1
|
Kuroda Y, Matsumoto T, Hayashi S, Hashimoto S, Takayama K, Kirizuki S, Tsubosaka M, Kamenaga T, Takashima Y, Matsushita T, Niikura T, Kuroda R. Intra-articular autologous uncultured adipose-derived stromal cell transplantation inhibited the progression of cartilage degeneration. J Orthop Res 2019; 37:1376-1386. [PMID: 30378173 DOI: 10.1002/jor.24174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/22/2018] [Indexed: 02/04/2023]
Abstract
The role of uncultured adipose-derived stromal cells for osteoarthritis treatment remains unclear despite sporadic reports supporting their use in clinical settings. This study aimed to evaluate the therapeutic effects of autologous uncultured adipose-derived stromal cell transplantation in a rabbit osteoarthritis model. Uncultured adipose-derived stromal cells isolated from rabbits were administered via intra-articular injection into the knees after osteoarthritis onset. Animals were sacrificed at 8 and 12 weeks after osteoarthritis onset to compare the macroscopic, histological, and immunohistochemical characteristics between the uncultured adipose-derived stromal cell and control groups. Co-culture assay was also performed. The chondrocytes isolated from the model were co-cultured with adipose-derived stromal cells. The cell viability of chondrocytes and expression of chondrocyte-specific genes in the co-culture (uncultured adipose-derived stromal cell) group were compared with the mono-culture (control; chondrocytes only) group. In macroscopic and histological analyses, the uncultured adipose-derived stromal cell group showed less damage to the cartilage surface than the control group at 8 and 12 weeks after osteoarthritis onset. In immunohistochemical and co-culture assay, the uncultured adipose-derived stromal cell group showed higher expression of collagen type II and SRY box-9 and lower expression of matrix metalloproteinase-13 than the control group. The cell viability of chondrocytes in the uncultured adipose-derived stromal cell group was higher than that in the control group. Intra-articular autologous uncultured adipose-derived stromal cell transplantation inhibited the progression of cartilage degeneration in a rabbit osteoarthritis model by regulating chondrocyte viability and secreting chondrocyte-protecting cytokines or growth factors, which promote anabolic factors and inhibit catabolic factors. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1376-1386, 2019.
Collapse
Affiliation(s)
- Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shingo Hashimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Takayama
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinsuke Kirizuki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshinori Takashima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Han N, Noyes HA, Brass A. TIGERi: modeling and visualizing the responses to perturbation of a transcription factor network. BMC Bioinformatics 2017; 18:260. [PMID: 28617232 PMCID: PMC5471961 DOI: 10.1186/s12859-017-1636-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Transcription factor (TF) networks play a key role in controlling the transfer of genetic information from gene to mRNA. Much progress has been made on understanding and reverse-engineering TF network topologies using a range of experimental and theoretical methodologies. Less work has focused on using these models to examine how TF networks respond to changes in the cellular environment. METHODS In this paper, we have developed a simple, pragmatic methodology, TIGERi (Transcription-factor-activity Illustrator for Global Explanation of Regulatory interaction), to model the response of an inferred TF network to changes in cellular environment. The methodology was tested using publicly available data comparing gene expression profiles of a mouse p38α (Mapk14) knock-out line to the original wild-type. RESULTS Using the model, we have examined changes in the TF network resulting from the presence or absence of p38α. A part of this network was confirmed by experimental work in the original paper. Additional relationships were identified by our analysis, for example between p38α and HNF3, and between p38α and SOX9, and these are strongly supported by published evidence. FXR and MYC were also discovered in our analysis as two novel links of p38α. To provide a computational methodology to the biomedical communities that has more user-friendly interface, we also developed a standalone GUI (graphical user interface) software for TIGERi and it is freely available at https://github.com/namshik/tigeri/ . CONCLUSIONS We therefore believe that our computational approach can identify new members of networks and new interactions between members that are supported by published data but have not been integrated into the existing network models. Moreover, ones who want to analyze their own data with TIGERi could use the software without any command line experience. This work could therefore accelerate researches in transcriptional gene regulation in higher eukaryotes.
Collapse
Affiliation(s)
- Namshik Han
- Gurdon Institute, University of Cambridge, Cambridge, UK. .,School of Computer Science and School of Health Sciences, University of Manchester, Manchester, UK.
| | - Harry A Noyes
- School of Biological Sciences, University of Liverpool, Liverpool, UK
| | - Andy Brass
- School of Computer Science and School of Health Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Huang X, Wu H, Wang L, Zheng L, Zhao J. Protective effects of baicalin on rabbit articular chondrocytes in vitro. Exp Ther Med 2017; 13:1267-1274. [PMID: 28413465 PMCID: PMC5377289 DOI: 10.3892/etm.2017.4116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/04/2016] [Indexed: 12/29/2022] Open
Abstract
Drug therapy is one of the typical treatments for post-injury inflammation of cartilage. Traditional Chinese herbs have potential as treatments, as their long history of clinical application has demonstrated they are effective and induce minimal side effects. Baicalin is a traditional Chinese medicine that has been used to treat inflammation, fever, ulcers and cancer for hundreds of years. Previous studies have demonstrated that baicalin may decrease levels of interleukin-1β and suppress the expression of type-I collagen, thus attenuating cartilage degeneration. In the present study, the effect of baicalin on chondrocytes was assessed by examining the morphology, proliferation, extracellular matrix (ECM) synthesis and cartilage-specific gene expression of chondrocytes. The results indicated that baicalin may promote the proliferation of articular chondrocytes, secretion of cartilage ECM and collagen type II, aggrecan and SRY box (Sox) 9 gene upregulation. The expression of collagen I, a marker of chondrocyte dedifferentiation, was downregulated by baicalin; therefore, baicalin may maintain the phenotype of chondrocytes. Within the recommended concentrations of baicalin ranging from 0.625-6.25 µmol/l cell proliferation was increased and a 1.25 µmol/l dose of baicalin exerted the most positive effect on articular chondrocytes. The results of the present study may therefore indicate that baicalin may be used as a novel agent promoting the repair of articular cartilage damage.
Collapse
Affiliation(s)
- Xianyuan Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Huayu Wu
- Department of Cell Biology and Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liqin Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
4
|
Lelieveld SH, Schütte J, Dijkstra MJJ, Bawono P, Kinston SJ, Göttgens B, Heringa J, Bonzanni N. ConBind: motif-aware cross-species alignment for the identification of functional transcription factor binding sites. Nucleic Acids Res 2016; 44:e72. [PMID: 26721389 PMCID: PMC4856970 DOI: 10.1093/nar/gkv1518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic gene expression is regulated by transcription factors (TFs) binding to promoter as well as distal enhancers. TFs recognize short, but specific binding sites (TFBSs) that are located within the promoter and enhancer regions. Functionally relevant TFBSs are often highly conserved during evolution leaving a strong phylogenetic signal. While multiple sequence alignment (MSA) is a potent tool to detect the phylogenetic signal, the current MSA implementations are optimized to align the maximum number of identical nucleotides. This approach might result in the omission of conserved motifs that contain interchangeable nucleotides such as the ETS motif (IUPAC code: GGAW). Here, we introduce ConBind, a novel method to enhance alignment of short motifs, even if their mutual sequence similarity is only partial. ConBind improves the identification of conserved TFBSs by improving the alignment accuracy of TFBS families within orthologous DNA sequences. Functional validation of the Gfi1b + 13 enhancer reveals that ConBind identifies additional functionally important ETS binding sites that were missed by all other tested alignment tools. In addition to the analysis of known regulatory regions, our web tool is useful for the analysis of TFBSs on so far unknown DNA regions identified through ChIP-sequencing.
Collapse
Affiliation(s)
- Stefan H Lelieveld
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Judith Schütte
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK Klinik für Hämatologie, Universitätsklinik Essen 45147, Germany
| | - Maurits J J Dijkstra
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Punto Bawono
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Sarah J Kinston
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Jaap Heringa
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Nicola Bonzanni
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands Computational Cancer Biology Group, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands ENPICOM, Eindhoven 5632 CW, The Netherlands
| |
Collapse
|
5
|
Effect of Longan polysaccharides on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro. Med Biol Eng Comput 2015; 54:607-17. [DOI: 10.1007/s11517-015-1352-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 07/07/2015] [Indexed: 01/24/2023]
|
6
|
Wei S, Lu Z, Zou Y, Lin X, Lin C, Liu B, Zheng L, Zhao J. A Novel Synthesized Sulfonamido-Based Gallate-JEZ-C as Potential Therapeutic Agents for Osteoarthritis. PLoS One 2015; 10:e0125930. [PMID: 26107568 PMCID: PMC4480854 DOI: 10.1371/journal.pone.0125930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/25/2015] [Indexed: 11/24/2022] Open
Abstract
Gallic acid (GA) and its derivatives are anti-inflammatory agents reported to have an effect on osteoarthritis (OA). However, GA has much weaker anti-oxidant effects and inferior bioactivity compared with its derivatives. We modified GA with the introduction of sulfonamide to synthesize a novel compound named JEZ-C and analyzed its anti-arthritis and chondro-protective effects. Comparison of JEZ-C with its sources i.e. GA and Sulfamethoxazole (SMZ) was also performed. Results showed that JEZ-C could effectively inhibit the IL-1-mediated induction of MMP-1 and MMP-13 and could induce the expression of TIMP-1, which demonstrated its ability to reduce the progression of OA. JEZ-C can also exert chondro-protective effects by promoting cell proliferation and maintaining the phenotype of articular chondrocytes, as evidenced by improved cell growth, enhanced synthesis of cartilage specific markers such as aggrecan, collagen II and Sox9. Meanwhile, expression of the collagen I gene was effectively downregulated, revealing the inhibition of chondrocytes dedifferentiation by JEZ-C. Hypertrophy that may lead to chondrocyte ossification was also undetectable in JEZ-C groups. The recommended dose of JEZ-C ranges from 6.25×10-7 μg/ml to 6.25×10-5 μg/ml, among which the most profound response was observed with 6.25×10-6 μg/ml. In contrast, its source products of GA and SMZ have a weak effect not only in the inhibition of OA but also in the bioactivity of chondrocytes, which indicated the significance of this modification. This study revealed JEZ-C as a promising novel agent in the treatment of chondral and osteochondral lesions.
Collapse
Affiliation(s)
- Shixiu Wei
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
| | - Zhenhui Lu
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiao Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
| | - Cuiwu Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Buming Liu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
| | - Li Zheng
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- * E-mail:
| | - Jinmin Zhao
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
7
|
Qu F, Zhao Z, Yuan B, Qi W, Li C, Shen X, Liu C, Li H, Zhao G, Wang J, Guo Q, Liu Y. CaMKII plays a part in the chondrogenesis of bone marrow-derived mesenchymal stem cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5981-5987. [PMID: 26191331 PMCID: PMC4503202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
AIMS The purpose of the study is to observe the functions of calcium/calmodulin dependent protein kinase II (CaMKII) in the induced chondrogenic differentiation of bone marrow derived mesenchymal stem cells (BMSCs). METHODS BMSCs was in vitro isolated and cultured for induced chondrogenesis. Western blot was used to ascertain the expression of CaMKII and phosphorylated CaMKII (PCaMKII, activatory CaMKII) in chondrogenic induced BMSCs. MTT method was utilized to observe the impact of CaMKII on the proliferation of BMSCs. The generation of cartilage matrix in BMSCs cells was detected by toluidine blue staining. The levels of cartilage marker genes COL2A1, Aggrecan and SOX9 in BMSCs were gained by real-time fluorescence quantitative polymerase chain reaction (RT-QPCR). Finally, BMSCs proliferation, cartilage matrix generation and the changes of COL2A1, Aggrecan and SOX9 were surveyed after CaMKII being blocked by CaMKII inhibitor KN93. RESULTS Expression of CaMKII and PCaMKII could be found in chondrogenic induced BMSCs. CaMKII had no significant influence on BMSCs proliferation, but the toluidine blue staining was obviously lighter, indicating a significant decline in the expression of COL2A1, Aggrecan and SOX9. CONCLUSION As one of the factors influencing the chondrogenic capacity of BMSCs, CaMKII does not impact on BMSCs proliferation, but it can inhibit the chondrogenic ability of BMSCs by influencing its differentiation.
Collapse
Affiliation(s)
- Feng Qu
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhikun Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chinese PLA General Hospital51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Bangtuo Yuan
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Wei Qi
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Chunbao Li
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xuezhen Shen
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Chang Liu
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Hongliang Li
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Gang Zhao
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jiangtao Wang
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Qi Guo
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yujie Liu
- Department of Orthopedics, Chinese PLA General Hospital28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
8
|
Luo L, Wei Q, Liu L, Lin X, Lin C, Zheng LI, Zhao J. Protocatechuic acid benefits proliferation and phenotypic maintenance of rabbit articular chondrocytes: An in vitro study. Exp Ther Med 2015; 9:1865-1870. [PMID: 26136906 DOI: 10.3892/etm.2015.2326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/06/2015] [Indexed: 12/22/2022] Open
Abstract
Numerous antioxidants exhibit antiarthritic effects due to their inhibitory effect on inflammatory factors. Certain antioxidants, such as protocatechuic acid (PCA) and its analogs, have been reported to be effective in the treatment of arthritis. However, the effect of PCA on chondro-protection may be alleviated due to the induction of apoptosis, as has been demonstrated in stomatocytes. To clearly determine the effect of PCA on the biological and cellular metabolism of rabbit articular chondrocytes in vitro, examinations of cytotoxicity, proliferation and morphology were performed, in addition to analyses of glycosaminoglycan (GAG) synthesis and the expression of cartilage-specific genes. The results revealed that PCA effectively promoted chondrocyte growth, the synthesis of the extracellular matrix and the mRNA expression of aggrecan, collagen II and Sox9, while downregulating the expression of the collagen I gene, a marker of chondrocyte dedifferentiation. In addition, hypertrophy, which may result in chondrocyte ossification, was not detected in the groups. Among the doses (range, 0.05-0.3 mmol/l) of PCA that promoted the proliferation of chondrocytes, a concentration of 0.125 mmol/l produced the optimum performance. The results indicated that PCA, particularly at a dose of 0.125 mmol/l, accelerated the proliferation of rabbit articular chondrocytes in vitro and maintained their phenotype. This study may provide a basis for further research concerning the treatment of cartilage defects.
Collapse
Affiliation(s)
- Like Luo
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qingjun Wei
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lei Liu
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China ; Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, Guangxi 530022, P.R. China
| | - Cuiwu Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - L I Zheng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; The Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinmin Zhao
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
9
|
Andrographolide enhances proliferation and prevents dedifferentiation of rabbit articular chondrocytes: an in vitro study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:984850. [PMID: 25802548 PMCID: PMC4353662 DOI: 10.1155/2015/984850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 12/15/2022]
Abstract
As the main active constituent of Andrographis paniculata that was applied in treatment of many diseases including inflammation in ancient China, andrographolide (ANDRO) was found to facilitate reduction of edema and analgesia in arthritis. This suggested that ANDRO may be promising anti-inflammatory agent to relieve destruction and degeneration of cartilage after inflammation. In this study, the effect of ANDRO on rabbit articular chondrocytes in vitro was investigated. Results showed that not more than 8 μM ANDRO did no harm to chondrocytes (P < 0.05). DNA content and glycosaminoglycan (GAG) /DNA were, respectively, improved in ANDRO groups comparing to the control (P < 0.05). ANDRO could promote expression of aggrecan, collagen II, and Sox9 genes while downregulating expression of collagen I gene (P < 0.05). Furthermore, hypertrophy that may result in chondrocyte ossification could not be detected in all groups (P > 0.05). The viability assay, hematoxylin-eosin, safranin O, and immunohistochemical staining also showed better performances in ANDRO groups. As to the doses, 3 μM ANDRO showed the best performance. The results indicate that ANDRO can accelerate proliferation of rabbit articular chondrocytes in vitro and meanwhile maintain the phenotype, which may provide valuable references for further exploration on arthritis.
Collapse
|
10
|
Liu Q, Lu Z, Wu H, Zheng L. Chondroprotective Effects of Taurine in Primary Cultures of Human Articular Chondrocytes. TOHOKU J EXP MED 2015; 235:201-13. [DOI: 10.1620/tjem.235.201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Qin Liu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University
- The Medical and Scientific Research Center, Guangxi Medical University
| | - Zhenhui Lu
- The Medical and Scientific Research Center, Guangxi Medical University
| | - Huayu Wu
- Department of Cell Biology and Genetics, School of Premedical Sciences, Guangxi Medical University
| | - Li Zheng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University
- The Medical and Scientific Research Center, Guangxi Medical University
| |
Collapse
|
11
|
Huang H, Liu Q, Liu L, Wu H, Zheng L. Effect of epigallocatechin-3-gallate on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro.. Exp Ther Med 2014; 9:213-218. [PMID: 25452805 PMCID: PMC4247298 DOI: 10.3892/etm.2014.2057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/22/2014] [Indexed: 12/31/2022] Open
Abstract
In autologous chondrocyte implantation (ACI) to restore defective cartilage, limited cell numbers and dedifferentiation of chondrocytes are the major difficulties. An alternative is the use of growth factors, but their high cost and potential for tumorigenesis are major obstacles. To ensure successful ACI therapy, it is important to find an effective substitute pro-chondrogenic agent. Epigallocatechin-3-gallate (EGCG), one of the green tea catechins, has been widely investigated in studies of interleukin-1β-induced chondrocytes. In the present study, the effects of EGCG on rabbit articular chondrocytes were investigated through the examination of cell proliferation, morphology, glycosaminoglycan synthesis and cartilage-specific gene expression. The results showed that EGCG could effectively promote chondrocyte growth and enhance the secretion and synthesis of the cartilage extracellular matrix by upregulating expression levels of aggrecan, collagen II and Sox9 genes. Expression of the collagen I gene was downregulated, which showed that EGCG effectively inhibited the dedifferentiation of chondrocytes. Hypertrophy, which may lead to chondrocyte ossification, was also undetectable in the EGCG groups. In conclusion, the recommended dose of EGCG was found to be in the range of 5 to 20 μM, with the most marked response observed with 10 μM. The present study may provide a basis for the development of a novel agent as a substitute for growth factors in the treatment of articular cartilage defects.
Collapse
Affiliation(s)
- Haojia Huang
- Graduate School, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qin Liu
- Research Center for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lei Liu
- Research Center for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Huayu Wu
- Department of Cell Biology and Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Zheng
- Research Center for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
12
|
Effect of a novel synthesized sulfonamido-based gallate-SZNTC on chondrocytes metabolism in vitro. Chem Biol Interact 2014; 221:127-38. [DOI: 10.1016/j.cbi.2014.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/20/2022]
|
13
|
Effect of JEZTC, a synthetic compound, on proliferation and phenotype maintenance of rabbit articular chondrocytes in vitro. In Vitro Cell Dev Biol Anim 2014; 50:982-91. [DOI: 10.1007/s11626-014-9795-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/26/2014] [Indexed: 12/25/2022]
|
14
|
Fang M, Jacob R, McDougal O, Oxford JT. Minor fibrillar collagens, variable regions alternative splicing, intrinsic disorder, and tyrosine sulfation. Protein Cell 2012; 3:419-33. [PMID: 22752873 DOI: 10.1007/s13238-012-2917-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 02/07/2012] [Indexed: 12/25/2022] Open
Abstract
Minor fibrillar collagen types V and XI, are those less abundant than the fibrillar collagen types I, II and III. The alpha chains share a high degree of similarity with respect to protein sequence in all domains except the variable region. Genomic variation and, in some cases, extensive alternative splicing contribute to the unique sequence characteristics of the variable region. While unique expression patterns in tissues exist, the functions and biological relevance of the variable regions have not been elucidated. In this review, we summarize the existing knowledge about expression patterns and biological functions of the collagen types V and XI alpha chains. Analysis of biochemical similarities among the peptides encoded by each exon of the variable region suggests the potential for a shared function. The alternative splicing, conservation of biochemical characteristics in light of low sequence conservation, and evidence for intrinsic disorder, suggest modulation of binding events between the surface of collagen fibrils and surrounding extracellular molecules as a shared function.
Collapse
Affiliation(s)
- Ming Fang
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | | | | | | |
Collapse
|
15
|
Schwager J, Hoeller U, Wolfram S, Richard N. Rose hip and its constituent galactolipids confer cartilage protection by modulating cytokine, and chemokine expression. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 11:105. [PMID: 22051322 PMCID: PMC3231956 DOI: 10.1186/1472-6882-11-105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 11/03/2011] [Indexed: 01/08/2023]
Abstract
Background Clinical studies have shown that rose hip powder (RHP) alleviates osteoarthritis (OA). This might be due to anti-inflammatory and cartilage-protective properties of the complete RHP or specific constituents of RHP. Cellular systems (macrophages, peripheral blood leukocytes and chondrocytes), which respond to inflammatory and OA-inducing stimuli, are used as in vitro surrogates to evaluate the possible pain-relief and disease-modifying effects of RHP. Methods (1) Inflammatory processes were induced in RAW264.7 cells or human peripheral blood leukocytes (PBL) with LPS. Inflammatory mediators (nitric oxide (NO), prostaglandin E2 (PGE2) and cytokines/chemokines) were determined by the Griess reaction, EIA and multiplex ELISA, respectively. Gene expression was quantified by RT-PCR. RHP or its constituent galactolipid, GLGPG (galactolipid (2S)-1, 2-di-O-[(9Z, 12Z, 15Z)-octadeca-9, 12, 15-trienoyl]-3-O-β-D-galactopyranosyl glycerol), were added at various concentrations and the effects on biochemical and molecular parameters were evaluated. (2) SW1353 chondrosarcoma cells and primary human knee articular chondrocytes (NHAC-kn) were treated with interleukin (IL)-1β to induce in vitro processes similar to those occurring during in vivo degradation of cartilage. Biomarkers related to OA (NO, PGE2, cytokines, chemokines, metalloproteinases) were measured by multiplex ELISA and gene expression analysis in chondrocytes. We investigated the modulation of these events by RHP and GLGPG. Results In macrophages and PBL, RHP and GLGPG inhibited NO and PGE2 production and reduced the secretion of cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12) and chemokines (CCL5/RANTES, CXCL10/IP-10). In SW1353 cells and primary chondrocytes, RHP and GLGPG diminished catabolic gene expression and inflammatory protein secretion as shown by lower mRNA levels of matrix metalloproteinases (MMP-1, MMP-3, MMP-13), aggrecanase (ADAMTS-4), macrophage inflammatory protein (MIP-2, MIP-3α), CCL5/RANTES, CXCL10/IP-10, IL-8, IL-1α and IL-6. The effects of GLGPG were weaker than those of RHP, which presumably contains other chondro-protective substances besides GLGPG. Conclusions RHP and GLGPG attenuate inflammatory responses in different cellular systems (macrophages, PBLs and chondrocytes). The effects on cytokine production and MMP expression indicate that RHP and its constituent GLGPG down-regulate catabolic processes associated with osteoarthritis (OA) or rheumatoid arthritis (RA). These data provide a molecular and biochemical basis for cartilage protection provided by RHP.
Collapse
|
16
|
Ghedira K, Hornischer K, Konovalova T, Jenhani AZ, Benkahla A, Kel A. Identification of key mechanisms controlling gene expression in Leishmania infected macrophages using genome-wide promoter analysis. INFECTION GENETICS AND EVOLUTION 2010; 11:769-77. [PMID: 21093613 DOI: 10.1016/j.meegid.2010.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 01/15/2023]
Abstract
The present study describes the in silico prediction of the regulatory network of Leishmania infected human macrophages. The construction of the gene regulatory network requires the identification of Transcription Factor Binding Sites (TFBSs) in the regulatory regions (promoters, enhancers) of genes that are regulated upon Leishmania infection. The promoters of human, mouse, rat, dog and chimpanzee genes were first identified in the whole genomes using available experimental data on full length cDNA sequences or deep CAGE tag data (DBTSS, FANTOM3, FANTOM4), mRNA models (ENSEMBL), or using hand annotated data (EPD, TRANSFAC). A phylogenetic footprinting analysis and a MATCH analysis of the promoter sequences were then performed to predict TFBS. Then, an SQL database that integrates all results of promoter analysis as well as other genome annotation information obtained from ENSEMBL, TRANSFAC, TRED (Transcription Regulatory Element Database), ORegAnno and the ENCODE project, was established. Finally publicly available expression data from human Leishmania infected macrophages were analyzed using the genome-wide information on predicted TFBS with the computer system ExPlain™. The gene regulatory network was constructed and activated signal transduction pathways were revealed. The Irak1 pathway was identified as a key pathway regulating gene expression changes in Leishmania infected macrophages.
Collapse
Affiliation(s)
- Kais Ghedira
- Laboratory of Immunology, Vaccinology, and Molecular Genetics, Institut Pasteur de Tunis, 13 place Pasteur BP 74, Tunis, Tunisia
| | | | | | | | | | | |
Collapse
|
17
|
Zhang Z, Bryan JL, DeLassus E, Chang LW, Liao W, Sandell LJ. CCAAT/enhancer-binding protein β and NF-κB mediate high level expression of chemokine genes CCL3 and CCL4 by human chondrocytes in response to IL-1β. J Biol Chem 2010; 285:33092-33103. [PMID: 20702408 PMCID: PMC2963416 DOI: 10.1074/jbc.m110.130377] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/16/2010] [Indexed: 11/06/2022] Open
Abstract
A large set of chemokines is highly up-regulated in human chondrocytes in response to IL-1β (Sandell, L. J., Xing, X., Franz, C., Davies, S., Chang, L. W., and Patra, D. (2008) Osteoarthr. Cartil. 16, 1560-1571). To investigate the mechanism of transcriptional regulation, deletion constructs of selected chemokine gene promoters, the human CCL3 (MIP-1α) and CCL4 (MIP-1β), were transfected into human chondrocytes with or without IL-1β. The results show that an IL-1β-responsive element is located between bp -300 and -140 of the CCL3 promoter and between bp -222 and -100 of the CCL4 promoter. Because both of these elements contain CCAAT/enhancer-binding protein β (C/EBPβ) motifs, the function of C/EBPβ was examined. IL-1β stimulated the expression of C/EBPβ, and the direct binding of C/EBPβ to the C/EBPβ motif was confirmed by EMSA and ChIP analyses. The -300 bp CCL3 promoter and -222 bp CCL4 promoter were strongly up-regulated by co-transfection with the C/EBPβ expression vector. Mutation of the C/EBPβ motif and reduction of C/EBPβ expression by siRNA decreased the up-regulation. Additionally, another cytokine-related transcription factor, NF-κB, was also shown to be involved in the up-regulation of chemokines in response to IL-1β, and the binding site was identified. The regulation of C/EBPβ and NF-κB was confirmed by the inhibition by C/EBPβ and NF-κB and by transfection with C/EBPβ and NF-κB expression vectors in the presence or absence of IL-1β. Taken together, our results suggest that C/EBPβ and NF-κB are both involved in the IL-1β-responsive up-regulation of chemokine genes in human chondrocytes. Time course experiments indicated that C/EBPβ gradually and steadily induces chemokine up-regulation, whereas NF-κB activity was highest at the early stage of chemokine up-regulation.
Collapse
Affiliation(s)
- Zhiqi Zhang
- From the Departments of Orthopaedic Surgery, St. Louis, Missouri 63110; Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jennifer L Bryan
- From the Departments of Orthopaedic Surgery, St. Louis, Missouri 63110
| | | | - Li-Wei Chang
- Pathology and Immunology, St. Louis, Missouri 63110
| | - Weiming Liao
- Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Linda J Sandell
- From the Departments of Orthopaedic Surgery, St. Louis, Missouri 63110; Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110.
| |
Collapse
|
18
|
Zhang Z, Xing X, Hensley G, Chang LW, Liao W, Abu-Amer Y, Sandell LJ. Resistin induces expression of proinflammatory cytokines and chemokines in human articular chondrocytes via transcription and messenger RNA stabilization. ACTA ACUST UNITED AC 2010; 62:1993-2003. [PMID: 20506172 DOI: 10.1002/art.27473] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To elucidate the effects of resistin on human articular chondrocytes and to generate a picture of their regulation at the transcriptional and posttranscriptional levels. METHODS Human articular chondrocytes were cultured with resistin. Changes in gene expression were analyzed at various doses and times. Cells were also treated with the transcription inhibitor actinomycin D after resistin treatment or with the NF-kappaB inhibitor IKK-NBD before resistin treatment. Gene expression was tested by quantitative real-time polymerase chain reaction. Computational analysis for transcription factor binding motifs was performed on the promoter regions of differentially expressed genes. TC-28 chondrocytes were transfected with CCL3 and CCL4 promoter constructs, pNF-kappaB reporter, and NF-kappaB and CCAAT/enhancer binding protein beta (C/EBPbeta) expression vectors with or without resistin. RESULTS Resistin-treated human articular chondrocytes increased the expression of cytokines and chemokines. Levels of messenger RNA (mRNA) for matrix metalloproteinase 1 (MMP-1), MMP-13, and ADAMTS-4 also increased, while type II collagen alpha1 (COL2A1) and aggrecan were down-regulated. The cytokine and chemokine genes could be categorized into 3 groups according to the pattern of mRNA expression over a 24-hour time course. One pattern suggested rapid regulation by mRNA stability. The second and third patterns were consistent with transcriptional regulation. Computational analysis suggested the transcription factors NF-kappaB and C/EBPbeta were involved in the resistin-induced up-regulation. This prediction was confirmed by the cotransfection of NF-kappaB and C/EBPbeta and the IKK-NBD inhibition. CONCLUSION Resistin has diverse effects on gene expression in human chondrocytes, affecting chemokines, cytokines, and matrix genes. Messenger RNA stabilization and transcriptional up-regulation are involved in resistin-induced gene expression in human chondrocytes.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Landolin JM, Johnson DS, Trinklein ND, Aldred SF, Medina C, Shulha H, Weng Z, Myers RM. Sequence features that drive human promoter function and tissue specificity. Genome Res 2010; 20:890-8. [PMID: 20501695 DOI: 10.1101/gr.100370.109] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Promoters are important regulatory elements that contain the necessary sequence features for cells to initiate transcription. To functionally characterize a large set of human promoters, we measured the transcriptional activities of 4575 putative promoters across eight cell lines using transient transfection reporter assays. In parallel, we measured gene expression in the same cell lines and observed a significant correlation between promoter activity and endogenous gene expression (r = 0.43). As transient transfection assays directly measure the promoting effect of a defined fragment of DNA sequence, decoupled from epigenetic, chromatin, or long-range regulatory effects, we sought to predict whether a promoter was active using sequence features alone. CG dinucleotide content was highly predictive of ubiquitous promoter activity, necessitating the separation of promoters into two groups: high CG promoters, mostly ubiquitously active, and low CG promoters, mostly cell line-specific. Computational models trained on the binding potential of transcriptional factor (TF) binding motifs could predict promoter activities in both high and low CG groups: average area under the receiver operating characteristic curve (AUC) of the models was 91% and exceeded the AUC of CG content by an average of 23%. Known relationships, for example, between HNF4A and hepatocytes, were recapitulated in the corresponding cell lines, in this case the liver-derived cell line HepG2. Half of the associations between tissue-specific TFs and cell line-specific promoters were new. Our study underscores the importance of collecting functional information from complementary assays and conditions to understand biology in a systematic framework.
Collapse
Affiliation(s)
- Jane M Landolin
- Division of Life Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Geurts J, Joosten LAB, Takahashi N, Arntz OJ, Glück A, Bennink MB, van den Berg WB, van de Loo FAJ. Computational design and application of endogenous promoters for transcriptionally targeted gene therapy for rheumatoid arthritis. Mol Ther 2009; 17:1877-87. [PMID: 19690516 DOI: 10.1038/mt.2009.182] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The promoter regions of genes that are differentially regulated in the synovial membrane during the course of rheumatoid arthritis (RA) represent attractive candidates for application in transcriptionally targeted gene therapy. In this study, we applied an unbiased computational approach to define proximal-promoters from a gene expression profiling study of murine experimental arthritis. Synovium expression profiles from progressing stages of collagen-induced arthritis (CIA) were classified into six distinct groups using k-means clustering. Using an algorithm based on local over-representation and comparative genomics, we identified putatively functional transcription factor-binding sites (TFBS) in TATA-dependent proximal-promoters. Applying a filter based on spacing between TATA box and transcription start site (TSS) combined with the presence of over-represented nuclear factor kappaB (NFkappaB), AP-1, or CCAAT/enhancer-binding protein beta (C/EBPbeta) sites, 382 candidate murine and human promoters were reduced to 66, corresponding to 45 genes. In vitro, 9 out of 10 computationally defined promoter regions conferred cytokine-inducible expression in murine cells and human synovial fibroblasts. Under these conditions, the serum amyloid A3 (Saa3) promoter showed the strongest transcriptional induction and strength. We applied this promoter for driving therapeutically efficacious levels of the interleukin-1 receptor antagonist (Il1rn) in a disease-regulated fashion. These results demonstrate the value of bioinformatics for guiding the selection of endogenous promoters for transcriptionally targeted gene therapy.
Collapse
Affiliation(s)
- Jeroen Geurts
- Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Alon S, Eisenberg E, Jacob-Hirsch J, Rechavi G, Vatine G, Toyama R, Coon SL, Klein DC, Gothilf Y. A new cis-acting regulatory element driving gene expression in the zebrafish pineal gland. Bioinformatics 2009; 25:559-62. [PMID: 19147662 DOI: 10.1093/bioinformatics/btp031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MOTIVATION The identification of functional cis-acting DNA regulatory elements is a crucial step towards understanding gene regulation. Ab initio motif detection algorithms have been extensively used in search of regulatory elements. Yet, their success in providing experimentally validated regulatory elements in vertebrates has been limited. RESULTS Here we report in silico identification and in vivo validation of regulatory elements that determine enhanced gene expression in the pineal gland of zebrafish. Microarray data enabled detection of genes that exhibit high expression in the pineal gland. The promoter regions of these genes were computationally analyzed in order to identify overrepresented motifs. The highest ranking motif identified is a CRX/OTX binding site, known to govern expression in the pineal gland and retina. The second highest ranking motif was not reported before; we experimentally validated its function in vivo by mutational analysis. The methodology presented here may be applicable as a general scheme for finding regulatory elements that contribute to tissue-specific gene expression.
Collapse
Affiliation(s)
- Shahar Alon
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kfoury N, Kapatos G. Identification of neuronal target genes for CCAAT/enhancer binding proteins. Mol Cell Neurosci 2008; 40:313-27. [PMID: 19103292 DOI: 10.1016/j.mcn.2008.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 01/19/2023] Open
Abstract
CCAAT/Enhancer Binding Proteins (C/EBPs) play pivotal roles in the development and plasticity of the nervous system. Identification of the physiological targets of C/EBPs (C/EBP target genes) should therefore provide insight into the underlying biology of these processes. We used unbiased genome-wide mapping to identify 115 C/EBPbeta target genes in PC12 cells that include transcription factors, neurotransmitter receptors, ion channels, protein kinases and synaptic vesicle proteins. C/EBPbeta binding sites were located primarily within introns, suggesting novel regulatory functions, and were associated with binding sites for other developmentally important transcription factors. Experiments using dominant negatives showed C/EBPbeta to repress transcription of a subset of target genes. Target genes in rat brain were subsequently found to preferentially bind C/EBPalpha, beta and delta. Analysis of the hippocampal transcriptome of C/EBPbeta knockout mice revealed dysregulation of a high percentage of transcripts identified as C/EBP target genes. These results support the hypothesis that C/EBPs play non-redundant roles in the brain.
Collapse
Affiliation(s)
- Najla Kfoury
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
23
|
Sandell LJ, Xing X, Franz C, Davies S, Chang LW, Patra D. Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1beta. Osteoarthritis Cartilage 2008; 16:1560-71. [PMID: 18565769 PMCID: PMC2605974 DOI: 10.1016/j.joca.2008.04.027] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 04/27/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To provide a more complete picture of the effect of interleukin-1 beta (IL-1beta) on adult human articular chondrocyte gene expression, in contrast to the candidate gene approach. DESIGN Chondrocytes from human knee cartilage were cultured in medium containing IL-1beta. Changes in gene expression were analyzed by microarray and reverse transcriptase-polymerase chain reaction analysis. The ability of transforming growth factor beta-1 (TGF-beta1), fibroblast growth factor (FGF)-18, and bone morphogenetic protein 2 (BMP-2) to alter the effects of IL-1beta was analyzed. Computational analysis of the promoter regions of differentially expressed genes for transcription factor binding motifs was performed. RESULTS IL-1beta-treated human chondrocytes showed significant increases in the expression of granulocyte colony stimulating factor-3, endothelial leukocyte adhesion molecule 1 and leukemia inhibitory factor as well as for a large group of chemokines that include CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, CCL2, CCL3, CCL4, CCL5, CCL8, CCL20, CCL3L1, CX3CL1 and the cytokine IL-6. As expected, the mRNA for matrix metalloproteinase (MMP)-13 and BMP-2 also increased while mRNA for the matrix genes COL2A1 and aggrecan was down-regulated. A subset of chemokines increased rapidly at very low levels of IL-1beta. The phenotype induced by IL-1beta was partially reversed by TGF-beta1, but not by BMP-2. In the presence of IL-1beta, FGF-18 increased expression of ADAMTS-4, aggrecan, BMP-2, COL2A1, CCL3, CCL4, CCL20, CXCL1, CXCL3, CXCL6, IL-1beta, IL-6, and IL-8 and decreased ADAMTS-5, MMP-13, CCL2, and CCL8. Computational analysis revealed a high likelihood that the most up-regulated chemokines are regulated by the transcription factors myocyte enhancer binding factor-3 (MEF-3), CCAAT/enhancer binding protein (C/EBP) and nuclear factor-kappa B (NF-kappaB). CONCLUSION IL-1beta has a diverse effect on gene expression profile in human chondrocytes affecting matrix genes as well as chemokines and cytokines. TGF-beta1 has the ability to antagonize some of the phenotype induced by IL-1beta.
Collapse
Affiliation(s)
- Linda J. Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110
| | - Xiaoyun Xing
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110
| | - Carl Franz
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110
| | - Sherri Davies
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110
| | - Li-Wei Chang
- Department of Pathology and Immunology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110
| | - Debabrata Patra
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110
| |
Collapse
|