genes, the database is organized along two hierarchical levels: individual UCNEs and ultra-conserved genomic regulatory blocks (UGRBs). UCNEbase introduces a coherent nomenclature for UCNEs reflecting their respective associations with likely target genes. Orthologous and paralogous UCNEs share components of their names and are systematically cross-linked. Detailed synteny maps between the human and other genomes are provided for all UGRBs. UCNEbase is managed by a relational database system and can be accessed by a variety of web-based query pages. As it relies on the UCSC genome browser as visualization platform, a large part of its data content is also available as browser viewable custom track files. UCNEbase is potentially useful to any computational, experimental or evolutionary biologist interested in conserved non-coding DNA elements in vertebrates.
Collapse
Affiliation(s)
- Slavica Dimitrieva
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) and Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
- *To whom correspondence should be addressed. Tel: +41 21 693 0956; Fax: +41 21 693 1850;
| | - Philipp Bucher
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) and Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
- Correspondence may also be addressed to Slavica Dimitrieva. Tel: +41 21 693 0958; Fax: +41 21 693 1850;
| |
Collapse
|
22
|
Irimia M, Tena JJ, Alexis MS, Fernandez-Miñan A, Maeso I, Bogdanovic O, de la Calle-Mustienes E, Roy SW, Gómez-Skarmeta JL, Fraser HB. Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res 2012; 22:2356-67. [PMID: 22722344 PMCID: PMC3514665 DOI: 10.1101/gr.139725.112] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The order of genes in eukaryotic genomes has generally been assumed to be neutral, since gene order is largely scrambled over evolutionary time. Only a handful of exceptional examples are known, typically involving deeply conserved clusters of tandemly duplicated genes (e.g., Hox genes and histones). Here we report the first systematic survey of microsynteny conservation across metazoans, utilizing 17 genome sequences. We identified nearly 600 pairs of unrelated genes that have remained tightly physically linked in diverse lineages across over 600 million years of evolution. Integrating sequence conservation, gene expression data, gene function, epigenetic marks, and other genomic features, we provide extensive evidence that many conserved ancient linkages involve (1) the coordinated transcription of neighboring genes, or (2) genomic regulatory blocks (GRBs) in which transcriptional enhancers controlling developmental genes are contained within nearby bystander genes. In addition, we generated ChIP-seq data for key histone modifications in zebrafish embryos, which provided further evidence of putative GRBs in embryonic development. Finally, using chromosome conformation capture (3C) assays and stable transgenic experiments, we demonstrate that enhancers within bystander genes drive the expression of genes such as Otx and Islet, critical regulators of central nervous system development across bilaterians. These results suggest that ancient genomic functional associations are far more common than previously thought—involving ∼12% of the ancestral bilaterian genome—and that cis-regulatory constraints are crucial in determining metazoan genome architecture.
Collapse
Affiliation(s)
- Manuel Irimia
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ultraconserved elements in the human genome: association and transmission analyses of highly constrained single-nucleotide polymorphisms. Genetics 2012; 192:253-66. [PMID: 22714408 DOI: 10.1534/genetics.112.141945] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ultraconserved elements in the human genome likely harbor important biological functions as they are dosage sensitive and are able to direct tissue-specific expression. Because they are under purifying selection, variants in these elements may have a lower frequency in the population but a higher likelihood of association with complex traits. We tested a set of highly constrained SNPs (hcSNPs) distributed genome-wide among ultraconserved and nearly ultraconserved elements for association with seven traits related to reproductive (age at natural menopause, number of children, age at first child, and age at last child) and overall [longevity, body mass index (BMI), and height] fitness. Using up to 24,047 European-American samples from the National Heart, Lung, and Blood Institute Candidate Gene Association Resource (CARe), we observed an excess of associations with BMI and height. In an independent replication panel the most strongly associated SNPs showed an 8.4-fold enrichment of associations at the nominal level, including three variants in previously identified loci and one in a locus (DENND1A) previously shown to be associated with polycystic ovary syndrome. Finally, using 1430 family trios, we showed that the transmissions from heterozygous parents to offspring of the derived alleles of rare (frequency ≤ 0.5%) hcSNPs are not biased, particularly after adjusting for the rates of genotype missingness and error in the data. The lack of transmission bias ruled out an immediately and strongly deleterious effect due to the rare derived alleles, consistent with the observation that mice homozygous for the deletion of ultraconserved elements showed no overt phenotype. Our study also illustrated the importance of carefully modeling potential technical confounders when analyzing genotype data of rare variants.
Collapse
|
24
|
Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol Direct 2012; 7:11. [PMID: 22507701 PMCID: PMC3488318 DOI: 10.1186/1745-6150-7-11] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/15/2012] [Indexed: 12/31/2022] Open
Abstract
Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers’ Reports section.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information NLM/NIH, 8600 Rockville Pike, Bldg, 38A, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
25
|
Beaster-Jones L. Cis-regulation and conserved non-coding elements in amphioxus. Brief Funct Genomics 2012; 11:118-30. [DOI: 10.1093/bfgp/els006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
An ancient genomic regulatory block conserved across bilaterians and its dismantling in tetrapods by retrogene replacement. Genome Res 2012; 22:642-55. [PMID: 22234889 DOI: 10.1101/gr.132233.111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developmental genes are regulated by complex, distantly located cis-regulatory modules (CRMs), often forming genomic regulatory blocks (GRBs) that are conserved among vertebrates and among insects. We have investigated GRBs associated with Iroquois homeobox genes in 39 metazoans. Despite 600 million years of independent evolution, Iroquois genes are linked to ankyrin-repeat-containing Sowah genes in nearly all studied bilaterians. We show that Iroquois-specific CRMs populate the Sowah locus, suggesting that regulatory constraints underlie the maintenance of the Iroquois-Sowah syntenic block. Surprisingly, tetrapod Sowah orthologs are intronless and not associated with Iroquois; however, teleost and elephant shark data demonstrate that this is a derived feature, and that many Iroquois-CRMs were ancestrally located within Sowah introns. Retroposition, gene, and genome duplication have allowed selective elimination of Sowah exons from the Iroquois regulatory landscape while keeping associated CRMs, resulting in large associated gene deserts. These results highlight the importance of CRMs in imposing constraints to genome architecture, even across large phylogenetic distances, and of gene duplication-mediated genetic redundancy to disentangle these constraints, increasing genomic plasticity.
Collapse
|
27
|
Tena JJ, Alonso ME, de la Calle-Mustienes E, Splinter E, de Laat W, Manzanares M, Gómez-Skarmeta JL. An evolutionarily conserved three-dimensional structure in the vertebrate Irx clusters facilitates enhancer sharing and coregulation. Nat Commun 2011; 2:310. [PMID: 21556064 DOI: 10.1038/ncomms1301] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/04/2011] [Indexed: 01/22/2023] Open
Abstract
Developmental gene clusters are paradigms for the study of gene regulation; however, the mechanisms that mediate phenomena such as coregulation and enhancer sharing remain largely elusive. Here we address this issue by analysing the vertebrate Irx clusters. We first present a deep enhancer screen of a 2-Mbp span covering the IrxA cluster. Using chromosome conformation capture, we show that enhancer sharing is widespread within the cluster, explaining its evolutionarily conserved organization. We also identify a three-dimensional architecture, probably formed through interactions with CCCTC-binding factor, which is present within both Irx clusters of mouse, Xenopus and zebrafish. This architecture brings the promoters of the first two genes together in the same chromatin landscape. We propose that this unique and evolutionarily conserved genomic architecture of the vertebrate Irx clusters is essential for the coregulation of the first two genes and simultaneously maintains the third gene in a partially independent regulatory landscape.
Collapse
Affiliation(s)
- Juan J Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013 Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Chang SLY, Yan YT, Shi YL, Liu YC, Takahashi H, Liu FC. Region- and cell type-selective expression of the evolutionarily conserved Nolz-1/zfp503 gene in the developing mouse hindbrain. Gene Expr Patterns 2011; 11:525-32. [PMID: 21945624 DOI: 10.1016/j.gep.2011.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 11/30/2022]
Abstract
Nolz-1/Zfp503, a zinc finger-containing gene, is a mammalian member of the SP1-related nocA/elb/tlp-1 gene family. Previous studies have shown that Nolz-1 homologs are important for patterning the rhombomeres in zebrafish hindbrain. We therefore studied the expression pattern of Nolz-1 in the developing mouse hindbrain. Nolz-1 mRNA expression was detected in the prospective rhombomere 3, 5 and caudal regions as early as E8.75. After E11.5, Nolz-1-positive cells were organized as distinct cell clusters, and they were largely non-overlapped with either Pax2-positive or Phox2b-positive domains. Most interestingly, we found that Nolz-1 was specifically expressed by Phox2b-negative/Isl1/2-positive somatic motor neurons, but not by Phox2b-positive/Isl1/2-positive branchial and visceral motor neurons, suggesting that Nolz-1 may regulate development of somatic motor neurons in the hindbrain. In addition to be expressed in differentiating post-mitotic neurons, Nolz-1 was also expressed by progenitor cells in the ventricular zone located in the dorsal part of aqueduct and the alar plates of hindbrain, which suggests a regulatory role of Nolz-1 in the germinal zone. Taken together, based on its domain- and cell type-selective pattern, Nolz-1 may involve in regulation of various developmental processes, including regional patterning and cell-type specification and differentiation in the developing mouse hindbrain.
Collapse
Affiliation(s)
- Sunny Li-Yun Chang
- Institute of Neuroscience, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
29
|
Royo JL, Hidalgo C, Roncero Y, Seda MA, Akalin A, Lenhard B, Casares F, Gómez-Skarmeta JL. Dissecting the transcriptional regulatory properties of human chromosome 16 highly conserved non-coding regions. PLoS One 2011; 6:e24824. [PMID: 21935474 PMCID: PMC3172297 DOI: 10.1371/journal.pone.0024824] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/18/2011] [Indexed: 12/28/2022] Open
Abstract
Non-coding DNA conservation across species has been often used as a predictor for transcriptional enhancer activity. However, only a few systematic analyses of the function of these highly conserved non-coding regions (HCNRs) have been performed. Here we use zebrafish transgenic assays to perform a systematic study of 113 HCNRs from human chromosome 16. By comparing transient and stable transgenesis, we show that the first method is highly inefficient, leading to 40% of false positives and 20% of false negatives. When analyzed in stable transgenic lines, a great majority of HCNRs were active in the central nervous system, although some of them drove expression in other organs such as the eye and the excretory system. Finally, by testing a fraction of the HCNRs lacking enhancer activity for in vivo insulator activity, we find that 20% of them may contain enhancer-blocking function. Altogether our data indicate that HCNRs may contain different types of cis-regulatory activity, including enhancer, insulators as well as other not yet discovered functions.
Collapse
Affiliation(s)
- José Luis Royo
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Carmen Hidalgo
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Yolanda Roncero
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - María Angeles Seda
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Altuna Akalin
- Computational Biology Unit, Bergen Center for Computational Science, University of Bergen, Bergen, Norway
| | - Boris Lenhard
- Computational Biology Unit, Bergen Center for Computational Science, University of Bergen, Bergen, Norway
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Fernando Casares
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
- * E-mail:
| |
Collapse
|
30
|
Functional analysis of conserved non-coding regions around the short stature hox gene (shox) in whole zebrafish embryos. PLoS One 2011; 6:e21498. [PMID: 21731768 PMCID: PMC3123344 DOI: 10.1371/journal.pone.0021498] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/30/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mutations in the SHOX gene are responsible for Leri-Weill Dyschondrosteosis, a disorder characterised by mesomelic limb shortening. Recent investigations into regulatory elements surrounding SHOX have shown that deletions of conserved non-coding elements (CNEs) downstream of the SHOX gene produce a phenotype indistinguishable from Leri-Weill Dyschondrosteosis. As this gene is not found in rodents, we used zebrafish as a model to characterise the expression pattern of the shox gene across the whole embryo and characterise the enhancer domains of different CNEs associated with this gene. METHODOLOGY/PRINCIPAL FINDINGS Expression of the shox gene in zebrafish was identified using in situ hybridization, with embryos showing expression in the blood, putative heart, hatching gland, brain pharyngeal arch, olfactory epithelium, and fin bud apical ectodermal ridge. By identifying sequences showing 65% identity over at least 40 nucleotides between Fugu, human, dog and opossum we uncovered 35 CNEs around the shox gene. These CNEs were compared with CNEs previously discovered by Sabherwal et al., resulting in the identification of smaller more deeply conserved sub-sequence. Sabherwal et al.'s CNEs were assayed for regulatory function in whole zebrafish embryos resulting in the identification of additional tissues under the regulatory control of these CNEs. CONCLUSION/SIGNIFICANCE Our results using whole zebrafish embryos have provided a more comprehensive picture of the expression pattern of the shox gene, and a better understanding of its regulation via deeply conserved noncoding elements. In particular, we identify additional tissues under the regulatory control of previously identified SHOX CNEs. We also demonstrate the importance of these CNEs in evolution by identifying duplicated shox CNEs and more deeply conserved sub-sequences within already identified CNEs.
Collapse
|
31
|
Chatterjee S, Lufkin T. Fishing for function: zebrafish BAC transgenics for functional genomics. MOLECULAR BIOSYSTEMS 2011; 7:2345-51. [PMID: 21647532 DOI: 10.1039/c1mb05116d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transgenics using bacterial artificial chromosomes (BACs) offers a great opportunity to look at gene regulation in a developing embryo. The modified BAC containing a reporter inserted just before the translational start site of the gene of interest allows for the visualization of spatio-temporal gene expression. Though this method has been used in the mouse model extensively, its utility in zebrafish studies is relatively new. This review aims to look at the utility of making BAC transgenics in zebrafish and its applications in functional genomics. We look at the various methods to modify the BAC, some limitations and what the future holds.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore
| | | |
Collapse
|
32
|
When needles look like hay: how to find tissue-specific enhancers in model organism genomes. Dev Biol 2010; 350:239-54. [PMID: 21130761 DOI: 10.1016/j.ydbio.2010.11.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 11/11/2010] [Accepted: 11/22/2010] [Indexed: 01/22/2023]
Abstract
A major prerequisite for the investigation of tissue-specific processes is the identification of cis-regulatory elements. No generally applicable technique is available to distinguish them from any other type of genomic non-coding sequence. Therefore, researchers often have to identify these elements by elaborate in vivo screens, testing individual regions until the right one is found. Here, based on many examples from the literature, we summarize how functional enhancers have been isolated from other elements in the genome and how they have been characterized in transgenic animals. Covering computational and experimental studies, we provide an overview of the global properties of cis-regulatory elements, like their specific interactions with promoters and target gene distances. We describe conserved non-coding elements (CNEs) and their internal structure, nucleotide composition, binding site clustering and overlap, with a special focus on developmental enhancers. Conflicting data and unresolved questions on the nature of these elements are highlighted. Our comprehensive overview of the experimental shortcuts that have been found in the different model organism communities and the new field of high-throughput assays should help during the preparation phase of a screen for enhancers. The review is accompanied by a list of general guidelines for such a project.
Collapse
|
33
|
Evolution of conserved non-coding sequences within the vertebrate Hox clusters through the two-round whole genome duplications revealed by phylogenetic footprinting analysis. J Mol Evol 2010; 71:427-36. [PMID: 20981416 DOI: 10.1007/s00239-010-9396-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/17/2010] [Indexed: 02/01/2023]
Abstract
As a result of two-round whole genome duplications, four or more paralogous Hox clusters exist in vertebrate genomes. The paralogous genes in the Hox clusters show similar expression patterns, implying shared regulatory mechanisms for expression of these genes. Previous studies partly revealed the expression mechanisms of Hox genes. However, cis-regulatory elements that control these paralogous gene expression are still poorly understood. Toward solving this problem, the authors searched conserved non-coding sequences (CNSs), which are candidates of cis-regulatory elements. When comparing orthologous Hox clusters of 19 vertebrate species, 208 intergenic conserved regions were found. The authors then searched for CNSs that were conserved not only between orthologous clusters but also among the four paralogous Hox clusters. The authors found three regions that are conserved among all the four clusters and eight regions that are conserved between intergenic regions of two paralogous Hox clusters. In total, 28 CNSs were identified in the paralogous Hox clusters, and nine of them were newly found in this study. One of these novel regions bears a RARE motif. These CNSs are candidates for gene expression regulatory regions among paralogous Hox clusters. The authors also compared vertebrate CNSs with amphioxus CNSs within the Hox cluster, and found that two CNSs in the HoxA and HoxB clusters retain homology with amphioxus CNSs through the two-round whole genome duplications.
Collapse
|
34
|
Callery EM, Thomsen GH, Smith JC. A divergent Tbx6-related gene and Tbx6 are both required for neural crest and intermediate mesoderm development in Xenopus. Dev Biol 2010; 340:75-87. [PMID: 20083100 PMCID: PMC2877776 DOI: 10.1016/j.ydbio.2010.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 12/23/2009] [Accepted: 01/08/2010] [Indexed: 10/31/2022]
Abstract
T-box family transcription factors play many roles in Metazoan development. Here we characterise Tbx6r, a unique Tbx6 paralogue isolated from the amphibian Xenopus. The evolution and developmental integration of this divergent T-box gene within the vertebrates reveals an unexpected level of plasticity within this conserved family of developmental regulators. We show that despite their co-expression, Tbx6 and Tbx6r have dissimilar transcriptional responses to ligand treatment, and their ability to activate ligand expression is also very different. The two paralogues have distinct inductive properties: Tbx6 induces mesoderm whereas Tbx6r induces anterior neural markers. We use hybrid proteins in an effort to understand this difference, and implicate the C-terminal regions of the proteins in their inductive specificities. Through loss-of-function analyses using antisense morpholino oligonucleotides we show that both Tbx6 paralogues perform essential functions in the development of the paraxial and intermediate mesoderm and the neural crest in Xenopus. We demonstrate that Tbx6 and Tbx6r both induce FGF8 expression as well as that of pre-placodal markers, and that Tbx6 can also induce neural crest markers via a ligand-dependent mechanism involving FGF8 and Wnt8. Our data thus identify an important new function for this key developmental regulator.
Collapse
Affiliation(s)
- Elizabeth M Callery
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | | | |
Collapse
|
35
|
Developmental diseases and the hypothetical Master Development Program. Med Hypotheses 2010; 74:564-73. [DOI: 10.1016/j.mehy.2009.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 11/24/2022]
|
36
|
Jenkins D, Caubit X, Dimovski A, Matevska N, Lye CM, Cabuk F, Gucev Z, Tasic V, Fasano L, Woolf AS. Analysis of TSHZ2 and TSHZ3 genes in congenital pelvi-ureteric junction obstruction. Nephrol Dial Transplant 2010; 25:54-60. [PMID: 19745106 DOI: 10.1093/ndt/gfp453] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Congenital pelvi-ureteric junction obstruction (PUJO) affects 0.3% of human births. It may result from aberrant smooth muscle development in the renal pelvis, resulting in hydronephrosis. Mice that are null mutant for the Teashirt3 (Tshz3) gene exhibit congenital PUJO with defective smooth muscle differentiation and absent peristalsis in the proximal ureter. METHODS Given the phenotype of Tshz3 mutant mice, we considered that Teashirt genes, which code for a family of transcription factors, might represent candidate genes for human PUJO. To evaluate this possibility, we used in situ hydridization to analyse the three mammalian Tshz genes in mouse embryonic ureters and determined whether TSHZ3 was expressed in the human embryonic ureter. TSHZ2 and TSHZ3 were sequenced in index cases with non-syndromic PUJO. RESULTS Tshz2 and Tshz3 genes were detected in mouse ureters and TSHZ3 was expressed in the human embryonic renal pelvis. Direct sequencing of TSHZ2 and TSHZ3 did not identify any mutations in an initial cohort of 48 PUJO index cases, excluding these genes as a major cause of this condition. A polymorphic missense change (E469G) in TSHZ3 was identified at a residue highly conserved throughout evolution in all Teashirt proteins, although subsequently no significant difference between the E469G allele frequency in Albanian and Macedonian PUJO index cases (3.2%) versus 633 control individuals (1.7%) was found (P = 0.18). CONCLUSIONS Mutations in TSHZ2 and TSHZ3 are not a major cause of PUJO, at least in Albanian and Macedonian populations. Expression of these genes in the human fetal ureter emphasizes the importance of analysing these genes in other groups of patients with renal tract malformations.
Collapse
Affiliation(s)
- Dagan Jenkins
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Spitz F. Control of vertebrate Hox clusters by remote and global cis-acting regulatory sequences. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:63-78. [PMID: 20795322 DOI: 10.1007/978-1-4419-6673-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite apparently shared structural organisation and functional roles, vertebrate Hox genes are controlled by regulatory mechanisms rather distinct from those of the prototypic Drosophila Antennapedia (ANT-C) and Bithorax (BX-C) Complexes. If individual regulatory modules have been shown to recapitulate specific Hox expression patterns, other experimental studies underscore that vertebrate Hox clusters are controlled in many of their functions in a global manner, through distinct mechanisms. We will discuss the different models that have been proposed to account for these global regulatory modes. In this context, the studies of the regulation of the HoxD complex during limb development highlighted the role of global regulatory elements and the different mechanisms associated to transform a structural organisation into distinct temporal and spatial expression domains. We will further discuss how these mechanisms may have benefited from the structure of the vertebrate homeotic clusters and reciprocally contribute to shape their evolution towards an increased level of organisation and compaction.
Collapse
Affiliation(s)
- François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
38
|
McEwen GK, Goode DK, Parker HJ, Woolfe A, Callaway H, Elgar G. Early evolution of conserved regulatory sequences associated with development in vertebrates. PLoS Genet 2009; 5:e1000762. [PMID: 20011110 PMCID: PMC2781166 DOI: 10.1371/journal.pgen.1000762] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 11/10/2009] [Indexed: 01/22/2023] Open
Abstract
Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA. Recent comparative analyses of vertebrate genomes has resulted in the identification of highly conserved non-coding sequences near genes that coordinate early development. Many of these sequences can activate gene expression and are thought to be important regulatory elements. Surprisingly, a large set of these long, near-identical sequences is found in every jawed vertebrate, including sharks, yet almost completely absent in non-vertebrates. This study looks for this set of sequences in the lamprey, a representative of our most distant vertebrate relatives, in order to determine when and how such a large set of important non-coding regulatory sequences became established in the genome. Although the lamprey divergence is only a little older than the divergence of cartilaginous fish (including sharks), relatively few, and considerably shorter, conserved non-coding sequences are identifiable. Nevertheless, these shorter lamprey sequences are capable of driving gene expression in a precise spatial pattern in zebrafish embryos in the same way as the equivalent human elements. This analysis has shed light on the emergence of these regulatory sequences during early vertebrate evolution, at a time of whole-genome duplications and considerable morphological variation, consistent with a role for these sequences in directing gene regulatory networks for vertebrate development.
Collapse
Affiliation(s)
- Gayle K. McEwen
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Debbie K. Goode
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Hugo J. Parker
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Adam Woolfe
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Heather Callaway
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Greg Elgar
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
TIAN J, ZHAO ZH, CHEN HP. [Conserved non-coding elements in human genome]. YI CHUAN = HEREDITAS 2009; 31:1067-1076. [PMID: 19933086 DOI: 10.3724/sp.j.1005.2009.01067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Study of comparative genomics has revealed that about 5% of the human genome are under purifying selection, 3.5% of which are conserved non-coding elements (CNEs). While the coding regions comprise of only a small part. In human, the CNEs are functionally important, which may be associated with the process of the establishment and maintain of chromatin architecture, transcription regulation, and pre-mRNA processing. They are also related to ontogeny of mammals and human diseases. This review outlined the identification, functional significance, evolutionary origin, and effects on human genetic defects of the CNEs.
Collapse
Affiliation(s)
- Jing TIAN
- Institute of Biotechnology, Academy of Military Medical Science, Beijing 100071, China.
| | | | | |
Collapse
|
40
|
Wotton KR, Weierud FK, Juárez-Morales JL, Alvares LE, Dietrich S, Lewis KE. Conservation of gene linkage in dispersed vertebrate NK homeobox clusters. Dev Genes Evol 2009; 219:481-96. [PMID: 20112453 DOI: 10.1007/s00427-009-0311-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 11/23/2009] [Indexed: 12/23/2022]
Abstract
Nk homeobox genes are important regulators of many different developmental processes including muscle, heart, central nervous system and sensory organ development. They are thought to have arisen as part of the ANTP megacluster, which also gave rise to Hox and ParaHox genes, and at least some NK genes remain tightly linked in all animals examined so far. The protostome-deuterostome ancestor probably contained a cluster of nine Nk genes: (Msx)-(Nk4/tinman)-(Nk3/bagpipe)-(Lbx/ladybird)-(Tlx/c15)-(Nk7)-(Nk6/hgtx)-(Nk1/slouch)-(Nk5/Hmx). Of these genes, only NKX2.6-NKX3.1, LBX1-TLX1 and LBX2-TLX2 remain tightly linked in humans. However, it is currently unclear whether this is unique to the human genome as we do not know which of these Nk genes are clustered in other vertebrates. This makes it difficult to assess whether the remaining linkages are due to selective pressures or because chance rearrangements have "missed" certain genes. In this paper, we identify all of the paralogs of these ancestrally clustered NK genes in several distinct vertebrates. We demonstrate that tight linkages of Lbx1-Tlx1, Lbx2-Tlx2 and Nkx3.1-Nkx2.6 have been widely maintained in both the ray-finned and lobe-finned fish lineages. Moreover, the recently duplicated Hmx2-Hmx3 genes are also tightly linked. Finally, we show that Lbx1-Tlx1 and Hmx2-Hmx3 are flanked by highly conserved noncoding elements, suggesting that shared regulatory regions may have resulted in evolutionary pressure to maintain these linkages. Consistent with this, these pairs of genes have overlapping expression domains. In contrast, Lbx2-Tlx2 and Nkx3.1-Nkx2.6, which do not seem to be coexpressed, are also not associated with conserved noncoding sequences, suggesting that an alternative mechanism may be responsible for the continued clustering of these genes.
Collapse
Affiliation(s)
- Karl R Wotton
- Department of Craniofacial Development, King's College London, Floor 27 Guy's Tower, Guy's Hospital, London Bridge, London, SE1 9RT, UK
| | | | | | | | | | | |
Collapse
|
41
|
Vavouri T, Lehner B. Conserved noncoding elements and the evolution of animal body plans. Bioessays 2009; 31:727-35. [PMID: 19492354 DOI: 10.1002/bies.200900014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genomes of vertebrates, flies, and nematodes contain highly conserved noncoding elements (CNEs). CNEs cluster around genes that regulate development, and where tested, they can act as transcriptional enhancers. Within an animal group CNEs are the most conserved sequences but between groups they are normally diverged beyond recognition. Alternative CNEs are, however, associated with an overlapping set of genes that control development in all animals. Here, we discuss the evidence that CNEs are part of the core gene regulatory networks (GRNs) that specify alternative animal body plans. The major animal groups arose >550 million years ago. We propose that the cis-regulatory inputs identified by CNEs arose during the "re-wiring" of regulatory interactions that occurred during early animal evolution. Consequently, different animal groups, with different core GRNs, contain alternative sets of CNEs. Due to the subsequent stability of animal body plans, these core regulatory sequences have been evolving in parallel under strong purifying selection in different animal groups.
Collapse
Affiliation(s)
- Tanya Vavouri
- EMBL-CRG Systems Biology Research Unit, Dr. Aiguader 88, Barcelona, Spain.
| | | |
Collapse
|
42
|
Elgar G. Pan-vertebrate conserved non-coding sequences associated with developmental regulation. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:256-65. [DOI: 10.1093/bfgp/elp033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Hufton AL, Mathia S, Braun H, Georgi U, Lehrach H, Vingron M, Poustka AJ, Panopoulou G. Deeply conserved chordate noncoding sequences preserve genome synteny but do not drive gene duplicate retention. Genome Res 2009; 19:2036-51. [PMID: 19704032 DOI: 10.1101/gr.093237.109] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal genomes possess highly conserved cis-regulatory sequences that are often found near genes that regulate transcription and development. Researchers have proposed that the strong conservation of these sequences may affect the evolution of the surrounding genome, both by repressing rearrangement, and possibly by promoting duplicate gene retention. Conflicting data, however, have made the validity of these propositions unclear. Here, we use a new computational method to identify phylogenetically conserved noncoding elements (PCNEs) in a manner that is not biased by rearrangement and duplication. This method is powerful enough to identify more than a thousand PCNEs that have been conserved between vertebrates and the basal chordate amphioxus. We test 42 of our PCNEs in transgenic zebrafish assays--including examples from vertebrates and amphioxus--and find that the majority are functional enhancers. We find that PCNEs are enriched around genes with ancient synteny conservation, and that this association is strongest for extragenic PCNEs, suggesting that cis-regulatory interdigitation plays a key role in repressing genome rearrangement. Next, we classify mouse and zebrafish genes according to association with PCNEs, synteny conservation, duplication history, and presence in bidirectional promoter pairs, and use these data to cluster gene functions into a series of distinct evolutionary patterns. These results demonstrate that subfunctionalization of conserved cis-regulation has not been the primary determinate of gene duplicate retention in vertebrates. Instead, the data support the gene balance hypothesis, which proposes that duplicate retention has been driven by selection against dosage imbalances in genes with many protein connections.
Collapse
Affiliation(s)
- Andrew L Hufton
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Fredman D, Engstrom PG, Lenhard B. Web-based tools and approaches to study long-range gene regulation in Metazoa. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:231-42. [DOI: 10.1093/bfgp/elp023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Moghadam HK, Ferguson MM, Danzmann RG. Comparative genomics and evolution of conserved noncoding elements (CNE) in rainbow trout. BMC Genomics 2009; 10:278. [PMID: 19549339 PMCID: PMC2711117 DOI: 10.1186/1471-2164-10-278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 06/23/2009] [Indexed: 12/04/2022] Open
Abstract
Background Recent advances in the accumulation of genetic mapping and DNA sequence information from several salmonid species support the long standing view of an autopolyploid origin of these fishes (i.e., 4R). However, the paralogy relationships of the chromosomal segments descendent from earlier polyploidization events (i.e., 2R/3R) largely remain unknown, mainly due to an unbalanced pseudogenization of paralogous genes that were once resident on the ancient duplicated segments. Inter-specific conserved noncoding elements (CNE) might hold the key in identifying these regions, if they are associated with arrays of genes that have been highly conserved in syntenic blocks through evolution. To test this hypothesis, we investigated the chromosomal positions of subset of CNE in the rainbow trout genome using a comparative genomic framework. Results Through a genome wide analysis, we selected 41 pairs of adjacent CNE located on various chromosomes in zebrafish and obtained their intervening, less conserved, sequence information from rainbow trout. We identified 56 distinct fragments corresponding to about 150 Kbp of sequence data that were localized to 67 different chromosomal regions in the rainbow trout genome. The genomic positions of many duplicated CNE provided additional support for some previously suggested homeologies in this species. Additionally, we now propose 40 new potential paralogous affinities by analyzing the variation in the segregation patterns of some multi-copy CNE along with the synteny association comparison using several model vertebrates. Some of these regions appear to carry signatures of the 1R, 2R or 3R duplications. A subset of these CNE markers also demonstrated high utility in identifying homologous chromosomal segments in the genomes of Atlantic salmon and Arctic charr. Conclusion CNE seem to be more efficacious than coding sequences in providing insights into the ancient paralogous affinities within the vertebrate genomes. Such a feature makes these elements extremely attractive for comparative genomics studies, as they can be treated as 'anchor' markers to investigate the association of distally located candidate genes on the homologous genomic segments of closely or distantly related organisms.
Collapse
Affiliation(s)
- Hooman K Moghadam
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | | | | |
Collapse
|
46
|
Tsang WH, Shek KF, Lee TY, Chow KL. An evolutionarily conserved nested gene pair - Mab21 and Lrba/Nbea in metazoan. Genomics 2009; 94:177-87. [PMID: 19482073 DOI: 10.1016/j.ygeno.2009.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/23/2009] [Accepted: 05/26/2009] [Indexed: 11/30/2022]
Abstract
The embedding of one gene in another as a nested gene pair is a unique phenomenon of gene clustering in the metazoan genome. A gene-centric paralogous genomic sequence comparison strategy was used in this study to align these paralogous nested pairs, Mab21l2-Lrba and Mab21l1-Nbea, to identify the associated paralogous non-coding elements (pNEs) they shared. A majority of these pNEs in the Mab21l2-Lrba locus display tissue-specific enhancer activities recapitulating the expression profiles of Mab21l2 and Mab21l1. Since these enhancers are spread into the introns of Lrba, dissociation of the two genes will likely disrupt the function of at least one of them. Phylogenetic analysis of this complex locus in different species suggests that Mab21 was probably locked in the Lrba/Nbea intron in the ancestral metazoan species, in which the cis-elements uncovered in this study may act as a selective force to prevent the dissociation of this gene pair in vertebrates.
Collapse
Affiliation(s)
- W H Tsang
- The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
47
|
Abstract
The neocortex is the part of the brain that is involved in perception, cognition, and volitional motor control. In mammals it is a highly dynamic structure that has been dramatically altered in different lineages, and these alterations account for the remarkable variations in behavior that species exhibit. When we consider how this structure changes and becomes more complex in some mammals such as humans, we must also consider how the alterations that occur at macro levels of organization, such as the level of the individual and social system, as well as micro levels of organization, such as the level of neurons, synapses and molecules, impact the neocortex. It is also important to consider the constraints imposed on the evolution of the neocortex. Observations of highly conserved features of cortical organization that all mammals share, as well as the convergent evolution of similar features of organization, indicate that the constraints imposed on the neocortex are pervasive and restrict the avenues along which evolution can proceed. Although both genes and the laws of physics place formidable constraints on the evolution of all animals, humans have evolved a number of mechanisms that allow them to loosen these constraints and often alter the course of their own evolution. While this cortical plasticity is a defining feature of mammalian neocortex, it appears to be exaggerated in humans and could be considered a unique derivation of our species.
Collapse
Affiliation(s)
- Leah Krubitzer
- Center for Neuroscience and Department of Psychology, University of California-Davis, Davis, California 95618, USA.
| |
Collapse
|
48
|
Sagai T, Amano T, Tamura M, Mizushina Y, Sumiyama K, Shiroishi T. A cluster of three long-range enhancers directs regional Shh expression in the epithelial linings. Development 2009; 136:1665-74. [PMID: 19369396 DOI: 10.1242/dev.032714] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The sonic hedgehog (Shh) pathway plays indispensable roles in the morphogenesis of mouse epithelial linings of the oral cavity and respiratory and digestive tubes. However, no enhancers that regulate regional Shh expression within the epithelial linings have been identified so far. In this study, comparison of genomic sequences across mammalian species and teleost fishes revealed three novel conserved non-coding sequences (CNCSs) that cluster in a region 600 to 900 kb upstream of the transcriptional start site of the mouse Shh gene. These CNCSs drive regional transgenic lacZ reporter expression in the epithelial lining of the oral cavity, pharynx, lung and gut. Together, these enhancers recapitulate the endogenous Shh expression domain within the major epithelial linings. Notably, genomic arrangement of the three CNCSs shows co-linearity that mirrors the order of the epithelial expression domains along the anteroposterior body axis. The results suggest that the three CNCSs are epithelial lining-specific long-range Shh enhancers, and that their actions partition the continuous epithelial linings into three domains: ectoderm-derived oral cavity, endoderm-derived pharynx, and respiratory and digestive tubes of the mouse. Targeted deletion of the pharyngeal epithelium specific CNCS results in loss of endogenous Shh expression in the pharynx and postnatal lethality owing to hypoplasia of the soft palate, epiglottis and arytenoid. Thus, this long-range enhancer is indispensable for morphogenesis of the pharyngeal apparatus.
Collapse
Affiliation(s)
- Tomoko Sagai
- Mammalian Genetics Laboratory, National Institute of Genetics, Shizuoka-ken 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Taher L, Ovcharenko I. Variable locus length in the human genome leads to ascertainment bias in functional inference for non-coding elements. ACTA ACUST UNITED AC 2009; 25:578-84. [PMID: 19168912 PMCID: PMC2647827 DOI: 10.1093/bioinformatics/btp043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
MOTIVATION Several functional gene annotation databases have been developed in the recent years, and are widely used to infer the biological function of gene sets, by scrutinizing the attributes that appear over- and underrepresented. However, this strategy is not directly applicable to the study of non-coding DNA, as the non-coding sequence span varies greatly among different gene loci in the human genome and longer loci have a higher likelihood of being selected purely by chance. Therefore, conclusions involving the function of non-coding elements that are drawn based on the annotation of neighboring genes are often biased. We assessed the systematic bias in several particular Gene Ontology (GO) categories using the standard hypergeometric test, by randomly sampling non-coding elements from the human genome and inferring their function based on the functional annotation of the closest genes. While no category is expected to occur significantly over- or underrepresented for a random selection of elements, categories such as 'cell adhesion', 'nervous system development' and 'transcription factor activities' appeared to be systematically overrepresented, while others such as 'olfactory receptor activity'-underrepresented. RESULTS Our results suggest that functional inference for non-coding elements using gene annotation databases requires a special correction. We introduce a set of correction coefficients for the probabilities of the GO categories that accounts for the variability in the length of the non-coding DNA across different loci and effectively eliminates the ascertainment bias from the functional characterization of non-coding elements. Our approach can be easily generalized to any other gene annotation database.
Collapse
Affiliation(s)
- Leila Taher
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | | |
Collapse
|
50
|
Dishaw LJ, Mueller MG, Gwatney N, Cannon JP, Haire RN, Litman RT, Amemiya CT, Ota T, Rowen L, Glusman G, Litman GW. Genomic complexity of the variable region-containing chitin-binding proteins in amphioxus. BMC Genet 2008; 9:78. [PMID: 19046437 PMCID: PMC2632668 DOI: 10.1186/1471-2156-9-78] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 12/01/2008] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The variable region-containing chitin-binding proteins (VCBPs) are found in protochordates and consist of two tandem immunoglobulin variable (V)-type domains and a chitin-binding domain. We previously have shown that these polymorphic genes, which primarily are expressed in the gut, exhibit characteristics of immune genes. In this report, we describe VCBP genomic organization and characterize adjacent and intervening genetic features which may influence both their polymorphism and complex transcriptional repertoire. RESULTS VCBP genes 1, 2, 4, and 5 are encoded in a single contiguous gene-rich chromosomal region and VCBP3 is encoded in a separate locus. The VCBPs exhibit extensive haplotype variation, including copy number variation (CNV), indel polymorphism and a markedly elevated variation in repeat type and density. In at least one haplotype, inverted repeats occur more frequently than elsewhere in the genome. Multi-animal cDNA screening, as well as transcriptional profilingusing a novel transfection system, suggests that haplotype-specific transcriptional variants may contribute to VCBP genetic diversity. CONCLUSION The availability of the Branchiostoma floridae genome (Joint Genome Institute, Brafl1), along with BAC and PAC screening and sequencing described here, reveal that the relatively limited number of VCBP genes present in the amphioxus genome exhibit exceptionally high haplotype variation. These VCBP haplotypes contribute a diverse pool of allelic variants, which includes gene copy number variation, pseudogenes, and other polymorphisms, while contributing secondary effects on gene transcription as well.
Collapse
Affiliation(s)
- Larry J Dishaw
- All Children's Hospital, Department of Molecular Genetics, 801 Sixth Street South, St. Petersburg, FL 33701, USA
- H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Avenue, Tampa, FL 33612, USA
| | - M Gail Mueller
- All Children's Hospital, Department of Molecular Genetics, 801 Sixth Street South, St. Petersburg, FL 33701, USA
| | - Natasha Gwatney
- Department of Pediatrics, University of South Florida College of Medicine, USF/ACH Children's Research Institute, 830 First Street South, St. Petersburg, FL 33701, USA
| | - John P Cannon
- H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Avenue, Tampa, FL 33612, USA
- Department of Pediatrics, University of South Florida College of Medicine, USF/ACH Children's Research Institute, 830 First Street South, St. Petersburg, FL 33701, USA
| | - Robert N Haire
- Department of Pediatrics, University of South Florida College of Medicine, USF/ACH Children's Research Institute, 830 First Street South, St. Petersburg, FL 33701, USA
| | - Ronda T Litman
- Department of Pediatrics, University of South Florida College of Medicine, USF/ACH Children's Research Institute, 830 First Street South, St. Petersburg, FL 33701, USA
| | - Chris T Amemiya
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Tatsuya Ota
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, Kamiyamaguchi 1560-35, Hayama 240-0193 Japan
| | - Lee Rowen
- Institute for Systems Biology, 1441 N. 34th St, Seattle, WA, 98103, USA
| | - Gustavo Glusman
- Institute for Systems Biology, 1441 N. 34th St, Seattle, WA, 98103, USA
| | - Gary W Litman
- All Children's Hospital, Department of Molecular Genetics, 801 Sixth Street South, St. Petersburg, FL 33701, USA
- H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Avenue, Tampa, FL 33612, USA
- Department of Pediatrics, University of South Florida College of Medicine, USF/ACH Children's Research Institute, 830 First Street South, St. Petersburg, FL 33701, USA
| |
Collapse
|