1
|
van Bostelen I, van Schendel R, Romeijn R, Tijsterman M. Translesion synthesis polymerases are dispensable for C. elegans reproduction but suppress genome scarring by polymerase theta-mediated end joining. PLoS Genet 2020; 16:e1008759. [PMID: 32330130 PMCID: PMC7202663 DOI: 10.1371/journal.pgen.1008759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/06/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022] Open
Abstract
Bases within DNA are frequently damaged, producing obstacles to efficient and accurate DNA replication by replicative polymerases. Translesion synthesis (TLS) polymerases, via their ability to catalyze nucleotide additions to growing DNA chains across DNA lesions, promote replication of damaged DNA, thus preventing checkpoint activation, genome instability and cell death. In this study, we used C. elegans to determine the contribution of TLS activity on long-term stability of an animal genome. We monitored and compared the types of mutations that accumulate in REV1, REV3, POLH1 and POLK deficient animals that were grown under unchallenged conditions. We also addressed redundancies in TLS activity by combining all deficiencies. Remarkably, animals that are deficient for all Y-family polymerases as well as animals that have lost all TLS activity are viable and produce progeny, demonstrating that TLS is not essential for animal life. Whole genome sequencing analyses, however, reveal that TLS is needed to prevent genomic scars from accumulating. These scars, which are the product of polymerase theta-mediated end joining (TMEJ), are found overrepresented at guanine bases, consistent with TLS suppressing DNA double-strand breaks (DSBs) from occurring at replication-blocking guanine adducts. We found that in C. elegans, TLS across spontaneous damage is predominantly error free and anti-clastogenic, and thus ensures preservation of genetic information.
Collapse
Affiliation(s)
- Ivo van Bostelen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ron Romeijn
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Coherent Raman Imaging of Live Muscle Sarcomeres Assisted by SFG Microscopy. Sci Rep 2017; 7:9211. [PMID: 28835694 PMCID: PMC5569110 DOI: 10.1038/s41598-017-09571-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023] Open
Abstract
In this study, we used spectrally focused coherent anti-Stokes Raman scattering (spCARS) microscopy assisted by sum-frequency generation (SFG) to monitor the variations in the structural morphology and molecular vibrations of a live muscle of Caenorhabditis elegans. The subunits of the muscle sarcomeres, such as the M-line, myosin, dense body, and α-actinin, were alternatively observed using spCARS microscopy for different sample orientations, with the guidance of a myosin positional marker captured by SFG microscopy. Interestingly enough, the beam polarization dependence of the spCARS contrasts for two parallel subunits (dense body and myosin) showed a ~90° phase difference. The chemically sensitive spCARS spectra induced by the time-varying overlap of two pulses allowed (after a robust subtraction of the non-resonant background using a modified Kramers–Krönig transformation method) high-fidelity detection of various genetically modified muscle sarcomeres tuned to the C-H vibration (2800–3100 cm−1). Conversely, SFG image mapping assisted by phase-retrieved spCARS spectra also facilitated label-free monitoring of the changes in the muscle content of C. elegans that are associated with aging, based on the hypothesis that the C-H vibrational modes could serve as qualitative chemical markers sensitive to the amount and/or structural modulation of the muscle.
Collapse
|
3
|
Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells. Dev Biol 2017; 423:111-125. [DOI: 10.1016/j.ydbio.2017.01.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/12/2017] [Accepted: 01/31/2017] [Indexed: 11/22/2022]
|
4
|
Yoshida K, Treen N, Hozumi A, Sakuma T, Yamamoto T, Sasakura Y. Germ cell mutations of the ascidianCiona intestinaliswith TALE nucleases. Genesis 2014; 52:431-9. [DOI: 10.1002/dvg.22770] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Keita Yoshida
- Shimoda Marine Research Center; University of Tsukuba; Shimoda Shizuoka 415-0025 Japan
| | - Nicholas Treen
- Shimoda Marine Research Center; University of Tsukuba; Shimoda Shizuoka 415-0025 Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center; University of Tsukuba; Shimoda Shizuoka 415-0025 Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center; University of Tsukuba; Shimoda Shizuoka 415-0025 Japan
| |
Collapse
|
5
|
Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans. PLoS Genet 2012; 8:e1002702. [PMID: 22829772 PMCID: PMC3400576 DOI: 10.1371/journal.pgen.1002702] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/21/2012] [Indexed: 02/07/2023] Open
Abstract
RNA interference (RNAi)–related pathways affect gene activity by sequence-specific recruitment of Ago proteins to mRNA target molecules. The sequence specificity of this process stems from small RNA (sRNA) co-factors bound by the Ago protein. Stability of sRNA molecules in some pathways is in part regulated by Hen1-mediated methylation of their 3′ ends. Here we describe the effects of the Caenorhabditis elegans HEN1 RNA–methyl-transferase homolog, HENN-1, on the different RNAi pathways in this nematode. We reveal differential effects of HENN-1 on the two pathways that are known to employ methylated sRNA molecules: the 26G and 21U pathways. Surprisingly, in the germline, stability of 21U RNAs, the C. elegans piRNAs, is only mildly affected by loss of methylation; and introduction of artificial 21U target RNA does not further destabilize non-methylated 21U RNAs. In contrast, most 26G RNAs display reduced stability and respond to loss of HENN-1 by displaying increased 3′-uridylation frequencies. Within the 26G RNA class, we find that specifically ERGO-1–bound 26G RNAs are modified by HENN-1, while ALG-3/ALG-4–bound 26G RNAs are not. Global gene expression analysis of henn-1 mutants reveals mild effects, including down-regulation of many germline-expressed genes. Our data suggest that, apart from direct effects of reduced 26G RNA levels of henn-1 on gene expression, most effects on global gene expression are indirect. These studies further refine our understanding of endogenous RNAi in C. elegans and the roles for Hen1 like enzymes in these pathways. Small RNAs (sRNAs) have been shown to be potent regulators of gene expression in many different systems. They act by providing sequence specificity to Argonaute (Ago) proteins that in turn affect the expression and/or stability of mRNAs, or affect chromatin structures through recognition of nascent transcripts. Stability of sRNAs can be regulated by methylation of their 3′ end. This modification prevents addition of uridine residues that can destabilize the sRNA. The enzyme that catalyzes the methylation of sRNAs has been identified in Arabidopsis: HEN1. We describe studies on the C. elegans homolog of Hen1, henn-1. Our findings show that HENN-1 protein does not stably associate with the Ago proteins binding methylated sRNAs, but that HENN-1 does localize to subcellular regions known to host these factors. We find that the two known methylated sRNA species in C. elegans (21U and 26G) respond differently to loss of henn-1. While HENN-1 is required for 26G RNA stability in the germline, it has limited impact on 21U RNAs. In addition, we demonstrate that only ERGO-1–bound 26G RNAs are methylated, while those bound by ALG-3/4, are not. Our findings further refine the general understanding of 21U and 26G RNA pathways and identify two separable effects of HENN-1 on these RNAi–related mechanisms.
Collapse
|
6
|
A broad requirement for TLS polymerases η and κ, and interacting sumoylation and nuclear pore proteins, in lesion bypass during C. elegans embryogenesis. PLoS Genet 2012; 8:e1002800. [PMID: 22761594 PMCID: PMC3386174 DOI: 10.1371/journal.pgen.1002800] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/16/2012] [Indexed: 12/04/2022] Open
Abstract
Translesion synthesis (TLS) polymerases are specialized DNA polymerases capable of inserting nucleotides opposite DNA lesions that escape removal by dedicated DNA repair pathways. TLS polymerases allow cells to complete DNA replication in the presence of damage, thereby preventing checkpoint activation, genome instability, and cell death. Here, we characterize functional knockouts for polh-1 and polk-1, encoding the Caenorhabditis elegans homologs of the Y-family TLS polymerases η and κ. POLH-1 acts at many different DNA lesions as it protects cells against a wide range of DNA damaging agents, including UV, γ-irradiation, cisplatin, and methyl methane sulphonate (MMS). POLK-1 acts specifically but redundantly with POLH-1 in protection against methylation damage. Importantly, both polymerases play a prominent role early in embryonic development to allow fast replication of damaged genomes. Contrary to observations in mammalian cells, we show that neither POLH-1 nor POLK-1 is required for homologous recombination (HR) repair of DNA double-strand breaks. A genome-wide RNAi screen for genes that protect the C. elegans genome against MMS–induced DNA damage identified novel components in DNA damage bypass in the early embryo. Our data suggest SUMO-mediated regulation of both POLH-1 and POLK-1, and point towards a previously unrecognized role of the nuclear pore in regulating TLS. Unrepaired DNA damage on the template strand poses a problem for the progression of the replication fork. Specialized translesion synthesis (TLS) polymerases are capable of bypassing DNA lesions without repairing them. Here, we use the nematode C. elegans, to show that there is modulation of the choice between repair and bypass during development. We show that during gametogenesis and later development repair dominates, while there is a short phase during embryonic development where resistance to damage depends heavily on TLS polymerases. The rapid divisions at this stage do not allow for delay in which repair processes can occur. Furthermore, we identify new factors that may play a role in the regulation of TLS during early embryogenesis.
Collapse
|
7
|
Montgomery TA, Rim YS, Zhang C, Dowen RH, Phillips CM, Fischer SEJ, Ruvkun G. PIWI associated siRNAs and piRNAs specifically require the Caenorhabditis elegans HEN1 ortholog henn-1. PLoS Genet 2012; 8:e1002616. [PMID: 22536158 PMCID: PMC3334881 DOI: 10.1371/journal.pgen.1002616] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 02/03/2012] [Indexed: 12/29/2022] Open
Abstract
Small RNAs--including piRNAs, miRNAs, and endogenous siRNAs--bind Argonaute proteins to form RNA silencing complexes that target coding genes, transposons, and aberrant RNAs. To assess the requirements for endogenous siRNA formation and activity in Caenorhabditis elegans, we developed a GFP-based sensor for the endogenous siRNA 22G siR-1, one of a set of abundant siRNAs processed from a precursor RNA mapping to the X chromosome, the X-cluster. Silencing of the sensor is also dependent on the partially complementary, unlinked 26G siR-O7 siRNA. We show that 26G siR-O7 acts in trans to initiate 22G siRNA formation from the X-cluster. The presence of several mispairs between 26G siR-O7 and the X-cluster mRNA, as well as mutagenesis of the siRNA sensor, indicates that siRNA target recognition is permissive to a degree of mispairing. From a candidate reverse genetic screen, we identified several factors required for 22G siR-1 activity, including the chromatin factors mes-4 and gfl-1, the Argonaute ergo-1, and the 3' methyltransferase henn-1. Quantitative RT-PCR of small RNAs in a henn-1 mutant and deep sequencing of methylated small RNAs indicate that siRNAs and piRNAs that associate with PIWI clade Argonautes are methylated by HENN-1, while siRNAs and miRNAs that associate with non-PIWI clade Argonautes are not. Thus, PIWI-class Argonaute proteins are specifically adapted to associate with methylated small RNAs in C. elegans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Boulin T, Hobert O. From genes to function: the C. elegans genetic toolbox. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:114-37. [PMID: 23801671 DOI: 10.1002/wdev.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review aims to provide an overview of the technologies which make the nematode Caenorhabditis elegans an attractive genetic model system. We describe transgenesis techniques and forward and reverse genetic approaches to isolate mutants and clone genes. In addition, we discuss the new possibilities offered by genome engineering strategies and next-generation genome analysis tools.
Collapse
Affiliation(s)
- Thomas Boulin
- Department of Biology, Institut de Biologie de l'École Normale Supérieure, Paris, France.
| | | |
Collapse
|
9
|
Mokry M, Nijman IJ, van Dijken A, Benjamins R, Heidstra R, Scheres B, Cuppen E. Identification of factors required for meristem function in Arabidopsis using a novel next generation sequencing fast forward genetics approach. BMC Genomics 2011; 12:256. [PMID: 21599977 PMCID: PMC3114748 DOI: 10.1186/1471-2164-12-256] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phenotype-driven forward genetic experiments are powerful approaches for linking phenotypes to genomic elements but they still involve a laborious positional cloning process. Although sequencing of complete genomes now becomes available, discriminating causal mutations from the enormous amounts of background variation remains a major challenge. METHOD To improve this, we developed a universal two-step approach, named 'fast forward genetics', which combines traditional bulk segregant techniques with targeted genomic enrichment and next-generation sequencing technology RESULTS As a proof of principle we successfully applied this approach to two Arabidopsis mutants and identified a novel factor required for stem cell activity. CONCLUSION We demonstrated that the 'fast forward genetics' procedure efficiently identifies a small number of testable candidate mutations. As the approach is independent of genome size, it can be applied to any model system of interest. Furthermore, we show that experiments can be multiplexed and easily scaled for the identification of multiple individual mutants in a single sequencing run.
Collapse
Affiliation(s)
- Michal Mokry
- Hubrecht Institute, Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Sleigh JN, Buckingham SD, Esmaeili B, Viswanathan M, Cuppen E, Westlund BM, Sattelle DB. A novel Caenorhabditis elegans allele, smn-1(cb131), mimicking a mild form of spinal muscular atrophy, provides a convenient drug screening platform highlighting new and pre-approved compounds. Hum Mol Genet 2010; 20:245-60. [PMID: 20962036 DOI: 10.1093/hmg/ddq459] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Spinal muscular atrophy (SMA), an autosomal recessive genetic disorder, is characterized by the selective degeneration of lower motor neurons, leading to muscle atrophy and, in the most severe cases, paralysis and death. Deletions and point mutations cause reduced levels of the widely expressed survival motor neuron (SMN) protein, which has been implicated in a range of cellular processes. The mechanisms underlying disease pathogenesis are unclear, and there is no effective treatment. Several animal models have been developed to study SMN function including the nematode, Caenorhabditis elegans, in which a large deletion in the gene homologous to SMN, smn-1, results in neuromuscular dysfunction and larval lethality. Although useful, this null mutant, smn-1(ok355), is not well suited to drug screening. We report the isolation and characterization of smn-1(cb131), a novel allele encoding a substitution in a highly conserved residue of exon 2, resembling a point mutation found in a patient with type IIIb SMA. The smn-1(cb131) animals display milder yet similar defects when compared with the smn-1 null mutant. Using an automated phenotyping system, mutants were shown to swim slower than wild-type animals. This phenotype was used to screen a library of 1040 chemical compounds for drugs that ameliorate the defect, highlighting six for subsequent testing. 4-aminopyridine, gaboxadol hydrochloride and N-acetylneuraminic acid all rescued at least one aspect of smn-1 phenotypic dysfunction. These findings may assist in accelerating the development of drugs for the treatment of SMA.
Collapse
Affiliation(s)
- James N Sleigh
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Nijman IJ, Mokry M, van Boxtel R, Toonen P, de Bruijn E, Cuppen E. Mutation discovery by targeted genomic enrichment of multiplexed barcoded samples. Nat Methods 2010; 7:913-5. [PMID: 20953175 DOI: 10.1038/nmeth.1516] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/06/2010] [Indexed: 11/09/2022]
Abstract
Targeted genomic enrichment followed by next-generation DNA sequencing has dramatically increased efficiency of mutation-discovery efforts. We describe a protocol for genomic enrichment of pooled barcoded samples in a single assay that increases experimental flexibility and efficiency. We screened 770 genes (1.4 megabases) in thirty N-ethyl-N-nitrosourea (ENU)-mutagenized rats and identified known variants at >96% sensitivity as well as new mutations at a false positive rate < 1 in 8 megabases.
Collapse
Affiliation(s)
- Isaäc J Nijman
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences and the University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Mul JD, Yi CX, van den Berg SAA, Ruiter M, Toonen PW, van der Elst MCJ, Voshol PJ, Ellenbroek BA, Kalsbeek A, la Fleur SE, Cuppen E. Pmch expression during early development is critical for normal energy homeostasis. Am J Physiol Endocrinol Metab 2010; 298:E477-88. [PMID: 19934402 DOI: 10.1152/ajpendo.00154.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Postnatal development and puberty are times of strong physical maturation and require large quantities of energy. The hypothalamic neuropeptide melanin-concentrating hormone (MCH) regulates nutrient intake and energy homeostasis, but the underlying mechanisms are not completely understood. Here we use a novel rat knockout model in which the MCH precursor Pmch has been inactivated to study the effects of loss of MCH on energy regulation in more detail. Pmch(-/-) rats are lean, hypophagic, osteoporotic, and although endocrine parameters were changed in pmch(-/-) rats, endocrine dynamics were normal, indicating an adaptation to new homeostatic levels rather than disturbed metabolic mechanisms. Detailed body weight growth and feeding behavior analysis revealed that Pmch expression is particularly important during early rat development and puberty, i.e., the first 8 postnatal weeks. Loss of Pmch resulted in a 20% lower set point for body weight that was determined solely during this period and remained unchanged during adulthood. Although the final body weight is diet dependent, the Pmch-deficiency effect was similar for all diets tested in this study. Loss of Pmch affected energy expenditure in both young and adult rats, although these effects seem secondary to the observed hypophagia. Our findings show an important role for Pmch in energy homeostasis determination during early development and indicate that the MCH receptor 1 system is a plausible target for childhood obesity treatment, currently a major health issue in first world countries.
Collapse
Affiliation(s)
- Joram D Mul
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Solinger JA, Paolinelli R, Klöß H, Scorza FB, Marchesi S, Sauder U, Mitsushima D, Capuani F, Stürzenbaum SR, Cassata G. The Caenorhabditis elegans Elongator complex regulates neuronal alpha-tubulin acetylation. PLoS Genet 2010; 6:e1000820. [PMID: 20107598 PMCID: PMC2809763 DOI: 10.1371/journal.pgen.1000820] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 12/18/2009] [Indexed: 12/18/2022] Open
Abstract
Although acetylated alpha-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate alpha-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of alpha-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of alpha-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating alpha-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3) and in a scaffold subunit (Elp1) have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology.
Collapse
Affiliation(s)
- Jachen A. Solinger
- C. elegans Genetics, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Roberta Paolinelli
- C. elegans Genetics, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Holger Klöß
- C. elegans Genetics, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | - Stefano Marchesi
- C. elegans Genetics, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Ursula Sauder
- Microscopy Center, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Dai Mitsushima
- Department of Physiology, Yokohama City University, Yokohama, Japan
| | | | - Stephen R. Stürzenbaum
- School of Biomedical and Health Sciences, Pharmaceutical Science Division, King's College London, London, United Kingdom
| | - Giuseppe Cassata
- C. elegans Genetics, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- * E-mail:
| |
Collapse
|
14
|
Hao L, Acar S, Evans J, Ou G, Scholey JM. Analysis of intraflagellar transport in C. elegans sensory cilia. Methods Cell Biol 2009; 93:235-66. [PMID: 20409821 DOI: 10.1016/s0091-679x(08)93013-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cilia are assembled and maintained by intraflagellar transport (IFT), the motor-dependent, bidirectional movement of multiprotein complexes, called IFT particles, along the axoneme. The sensory cilia of Caenorhabditis elegans represent very useful objects for studying IFT because of the availability of in vivo time-lapse fluorescence microscopy assays of IFT and multiple ciliary mutants. In this system there are 60 sensory neurons, each having sensory cilia on the endings of their dendrites, and most components of the IFT machinery operating in these structures have been identified using forward and reverse genetic approaches. By analyzing the rate of IFT along cilia within living wild-type and mutant animals, two anterograde and one retrograde IFT motors were identified, the functional coordination of the two anterograde kinesin-2 motors was established and the transport properties of all the known IFT particle components have been characterized. The anterograde kinesin motors have been heterologously expressed and purified, and their biochemical properties have been characterized using MT gliding and single molecule motility assays. In this chapter, we summarize how the tools of genetics, cell biology, electron microscopy, and biochemistry are being used to dissect the composition and mechanism of action of IFT motors and IFT particles in C. elegans.
Collapse
Affiliation(s)
- Limin Hao
- Molecular and Cell Biology, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
15
|
Vrablik TL, Huang L, Lange SE, Hanna-Rose W. Nicotinamidase modulation of NAD+ biosynthesis and nicotinamide levels separately affect reproductive development and cell survival in C. elegans. Development 2009; 136:3637-46. [PMID: 19820182 DOI: 10.1242/dev.028431] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) is a central molecule in cellular metabolism and an obligate co-substrate for NAD(+)-consuming enzymes, which regulate key biological processes such as longevity and stress responses. Although NAD(+) biosynthesis has been intensely studied, little analysis has been done in developmental models. We have uncovered novel developmental roles for a nicotinamidase (PNC), the first enzyme in the NAD(+) salvage pathway of invertebrates. Mutations in the Caenorhabditis elegans nicotinamidase PNC-1 cause developmental and functional defects in the reproductive system; the development of the gonad is delayed, four uterine cells die by necrosis and the mutant animals are egg-laying defective. The temporal delay in gonad development results from depletion of the salvage pathway product NAD(+), whereas the uv1 cell necrosis and egg-laying defects result from accumulation of the substrate nicotinamide. Thus, regulation of both substrate and product level is key to the biological activity of PNC-1. We also find that diet probably affects the levels of these metabolites, as it affects phenotypes. Finally, we identified a secreted isoform of PNC-1 and confirmed its extracellular localization and functional activity in vivo. We demonstrate that nicotinamide phosphoribosyltransferase (Nampt), the equivalent enzyme in nicotinamide recycling to NAD(+) in vertebrates, can functionally substitute for PNC-1. As Nampt is also secreted, we postulate an evolutionarily conserved extracellular role for NAD(+) biosynthetic enzymes during development and physiology.
Collapse
Affiliation(s)
- Tracy L Vrablik
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
16
|
De Novo identification of single nucleotide mutations in Caenorhabditis elegans using array comparative genomic hybridization. Genetics 2009; 181:1673-7. [PMID: 19189945 DOI: 10.1534/genetics.108.100065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Array comparative genomic hybridization (aCGH) has been used primarily to detect copy-number variants between two genomes. Here we report using aCGH to detect single nucleotide mutations on oligonucleotide microarrays with overlapping 50-mer probes. This technique represents a powerful method for rapidly detecting novel homozygous single nucleotide mutations in any organism with a sequenced reference genome.
Collapse
|
17
|
Moens CB, Donn TM, Wolf-Saxon ER, Ma TP. Reverse genetics in zebrafish by TILLING. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:454-9. [PMID: 19028802 DOI: 10.1093/bfgp/eln046] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
TILLING, for Targeting Induced Local Lesions in Genomes, is a reverse genetics strategy that identifies mutations in specific genes of interest in chemically mutagenized populations. First described in 2000 for mutation detection in Arabidopsis, TILLING is now used in a wide range of plants including soybean, rice, barley and maize as well as for animal model systems, including Arabidopsis, Drosophila, Caenorhabditis elegans, rat, medaka and zebrafish and for the discovery of naturally occurring polymorphisms in humans. This review summarizes current TILLING methodologies as they have been applied to the zebrafish, ongoing TILLING projects and resources in the zebrafish community, and the future of zebrafish TILLING.
Collapse
Affiliation(s)
- Cecilia B Moens
- HHMI and Division of Basic Science, Fred Hutchinson Cancer Research Center, B2-152, 1100 Fairview Ave. N., Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
18
|
van Boxtel R, Toonen PW, Verheul M, van Roekel HS, Nijman IJ, Guryev V, Cuppen E. Improved generation of rat gene knockouts by target-selected mutagenesis in mismatch repair-deficient animals. BMC Genomics 2008; 9:460. [PMID: 18840264 PMCID: PMC2567347 DOI: 10.1186/1471-2164-9-460] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 10/07/2008] [Indexed: 01/15/2023] Open
Abstract
Background The laboratory rat (Rattus norvegicus) is one of the preferred model organisms in physiological and pharmacological research, although the availability of specific genetic models, especially gene knockouts, is limited. N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis is currently the most successful method in rats, although it is still very laborious and expensive. Results As ENU-induced DNA damage is normally recognized by the mismatch repair (MMR) system, we hypothesized that the effectiveness of the target-selected mutagenesis approach could be improved by using a MMR-deficient genetic background. Indeed, Msh6 knockout rats were found to be more sensitive to ENU treatment and the germ line mutation rate was boosted more than two-fold to 1 mutation per 585 kb. In addition, the molecular mutation spectrum was found to be changed in favor of generating knockout-type alleles by ~20%, resulting in an overall increase in efficiency of ~2.5 fold. The improved effectiveness was demonstrated by high throughput mutation discovery in 70 Mb of sequence in a set of only 310 mutant F1 rats. This resulted in the identification of 89 mutations of which four introduced a premature stopcodon and 64 resulted in amino acid changes. Conclusion Taken together, we show that the use of a MMR-deficient background considerably improves ENU-driven target-selected mutagenesis in the rat, thereby reducing animal use as well as screening costs. The use of a mismatch repair-deficient genetic background for improving mutagenesis and target-selected knockout efficiency is in principle applicable to any organism of interest.
Collapse
Affiliation(s)
- Ruben van Boxtel
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Cancer Genomics Center, Royal Netherlands Academy of Sciences, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Targeting induced local lesions in genomes (TILLING) is a reverse-genetic method for identifying point mutations in chemically mutagenized populations. For functional genomics, it is ideal to have a stable collection of heavily mutagenized lines that can be screened over an extended period of time. However, long-term storage is impractical for Drosophila, so mutant strains must be maintained by continual propagation of live cultures. Here we evaluate a strategy in which ethylmethane sulfonate (EMS) mutagenized chromosomes were maintained as heterozygotes with balancer chromosomes for >100 generations before screening. The strategy yielded a spectrum of point mutations similar to those found in previous studies of EMS-induced mutations, as well as 2.4% indels (insertions and deletions). Our analysis of 1887 point mutations in 148 targets showed evidence for selection against deleterious lesions and differential retention of lesions among targets on the basis of their position relative to balancer breakpoints, leading to a broad distribution of mutational densities. Despite selection and differential retention, the success of a user-funded service based on screening a large collection several years after mutagenesis indicates sufficient stability for use as a long-term reverse-genetic resource. Our study has implications for the use of balancer chromosomes to maintain mutant lines and provides the first large-scale quantitative assessment of the limitations of using breeding populations for repositories of genetic variability.
Collapse
|
20
|
Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, Kasschau KD, Chaves DA, Gu W, Vasale JJ, Duan S, Conte D, Luo S, Schroth GP, Carrington JC, Bartel DP, Mello CC. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell 2008; 31:67-78. [PMID: 18571452 PMCID: PMC2570341 DOI: 10.1016/j.molcel.2008.06.002] [Citation(s) in RCA: 414] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 06/03/2008] [Accepted: 06/09/2008] [Indexed: 11/25/2022]
Abstract
In metazoans, Piwi-related Argonaute proteins have been linked to germline maintenance, and to a class of germline-enriched small RNAs termed piRNAs. Here we show that an abundant class of 21 nucleotide small RNAs (21U-RNAs) are expressed in the C. elegans germline, interact with the C. elegans Piwi family member PRG-1, and depend on PRG-1 activity for their accumulation. The PRG-1 protein is expressed throughout development and localizes to nuage-like structures called P granules. Although 21U-RNA loci share a conserved upstream sequence motif, the mature 21U-RNAs are not conserved and, with few exceptions, fail to exhibit complementarity or evidence for direct regulation of other expressed sequences. Our findings demonstrate that 21U-RNAs are the piRNAs of C. elegans and link this class of small RNAs and their associated Piwi Argonaute to the maintenance of temperature-dependent fertility.
Collapse
Affiliation(s)
- Pedro J Batista
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Feitsma H, de Bruijn E, van de Belt J, Nijman IJ, Cuppen E. Mismatch repair deficiency does not enhance ENU mutagenesis in the zebrafish germ line. Mutagenesis 2008; 23:325-9. [PMID: 18469325 DOI: 10.1093/mutage/gen019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are involved in the recognition of alkylation damage, we hypothesized that ENU-induced mutation rates could be increased in a MMR-deficient background, which would be beneficial for mutagenesis approaches. We applied a standard ENU mutagenesis protocol to adult zebrafish deficient in the MMR gene msh6 and heterozygous controls to study the effect of MMR on ENU-induced DNA damage. Dose-dependent lethality was found to be similar for homozygous and heterozygous mutants, indicating that there is no difference in ENU resistance. Mutation discovery by high-throughput dideoxy resequencing of genomic targets in outcrossed progeny of the mutagenized fish did also not reveal any differences in germ line mutation frequency. These results may indicate that the maximum mutation load for zebrafish has been reached with the currently used, highly optimized ENU mutagenesis protocol. Alternatively, the MMR system in the zebrafish germ line may be saturated very rapidly, thereby having a limited effect on high-dose ENU mutagenesis.
Collapse
Affiliation(s)
- Harma Feitsma
- Hubrecht Institute and Cancer Genomics Center, 3584 CT Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Moerman DG, Barstead RJ. Towards a mutation in every gene in Caenorhabditis elegans. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:195-204. [PMID: 18417533 DOI: 10.1093/bfgp/eln016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The combined efforts of the Caenorhabditis elegans Knockout Consortium and individuals within the worm community are moving us closer to the goal of identifying mutations in every gene in the nematode C. elegans. At present, we count about 7000 deletion alleles that fall within 5500 genes. The principal method used to detect deletion mutations in the nematode utilizes polymerase chain reaction (PCR). More recently, the Moerman group has incorporated array comparative genome hybridization (aCGH) to detect deletions across the entire coding genome. Other methods used to detect mutant alleles in C. elegans include targeting induced local lesion in genomes (TILLING), transposon tagging, using either Tc1 or Mos1 and resequencing. These combined strategies have improved the overall throughput of the gene-knockout labs, and have broadened the types of mutations that we, and others, can identify. In this review, we will discuss these different approaches.
Collapse
Affiliation(s)
- Donald G Moerman
- Department of Zoology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver B.C. V6T 1Z3 Canada.
| | | |
Collapse
|
23
|
Frische EW, Pellis-van Berkel W, van Haaften G, Cuppen E, Plasterk RHA, Tijsterman M, Bos JL, Zwartkruis FJT. RAP-1 and the RAL-1/exocyst pathway coordinate hypodermal cell organization in Caenorhabditis elegans. EMBO J 2007; 26:5083-92. [PMID: 17989692 DOI: 10.1038/sj.emboj.7601922] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 10/19/2007] [Indexed: 11/09/2022] Open
Abstract
The small Ras-like GTPase Rap1 has been identified as a regulator of integrin activation and cadherin-mediated cell-cell contacts. Surprisingly, null mutants of RAP-1 in Caenorhabditis elegans are viable and fertile. In a synthetic lethal RNAi screen with C. elegans rap-1 mutants, the Ras-like GTPase ral-1 emerged as one of seven genes specifically required for viability. Depletion of exoc-8 and sec-5, encoding two putative RAL-1 effectors and members of the exocyst complex, also caused lethality of rap-1 mutants, but did not affect wild-type worms. The RAP-1 and the RAL-1/exocyst pathway appear to coordinate hypodermal cell movement and elongation during embryonic development. They mediate their effect in part through targeting the alpha-catenin homologue HMP-1 to the lateral membrane. Genetic interactions show that the RAP-1 and RAL-1/exocyst pathway also act in parallel during larval stages. Together these data provide in vivo evidence for the exocyst complex as a downstream RAL-1 effector in cell migration.
Collapse
Affiliation(s)
- Ester W Frische
- Department of Physiological Chemistry, Centre for Biomedical Genetics, UMC Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|