1
|
Chen Y, Stagg C, Schlessinger D, Nagaraja R. PLAC1 affects cell to cell communication by interacting with the desmosome complex. Placenta 2021; 110:39-45. [PMID: 34118612 DOI: 10.1016/j.placenta.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION X-linked PLAC1 is highly expressed in placenta during embryogenesis, and when ablated in mice, causes aberrant placental cell layer organization. It is also highly expressed in many types of cancer cell-lines. Although it has been shown that it promotes AKT phosphorylation in cancer cells, the exact mechanism by which it influences placental layer differentiation is unclear. METHODS To investigate the mechanism of action of PLAC1 we did cell fractionation and immunoprecipitation of the protein and Mass Spectrometry analysis to identify its interaction partners. The associated proteins were directly tested for interactions by co-transfection with PLAC1 and immunoprecipitation. Mutations in the ZP-N domain of PLAC1 were introduced to assess its involvement in the interactions. RESULTS We provide evidence that Desmoglein-2 (DSG2), a component of the membrane-associated desmosomal complex, directly interacts with PLAC1. Mutations of cysteines in ZP-N domain disrupt the interaction between PLAC1 and DSG-2. DISCUSSION Because desmosomes are responsible for establishing lateral cell-cell junctions, we suggest that direct interaction with the lateral junction protein complex may be implicated in the PLAC1 effects on cell-cell interactions, and thereby on the layer structure of the placenta.
Collapse
Affiliation(s)
- Yaohui Chen
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Carole Stagg
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, 21224, USA
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Ramaiah Nagaraja
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, 21224, USA.
| |
Collapse
|
2
|
Kishimoto K, Furukawa KT, Luz-Madrigal A, Yamaoka A, Matsuoka C, Habu M, Alev C, Zorn AM, Morimoto M. Bidirectional Wnt signaling between endoderm and mesoderm confers tracheal identity in mouse and human cells. Nat Commun 2020; 11:4159. [PMID: 32855415 PMCID: PMC7453000 DOI: 10.1038/s41467-020-17969-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
The periodic cartilage and smooth muscle structures in mammalian trachea are derived from tracheal mesoderm, and tracheal malformations result in serious respiratory defects in neonates. Here we show that canonical Wnt signaling in mesoderm is critical to confer trachea mesenchymal identity in human and mouse. At the initiation of tracheal development, endoderm begins to express Nkx2.1, and then mesoderm expresses the Tbx4 gene. Loss of β-catenin in fetal mouse mesoderm causes loss of Tbx4+ tracheal mesoderm and tracheal cartilage agenesis. The mesenchymal Tbx4 expression relies on endodermal Wnt activation and Wnt ligand secretion but is independent of known Nkx2.1-mediated respiratory development, suggesting that bidirectional Wnt signaling between endoderm and mesoderm promotes trachea development. Activating Wnt, Bmp signaling in mouse embryonic stem cell (ESC)-derived lateral plate mesoderm (LPM) generates tracheal mesoderm containing chondrocytes and smooth muscle cells. For human ESC-derived LPM, SHH activation is required along with WNT to generate proper tracheal mesoderm. Together, these findings may contribute to developing applications for human tracheal tissue repair.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
- RIKEN BDR-CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kana T Furukawa
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Agustin Luz-Madrigal
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Akira Yamaoka
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Chisa Matsuoka
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Masanobu Habu
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Cantas Alev
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Aaron M Zorn
- RIKEN BDR-CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, Riken Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan.
- RIKEN BDR-CuSTOM Joint Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
3
|
Sominsky L, Goularte JF, Andrews ZB, Spencer SJ. Acylated Ghrelin Supports the Ovarian Transcriptome and Follicles in the Mouse: Implications for Fertility. Front Endocrinol (Lausanne) 2018; 9:815. [PMID: 30697193 PMCID: PMC6340924 DOI: 10.3389/fendo.2018.00815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Ghrelin, an orexigenic gut-derived peptide, is gaining increasing attention due to its multifaceted role in a number of physiological functions, including reproduction. Ghrelin exists in circulation primarily as des-acylated and acylated ghrelin. Des-acyl ghrelin, until recently considered to be an inactive form of ghrelin, is now known to have independent physiological functionality. However, the relative contribution of acyl and des-acyl ghrelin to reproductive development and function is currently unknown. Here we used ghrelin-O-acyltransferase (GOAT) knockout (KO) mice that have no measurable levels of endogenous acyl ghrelin and chronically high levels of des-acyl ghrelin, to characterize how the developmental and life-long absence of acyl ghrelin affects ovarian development and reproductive capacity. We combined the assessment of markers of reproductive maturity and the capacity to breed with measures of ovarian morphometry, as well as with ovarian RNA sequencing analysis. Our data show that while GOAT KO mice retain the capacity to breed in young adulthood, there is a diminished number of ovarian follicles (per mm3) in the juvenile and adult ovaries, due to a significant reduction in the number of small follicles, particularly the primordial follicles. We also show pronounced specific changes in the ovarian transcriptome in the juvenile GOAT KO ovary, indicative of a potential for premature ovarian development. Collectively, these findings indicate that an absence of acyl ghrelin does not prevent reproductive success but that appropriate levels of acyl and des-acyl ghrelin may be necessary for optimal ovarian maturation.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- *Correspondence: Luba Sominsky
| | - Jeferson F. Goularte
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Zane B. Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Sarah J. Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Natarajan K, Xie Y, Nakanishi T, Moreci RS, Jeyasuria P, Hussain A, Ross DD. Methods to Discover Alternative Promoter Usage and Transcriptional Regulation of Murine Bcrp1. J Vis Exp 2016. [PMID: 27286290 DOI: 10.3791/53827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Gene expression in different tissues is often controlled by alternative promoters that result in the synthesis of mRNA with unique - usually untranslated - first exons. Bcrp1 (Abcg2), the murine orthologue of the ABC transporter Breast Cancer Resistance Protein (BCRP, ABCG2), has at least four alternative promoters that are designated by the corresponding four alternative first exons produced: E1U, E1A, E1B, and E1C. Herein, in-silico protocols are presented to predict alternative promoter usage for Bcrp1. Furthermore, reporter assay methods are described to produce reporter constructs for alternative promoters and to determine the functionality of putative promoters upstream of the alternative first exons that are identified.
Collapse
Affiliation(s)
- Karthika Natarajan
- Greenebaum Cancer Center, University of Maryland School of Medicine; Pharmaceutical Sciences, University of Maryland School of Pharmacy
| | - Yi Xie
- Greenebaum Cancer Center, University of Maryland School of Medicine; Baltimore VA Medical Center
| | - Takeo Nakanishi
- Membrane Transport and Biopharmaceutics, School of Pharmaceutical Sciences, Kanazawa University
| | - Rebecca S Moreci
- Obstetrics, Gynecology and Reproductive Science, University of Pittsburgh; Magee Women's Research Institute
| | - Pancharatnam Jeyasuria
- Obstetrics, Gynecology, Perinatal Research Branch (NICHD), Wayne State University School of Medicine
| | - Arif Hussain
- Greenebaum Cancer Center, University of Maryland School of Medicine; Baltimore VA Medical Center; Medicine, University of Maryland School of Medicine; Pathology, University of Maryland School of Medicine
| | - Douglas D Ross
- Greenebaum Cancer Center, University of Maryland School of Medicine; Baltimore VA Medical Center; Medicine, University of Maryland School of Medicine; Pathology, University of Maryland School of Medicine; Pharmacology, University of Maryland School of Medicine; Experimental Therapeutics, University of Maryland School of Medicine;
| |
Collapse
|
5
|
Sasaki H, Toda T, Furukawa T, Mawatari Y, Takaesu R, Shimizu M, Wada R, Kato D, Utsugi T, Ohtsu M, Murakami Y. α-1,6-Fucosyltransferase (FUT8) inhibits hemoglobin production during differentiation of murine and K562 human erythroleukemia cells. J Biol Chem 2013; 288:16839-16847. [PMID: 23609441 DOI: 10.1074/jbc.m113.459594] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Erythropoiesis results from a complex combination of the expression of several transcription factor genes and cytokine signaling. However, the overall view of erythroid differentiation remains unclear. First, we screened for erythroid differentiation-related genes by comparing the expression profiles of high differentiation-inducible and low differentiation-inducible murine erythroleukemia cells. We identified that overexpression of α-1,6-fucosyltransferase (Fut8) inhibits hemoglobin production. FUT8 catalyzes the transfer of a fucose residue to N-linked oligosaccharides on glycoproteins via an α-1,6 linkage, leading to core fucosylation in mammals. Expression of Fut8 was down-regulated during chemically induced differentiation of murine erythroleukemia cells. Additionally, expression of Fut8 was positively regulated by c-Myc and c-Myb, which are known as suppressors of erythroid differentiation. Second, we found that FUT8 is the only fucosyltransferase family member that inhibits hemoglobin production. Functional analysis of FUT8 revealed that the donor substrate-binding domain and a flexible loop play essential roles in inhibition of hemoglobin production. This result clearly demonstrates that core fucosylation inhibits hemoglobin production. Third, FUT8 also inhibited hemoglobin production of human erythroleukemia K562 cells. Finally, a short hairpin RNA study showed that FUT8 down-regulation induced hemoglobin production and increase of transferrin receptor/glycophorin A-positive cells in human erythroleukemia K562 cells. Our findings define FUT8 as a novel factor for hemoglobin production and demonstrate that core fucosylation plays an important role in erythroid differentiation.
Collapse
Affiliation(s)
- Hitoshi Sasaki
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101
| | - Takanori Toda
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101
| | - Toru Furukawa
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101
| | - Yuki Mawatari
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101
| | - Rika Takaesu
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101
| | - Masashi Shimizu
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101
| | - Ryohei Wada
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101
| | - Dai Kato
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585
| | - Takahiko Utsugi
- Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101; Bio Matrix Research Inc., Chiba 270-0101, Japan
| | - Masaya Ohtsu
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585
| | - Yasufumi Murakami
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585; Genome and Drug Research Center, Tokyo University of Science, Chiba 270-0101; Bio Matrix Research Inc., Chiba 270-0101, Japan.
| |
Collapse
|
6
|
Deobagkar DD, Panikar C, Rajpathak SN, Shaiwale NS, Mukherjee S. An immunochemical method for detection and analysis of changes in methylome. Methods 2012; 56:260-7. [DOI: 10.1016/j.ymeth.2011.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/23/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022] Open
|
7
|
Roberts-Pilgrim AM, Makareeva E, Myles MH, Besch-Williford CL, Brodeur AC, Walker AL, Leikin S, Franklin CL, Phillips CL. Deficient degradation of homotrimeric type I collagen, α1(I)3 glomerulopathy in oim mice. Mol Genet Metab 2011; 104:373-82. [PMID: 21855382 PMCID: PMC3205245 DOI: 10.1016/j.ymgme.2011.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 01/15/2023]
Abstract
Col1a2-deficient (oim) mice synthesize homotrimeric type I collagen due to nonfunctional proα2(I) collagen chains. Our previous studies revealed a postnatal, progressive type I collagen glomerulopathy in this mouse model, but the mechanism of the sclerotic collagen accumulation within the renal mesangium remains unclear. The recent demonstration of the resistance of homotrimeric type I collagen to cleavage by matrix metalloproteinases (MMPs), led us to investigate the role of MMP-resistance in the glomerulosclerosis of Col1a2-deficient mice. We measured the pre- and post-translational expression of type I collagen and MMPs in glomeruli from heterozygous and homozygous animals. Both the heterotrimeric and homotrimeric isotypes of type I collagen were equally present in whole kidneys of heterozygous mice by immunohistochemistry and biochemical analysis, but the sclerotic glomerular collagen was at least 95-98% homotrimeric, suggesting homotrimeric type I collagen is the pathogenic isotype of type I collagen in glomerular disease. Although steady-state MMP and Col1a1 mRNA levels increased with the disease progression, we found these changes to be a secondary response to the deficient clearance of MMP-resistant homotrimers. Increased renal MMP expression was not sufficient to prevent homotrimeric type I collagen accumulation.
Collapse
Affiliation(s)
- Anna M. Roberts-Pilgrim
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
| | - Elena Makareeva
- NICHD, National Institutes of Health, Bethesda, MD 20892, USA. ,
| | - Matthew H. Myles
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA. , ,
| | | | - Amanda C. Brodeur
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
- Department of Child Health, University of Missouri, Columbia, Missouri 65212, USA. ,
| | - Andrew L. Walker
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
| | - Sergey Leikin
- NICHD, National Institutes of Health, Bethesda, MD 20892, USA. ,
| | - Craig L. Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA. , ,
| | - Charlotte L. Phillips
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
- Department of Child Health, University of Missouri, Columbia, Missouri 65212, USA. ,
- Correspondence and Reprint Requests: Charlotte L. Phillips, Ph.D., Associate Professor, Departments of Biochemistry and Child Health, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211 USA, Phone: 1-573-882-5122, Fax: 1-573-882-5635,
| |
Collapse
|
8
|
YOKOYAMA KK, MURATA T, PAN J, NAKADE K, KISHIKAWA S, UGAI H, KIMURA M, KUJIME Y, HIROSE M, MASUZAKI S, YAMASAKI T, KURIHARA C, OKUBO M, NAKANO Y, KUSA Y, YOSHIKAWA A, INABE K, UENO K, OBATA Y. Genetic Materials at the Gene Engineering Division, RIKEN BioResource Center. Exp Anim 2010; 59:115-24. [DOI: 10.1538/expanim.59.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Kazunari K. YOKOYAMA
- Gene Engineering Division, RIKEN BioResource Center
- Center of Excellence for Environmental Medicine, Graduate Institute of Medicine, Kaohsiung Medical University
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo
| | | | - Jianzhi PAN
- Gene Engineering Division, RIKEN BioResource Center
- Institute of Veterinary and Animal Husbandry, Zhejiang Academy of Agriculture Sciences
| | - Koji NAKADE
- Gene Engineering Division, RIKEN BioResource Center
| | | | - Hideyo UGAI
- Gene Engineering Division, RIKEN BioResource Center
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham
| | - Makoto KIMURA
- Gene Engineering Division, RIKEN BioResource Center
- Imamoto Cellular Dynamics Laboratory, RIKEN Advanced Science Institute
| | | | | | | | | | | | - Masato OKUBO
- Gene Engineering Division, RIKEN BioResource Center
| | - Yuri NAKANO
- Gene Engineering Division, RIKEN BioResource Center
| | - Yuka KUSA
- Gene Engineering Division, RIKEN BioResource Center
| | | | - Kumiko INABE
- Gene Engineering Division, RIKEN BioResource Center
| | - Kazuko UENO
- Gene Engineering Division, RIKEN BioResource Center
| | - Yuichi OBATA
- Gene Engineering Division, RIKEN BioResource Center
- RIKEN BioResource Center
| |
Collapse
|
9
|
Evsikov AV, Marín de Evsikova C. Gene expression during the oocyte-to-embryo transition in mammals. Mol Reprod Dev 2009; 76:805-18. [PMID: 19363788 DOI: 10.1002/mrd.21038] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The seminal question in modern developmental biology is the origins of new life arising from the unification of sperm and egg. The roots of this question begin from 19th to 20th century embryologists studying fertilization and embryogenesis. Although the revolution of molecular biology has yielded significant insight into the complexity of this process, the overall orchestration of genes, molecules, and cells is still not fully formed. Early mammalian development, specifically the oocyte-to-embryo transition, is essentially under "maternal command" from factors deposited in the cytoplasm during oocyte growth, independent of de novo transcription from the nascent embryo. Many of the advances in understanding this developmental period occurred in tandem with application of new methods and techniques from molecular biology, from protein electrophoresis to sequencing and assemblies of whole genomes. From this bed of knowledge, it appears that precise control of mRNA translation is a key regulator coordinating the molecular and cellular events occurring during oocyte-to-embryo transition. Notably, oocyte transcriptomes share, yet retain some uniqueness, common genetic motifs among all chordates. The common genetic motifs typically define fundamental processes critical for cellular maintenance, whereas the unique genetic features may be a source of variation and a substrate for sexual selection, genetic drift, or gene flow. One purpose for this complex interplay among genes, proteins, and cells may allow for evolution to transform and act upon the underlying processes, at molecular, structural and organismal levels, to increase diversity, which is the ultimate goal of sexual reproduction.
Collapse
|
10
|
Kunisada M, Cui CY, Piao Y, Ko MSH, Schlessinger D. Requirement for Shh and Fox family genes at different stages in sweat gland development. Hum Mol Genet 2009; 18:1769-78. [PMID: 19270025 DOI: 10.1093/hmg/ddp089] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sweat glands play a fundamental role in thermal regulation in man, but the molecular mechanism of their development remains unknown. To initiate analyses, we compared the model of Eda mutant Tabby mice, in which sweat glands were not formed, with wild-type (WT) mice. We inferred developmental stages and critical genes based on observations at seven time points spanning embryonic, postnatal and adult life. In WT footpads, sweat gland germs were detected at E17.5. The coiling of secretory portions started at postnatal day 1 (P1), and sweat gland formation was essentially completed by P5. Consistent with a controlled morphological progression, expression profiling revealed stage-specific gene expression changes. Similar to the development of hair follicles-the other major skin appendage controlled by EDA-sweat gland induction and initial progression were accompanied by Eda-dependent up-regulation of the Shh pathway. During the further development of sweat gland secretory portions, Foxa1 and Foxi1, not at all expressed in hair follicles, were progressively up-regulated in WT but not in Tabby footpads. Upon completion of WT development, Shh declined to Tabby levels, but Fox family genes remained at elevated levels in mature sweat glands. The results provide a framework for the further analysis of phased down-stream regulation of gene action, possibly by a signaling cascade, in response to Eda.
Collapse
Affiliation(s)
- Makoto Kunisada
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
11
|
FragIdent--automatic identification and characterisation of cDNA-fragments. BMC Genomics 2009; 10:95. [PMID: 19254371 PMCID: PMC2672089 DOI: 10.1186/1471-2164-10-95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 03/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many genetic studies and functional assays are based on cDNA fragments. After the generation of cDNA fragments from an mRNA sample, their content is at first unknown and must be assigned by sequencing reactions or hybridisation experiments. Even in characterised libraries, a considerable number of clones are wrongly annotated. Furthermore, mix-ups can happen in the laboratory. It is therefore essential to the relevance of experimental results to confirm or determine the identity of the employed cDNA fragments. However, the manual approach for the characterisation of these fragments using BLAST web interfaces is not suited for larger number of sequences and so far, no user-friendly software is publicly available. RESULTS Here we present the development of FragIdent, an application for the automatic identification of open reading frames (ORFs) within cDNA-fragments. The software performs BLAST analyses to identify the genes represented by the sequences and suggests primers to complete the sequencing of the whole insert. Gene-specific information as well as the protein domains encoded by the cDNA fragment are retrieved from Internet-based databases and included in the output. The application features an intuitive graphical interface and is designed for researchers without any bioinformatics skills. It is suited for projects comprising up to several hundred different clones. CONCLUSION We used FragIdent to identify 84 cDNA clones from a yeast two-hybrid experiment. Furthermore, we identified 131 protein domains within our analysed clones. The source code is freely available from our homepage at http://compbio.charite.de/genetik/FragIdent/.
Collapse
|
12
|
Rajasekaran NS, Firpo MA, Milash BA, Weiss RB, Benjamin IJ. Global expression profiling identifies a novel biosignature for protein aggregation R120GCryAB cardiomyopathy in mice. Physiol Genomics 2008; 35:165-72. [PMID: 18628338 DOI: 10.1152/physiolgenomics.00297.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Protein aggregation cardiomyopathy is a life-threatening manifestation of a multisystem disorder caused by the exchange mutation in the gene encoding the human small heat shock protein alphaB-crystallin (hR120GCryAB). Genetic studies in mice have established cardiac hR120GCryAB expression causes increased activity of glucose 6-phosphate dehydrogenase (G6PD) and "reductive stress" (Rajasekaran et al., Cell 130: 427-439, 2007). However, the initiating molecular events in the pathogenesis of this novel toxic gain-of-function mechanism remain poorly defined. In an integrated systems approach using gene expression profiling, we identified a "biosignature," whose features can be validated to predict the onset, rate of progression, and clinical outcome of R120GCryAB cardiomyopathy. At the 3 mo disease-related but compensated stage, we demonstrate that transcripts were only upregulated in three distinct pathways: stress response (e.g., Hsp70, Hsp90), glutathione metabolism (Gpx1, Gpx3, glutathione S-transferase), and complement and coagulation cascades in hR120GCryAB transgenic mouse hearts compared with either hCryAB WT transgenic mice or nontransgenic controls. In 6 mo old myopathic hearts, ribosomal synthesis and cellular remodeling associated with increased cardiac hypertrophy were additional upregulated pathways. In contrast, the predominant downregulated pathways were for oxidative phosphorylation, fatty acid metabolism, intermediate metabolism, and energetic balance, supporting their primary pathogenic roles by which G6PD-dependent reductive stress causes cardiac decompensation and overt heart failure in hR120GCryAB cardiomyopathy. This study extends and confirms our previous findings that reductive stress is a causal mechanism for hR120G CryAB cardiomyopathy and demonstrates that alteration in glutathione pathway gene expression is an early biosignature with utility for presymptomatic detection.
Collapse
Affiliation(s)
- Namakkal S Rajasekaran
- Departments of Internal Medicine, Division of Cardiology, Center for Cardiovascular Translational Biomedicine, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
13
|
Genomic Analysis of Gastrulation and Organogenesis in the Mouse. Dev Cell 2007; 13:897-907. [DOI: 10.1016/j.devcel.2007.10.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 08/23/2007] [Accepted: 10/09/2007] [Indexed: 01/24/2023]
|
14
|
Zahn JM, Poosala S, Owen AB, Ingram DK, Lustig A, Carter A, Weeraratna AT, Taub DD, Gorospe M, Mazan-Mamczarz K, Lakatta EG, Boheler KR, Xu X, Mattson MP, Falco G, Ko MSH, Schlessinger D, Firman J, Kummerfeld SK, Wood WH, Zonderman AB, Kim SK, Becker KG. AGEMAP: a gene expression database for aging in mice. PLoS Genet 2007; 3:e201. [PMID: 18081424 PMCID: PMC2098796 DOI: 10.1371/journal.pgen.0030201] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 09/28/2007] [Indexed: 11/18/2022] Open
Abstract
We present the AGEMAP (Atlas of Gene Expression in Mouse Aging Project) gene expression database, which is a resource that catalogs changes in gene expression as a function of age in mice. The AGEMAP database includes expression changes for 8,932 genes in 16 tissues as a function of age. We found great heterogeneity in the amount of transcriptional changes with age in different tissues. Some tissues displayed large transcriptional differences in old mice, suggesting that these tissues may contribute strongly to organismal decline. Other tissues showed few or no changes in expression with age, indicating strong levels of homeostasis throughout life. Based on the pattern of age-related transcriptional changes, we found that tissues could be classified into one of three aging processes: (1) a pattern common to neural tissues, (2) a pattern for vascular tissues, and (3) a pattern for steroid-responsive tissues. We observed that different tissues age in a coordinated fashion in individual mice, such that certain mice exhibit rapid aging, whereas others exhibit slow aging for multiple tissues. Finally, we compared the transcriptional profiles for aging in mice to those from humans, flies, and worms. We found that genes involved in the electron transport chain show common age regulation in all four species, indicating that these genes may be exceptionally good markers of aging. However, we saw no overall correlation of age regulation between mice and humans, suggesting that aging processes in mice and humans may be fundamentally different.
Collapse
Affiliation(s)
- Jacob M Zahn
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - Suresh Poosala
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Art B Owen
- Department of Statistics, Stanford University, Stanford, California, United States of America
| | - Donald K Ingram
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ana Lustig
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Arnell Carter
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ashani T Weeraratna
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Dennis D Taub
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Myriam Gorospe
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Krystyna Mazan-Mamczarz
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Edward G Lakatta
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kenneth R Boheler
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Xiangru Xu
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Mark P Mattson
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Geppino Falco
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Minoru S. H Ko
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - David Schlessinger
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Jeffrey Firman
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah K Kummerfeld
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| | - William H Wood
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Alan B Zonderman
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Stuart K Kim
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
- Department of Genetics, Stanford University Medical Center, Stanford, California, United States of America
| | - Kevin G Becker
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| |
Collapse
|
15
|
Rumberger B, Vonend O, Kreutz C, Wilpert J, Donauer J, Amann K, Rohrbach R, Timmer J, Walz G, Gerke P. cDNA microarray analysis of adaptive changes after renal ablation in a sclerosis-resistant mouse strain. Kidney Blood Press Res 2007; 30:377-87. [PMID: 17890868 DOI: 10.1159/000108624] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/25/2007] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 5/6 nephrectomy (Nx) in susceptible animals causes glomerular sclerosis and interstitial fibrosis in the remnant kidney. Oxidative stress, transforming growth factor-beta (TGF-beta), and the de novo synthesis of collagen seem to contribute to this process. However, these factors might also be required for tissue repair without fibrosis. METHODS We examined dynamic changes after nephron loss in a mouse strain capable of complete recovery. C57BL/6 mice underwent single-session Nx and were followed for 40 weeks. Gene expression was monitored over 20 days using 22,000 cDNA microarrays. RESULTS The mice developed transient hypertension and glomerular hypertrophy after Nx but failed to progress to glomerular sclerosis or renal failure. Gene expression profiles revealed three stages of recovery, an early phase of injury response, an intermediate phase of extracellular matrix (ECM) production and a later phase of reconstitution. Surprisingly, oxidative stress responses and collagen production were strongly upregulated soon after Nx. Furthermore, TGF-beta(1) and connective tissue growth factor were rapidly upregulated and remained elevated. CONCLUSION We suggest that oxidative stress, collagen production, profibrotic growth factors and ECM turnover are part of the comprehensive adaptation to nephron loss and not necessarily associated with progressive loss of renal function.
Collapse
Affiliation(s)
- Brigitta Rumberger
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Joshi S, Davies H, Sims LP, Levy SE, Dean J. Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor. BMC DEVELOPMENTAL BIOLOGY 2007; 7:67. [PMID: 17567914 PMCID: PMC1906760 DOI: 10.1186/1471-213x-7-67] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 06/13/2007] [Indexed: 11/10/2022]
Abstract
Background Ovarian folliculogenesis in mammals is a complex process involving interactions between germ and somatic cells. Carefully orchestrated expression of transcription factors, cell adhesion molecules and growth factors are required for success. We have identified a germ-cell specific, basic helix-loop-helix transcription factor, FIGLA (Factor In the GermLine, Alpha) and demonstrated its involvement in two independent developmental processes: formation of the primordial follicle and coordinate expression of zona pellucida genes. Results Taking advantage of Figla null mouse lines, we have used a combined approach of microarray and Serial Analysis of Gene Expression (SAGE) to identify potential downstream target genes. Using high stringent cutoffs, we find that FIGLA functions as a key regulatory molecule in coordinating expression of the NALP family of genes, genes of known oocyte-specific expression and a set of functionally un-annotated genes. FIGLA also inhibits expression of male germ cell specific genes that might otherwise disrupt normal oogenesis. Conclusion These data implicate FIGLA as a central regulator of oocyte-specific genes that play roles in folliculogenesis, fertilization and early development.
Collapse
Affiliation(s)
- Saurabh Joshi
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Holly Davies
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren Porter Sims
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shawn E Levy
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Novel subdomains of the mouse olfactory bulb defined by molecular heterogeneity in the nascent external plexiform and glomerular layers. BMC DEVELOPMENTAL BIOLOGY 2007; 7:48. [PMID: 17506891 PMCID: PMC1885806 DOI: 10.1186/1471-213x-7-48] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 05/16/2007] [Indexed: 11/17/2022]
Abstract
Background In the mouse olfactory system, the role of the olfactory bulb in guiding olfactory sensory neuron (OSN) axons to their targets is poorly understood. What cell types within the bulb are necessary for targeting is unknown. What genes are important for this process is also unknown. Although projection neurons are not required, other cell-types within the external plexiform and glomerular layers also form synapses with OSNs. We hypothesized that these cells are important for targeting, and express spatially differentially expressed guidance cues that act to guide OSN axons within the bulb. Results We used laser microdissection and microarray analysis to find genes that are differentially expressed along the dorsal-ventral, medial-lateral, and anterior-posterior axes of the bulb. The expression patterns of these genes divide the bulb into previously unrecognized subdomains. Interestingly, some genes are expressed in both the medial and lateral bulb, showing for the first time the existence of symmetric expression along this axis. We use a regeneration paradigm to show that several of these genes are altered in expression in response to deafferentation, consistent with the interpretation that they are expressed in cells that interact with OSNs. Conclusion We demonstrate that the nascent external plexiform and glomerular layers of the bulb can be divided into multiple domains based on the expression of these genes, several of which are known to function in axon guidance, synaptogenesis, and angiogenesis. These genes represent candidate guidance cues that may act to guide OSN axons within the bulb during targeting.
Collapse
|
18
|
Zhuo D, Madden R, Elela SA, Chabot B. Modern origin of numerous alternatively spliced human introns from tandem arrays. Proc Natl Acad Sci U S A 2007; 104:882-6. [PMID: 17210920 PMCID: PMC1783408 DOI: 10.1073/pnas.0604777104] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the widespread occurrence of spliceosomal introns in the genomes of higher eukaryotes, their origin remains controversial. One model proposes that the duplication of small genomic portions could have provided the boundaries for new introns. If this mechanism has occurred recently, the 5' and 3' boundaries of each resulting intron should display distinctive sequence similarity. Here, we report that the human genome contains an excess of introns with perfect matching sequences at boundaries. One-third of these introns interrupt the protein-coding sequences of known genes. Introns with the best-matching boundaries are invariably found in tandem arrays of direct repeats. Sequence analysis of the arrays indicates that many intron-breeding repeats have disseminated in several genes at different times during human evolution. A comparison with orthologous regions in mouse and chimpanzee suggests a young age for the human introns with the most-similar boundaries. Finally, we show that these human introns are alternatively spliced with exceptionally high frequency. Our study indicates that genomic duplication has been an important mode of intron gain in mammals. The alternative splicing of transcripts containing these intron-breeding repeats may provide the plasticity required for the rapid evolution of new human proteins.
Collapse
Affiliation(s)
- Degen Zhuo
- *Laboratoire de Génomique Fonctionnelle de Sherbrooke
| | | | - Sherif Abou Elela
- *Laboratoire de Génomique Fonctionnelle de Sherbrooke
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, PQ, Canada J1H 5N4
| | - Benoit Chabot
- *Laboratoire de Génomique Fonctionnelle de Sherbrooke
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, PQ, Canada J1H 5N4
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Smith CM, Finger JH, Hayamizu TF, McCright IJ, Eppig JT, Kadin JA, Richardson JE, Ringwald M. The mouse Gene Expression Database (GXD): 2007 update. Nucleic Acids Res 2006; 35:D618-23. [PMID: 17130151 PMCID: PMC1716716 DOI: 10.1093/nar/gkl1003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gene Expression Database (GXD) provides the scientific community with an extensive and easily searchable database of gene expression information about the mouse. Its primary emphasis is on developmental studies. By integrating different types of expression data, GXD aims to provide comprehensive information about expression patterns of transcripts and proteins in wild-type and mutant mice. Integration with the other Mouse Genome Informatics (MGI) databases places the gene expression information in the context of genetic, sequence, functional and phenotypic information, enabling valuable insights into the molecular biology that underlies developmental and disease processes. In recent years the utility of GXD has been greatly enhanced by a large increase in data content, obtained from the literature and provided by researchers doing large-scale in situ and cDNA screens. In addition, we have continued to refine our query and display features to make it easier for users to interrogate the data. GXD is available through the MGI web site at or directly at .
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Martin Ringwald
- To whom correspondence should be addressed. Tel: +1 207 288 6436; Fax: +1 207 288 6132;
| |
Collapse
|
20
|
Tanaka TS, Lopez de Silanes I, Sharova LV, Akutsu H, Yoshikawa T, Amano H, Yamanaka S, Gorospe M, Ko MSH. Esg1, expressed exclusively in preimplantation embryos, germline, and embryonic stem cells, is a putative RNA-binding protein with broad RNA targets. Dev Growth Differ 2006; 48:381-90. [PMID: 16872451 DOI: 10.1111/j.1440-169x.2006.00875.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In our earlier attempt to identify genes involved in the maintenance of cellular pluripotency, we found that KH-domain protein Embryonal stem cell-specific gene 1 (Esg1) showed similar expression patterns to those of Oct3/4 (Pou5f1), whereas the forced repression of Oct3/4 in mouse embryonic stem cells immediately downregulated the expression of Esg1. Here we further confirm this overlap by in situ hybridization and immunohistochemical analyses. Both Esg1 transcript and protein exist in the egg and preimplantation embryos. At embryonic day 3.5, blastocyst stage, however, ESG1 protein was more abundant in the inner cell mass (ICM) than in trophectoderm (TE), whereas Esg1 transcript was detected in both the ICM and the TE, particularly in the polar trophectoderm. The presence of an RNA-binding KH-domain in ESG1 led us to search for and identify 902 target transcripts by microarray analysis of immunoprecipitated ESG1 complex. Interaction of 20 target mRNA with ESG1, including Cdc25a, Cdc42, Ezh2, Nfyc and Nr5a2, was further validated by reverse transcriptase-polymerase chain reaction of the immunoprecipitation material, supporting the notion that ESG1 is an RNA-binding protein which associates with specific target transcripts.
Collapse
Affiliation(s)
- Tetsuya S Tanaka
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bagheri S, Nosrati M, Li S, Fong S, Torabian S, Rangel J, Moore DH, Federman S, LaPosa RR, Baehner FL, Sagebiel RW, Cleaver JE, Haqq C, Debs RJ, Blackburn EH, Kashani-Sabet M. Genes and pathways downstream of telomerase in melanoma metastasis. Proc Natl Acad Sci U S A 2006; 103:11306-11. [PMID: 16847266 PMCID: PMC1544082 DOI: 10.1073/pnas.0510085103] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Indexed: 01/09/2023] Open
Abstract
Recent studies have demonstrated a role for telomerase in driving tumor progression, but its mechanism of action remains unclear. Here we show that stable, ribozyme-mediated suppression of mouse telomerase RNA reduced telomerase RNA expression, telomerase activity, and telomere length, which significantly reduced tumor invasion and metastatic potential. Our studies reveal that previously unidentified effects of telomerase may mediate its tumor-promoting effects. First, reducing telomerase activity induced a more dendritic morphology, accompanied by increased melanin content and increased expression of tyrosinase, a key enzyme in melanin biosynthesis. Second, gene expression profiling revealed that telomerase targeting down-regulated expression of several glycolytic pathway genes, with a corresponding decrease in glucose consumption and lactate production. Thus, telomerase activity controls the glycolytic pathway, potentially altering the energy state of tumor cells and thereby modulating tyrosinase activity and melanin production. These studies have important implications for understanding the mechanisms by which telomerase promotes tumor invasion and metastasis.
Collapse
Affiliation(s)
- Sepideh Bagheri
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| | - Mehdi Nosrati
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| | - Shang Li
- Departments of Biochemistry and Biophysics and
| | - Sylvia Fong
- California Pacific Medical Research Institute, San Francisco, CA 94115
| | - Sima Torabian
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| | - Javier Rangel
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| | - Dan H. Moore
- Epidemiology and Biostatistics, University of California, San Francisco, CA 94143
| | - Scot Federman
- Department of Urology and Comprehensive Cancer Center, University of California, San Francisco, CA 94115; and
| | - Rebecca R. LaPosa
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| | - Frederick L. Baehner
- **Department of Pathology and Comprehensive Cancer Center Tissue Core, University of California, San Francisco, CA 94115
| | - Richard W. Sagebiel
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| | - James E. Cleaver
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| | - Christopher Haqq
- Department of Urology and Comprehensive Cancer Center, University of California, San Francisco, CA 94115; and
| | - Robert J. Debs
- California Pacific Medical Research Institute, San Francisco, CA 94115
| | | | - Mohammed Kashani-Sabet
- *Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, Comprehensive Cancer Center, and Department of Dermatology, University of California, San Francisco, CA 94115
| |
Collapse
|
22
|
van der Weyden L, Arends MJ, Chausiaux OE, Ellis PJ, Lange UC, Surani MA, Affara N, Murakami Y, Adams DJ, Bradley A. Loss of TSLC1 causes male infertility due to a defect at the spermatid stage of spermatogenesis. Mol Cell Biol 2006; 26:3595-3609. [PMID: 16611999 PMCID: PMC1447413 DOI: 10.1128/mcb.26.9.3595-3609.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/01/2005] [Accepted: 01/30/2006] [Indexed: 12/22/2022] Open
Abstract
Tumor suppressor of lung cancer 1 (TSLC1), also known as SgIGSF, IGSF4, and SynCAM, is strongly expressed in spermatogenic cells undergoing the early and late phases of spermatogenesis (spermatogonia to zygotene spermatocytes and elongating spermatids to spermiation). Using embryonic stem cell technology to generate a null mutation of Tslc1 in mice, we found that Tslc1 null male mice were infertile. Tslc1 null adult testes showed that spermatogenesis had arrested at the spermatid stage, with degenerating and apoptotic spermatids sloughing off into the lumen. In adult mice, Tslc1 null round spermatids showed evidence of normal differentiation (an acrosomal cap and F-actin polarization indistinguishable from that of wild-type spermatids); however, the surviving spermatozoa were immature, malformed, found at very low levels in the epididymis, and rarely motile. Analysis of the first wave of spermatogenesis in Tslc1 null mice showed a delay in maturation by day 22 and degeneration of round spermatids by day 28. Expression profiling of the testes revealed that Tslc1 null mice showed increases in the expression levels of genes involved in apoptosis, adhesion, and the cytoskeleton. Taken together, these data show that Tslc1 is essential for normal spermatogenesis in mice.
Collapse
Affiliation(s)
- Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Anisimov VN, Popovich IG, Zabezhinski MA, Anisimov SV, Vesnushkin GM, Vinogradova IA. Melatonin as antioxidant, geroprotector and anticarcinogen. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:573-89. [PMID: 16678784 DOI: 10.1016/j.bbabio.2006.03.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 03/14/2006] [Accepted: 03/16/2006] [Indexed: 01/03/2023]
Abstract
The effect of the pineal indole hormone melatonin on the life span of mice, rats and fruit flies has been studied using various approaches. It has been observed that in female CBA, SHR, SAM and transgenic HER-2/neu mice long-term administration of melatonin was followed by an increase in the mean life span. In rats, melatonin treatment increased survival of male and female rats. In D. melanogaster, supplementation of melatonin to nutrient medium during developmental stages produced contradictory results, but and increase in the longevity of fruit flies has been observed when melatonin was added to food throughout the life span. In mice and rats, melatonin is a potent antioxidant both in vitro and in vivo. Melatonin alone turned out neither toxic nor mutagenic in the Ames test and revealed clastogenic activity at high concentration in the COMET assay. Melatonin has inhibited mutagenesis and clastogenic effect of a number of indirect chemical mutagens. Melatonin inhibits the development of spontaneous and 7-12-dimethlbenz(a)anthracene (DMBA)- or N-nitrosomethylurea-induced mammary carcinogenesis in rodents; colon carcinogenesis induced by 1,2-dimethylhydrazine in rats, N-diethylnitrosamine-induced hepatocarcinogenesis in rats, DMBA-induced carcinogenesis of the uterine cervix and vagina in mice; benzo(a)pyrene-induced soft tissue carcinogenesis and lung carcinogenesis induced by urethan in mice. To identify molecular events regulated by melatonin, gene expression profiles were studied in the heart and brain of melatonin-treated CBA mice using cDNA gene expression arrays (15,247 and 16,897 cDNA clone sets, respectively). It was shown that genes controlling the cell cycle, cell/organism defense, protein expression and transport are the primary effectors for melatonin. Melatonin also increased the expression of some mitochondrial genes (16S, cytochrome c oxidases 1 and 3 (COX1 and COX3), and NADH dehydrogenases 1 and 4 (ND1 and ND4)), which agrees with its ability to inhibit free radical processes. Of great interest is the effect of melatonin upon the expression of a large number of genes related to calcium exchange, such as Cul5, Dcamkl1 and Kcnn4; a significant effect of melatonin on the expression of some oncogenesis-related genes was also detected. Thus, we believe that melatonin may be used for the prevention of premature aging and carcinogenesis.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, St. Petersburg 197758, Russia.
| | | | | | | | | | | |
Collapse
|
24
|
Noda AO, Ikeo K, Gojobori T. Comparative genome analyses of nervous system-specific genes. Gene 2006; 365:130-6. [PMID: 16376029 DOI: 10.1016/j.gene.2005.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 06/17/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
To elucidate the evolutionary process of the nervous system (NS) in metazoa, we examined the relationship between human genes specifically expressed in the NS (NS-specific genes) and the time of their evolutionary emergence. We obtained 255 human NS-specific genes from the gene expression data of the human full-length cDNA annotation invitational (H-invitational) database. To determine when these genes emerged for the first time during evolution, we searched for orthologues of the 255 NS-specific genes in 13 species (excluding human) by homology searches against their complete genome sequences. We found that 14% of the NS-specific orthologous genes had already emerged before the divergence between yeast and human. This finding suggests that a common ancestor, which should have no nervous system, already possessed a portion of the genes homologous to human NS-specific genes, implying that 14% of the NS-specific genes should have changed differentially their original functions during evolution. If this is the case, then the remaining 86% of the 255 NS-specific human genes have newly emerged during evolution. In particular, we found that the largest portion (24%) of the 255 NS-specific genes had emerged after divergence of urochordata and human but before divergence of fishes and human. These results suggest that the main cause of the NS evolution was the addition of new genes which took place most actively just before or at the evolutionary emergence of vertebrates.
Collapse
Affiliation(s)
- Akiko Ogura Noda
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
25
|
Yoshikawa T, Piao Y, Zhong J, Matoba R, Carter MG, Wang Y, Goldberg I, Ko MSH. High-throughput screen for genes predominantly expressed in the ICM of mouse blastocysts by whole mount in situ hybridization. Gene Expr Patterns 2005; 6:213-24. [PMID: 16325481 PMCID: PMC1850761 DOI: 10.1016/j.modgep.2005.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Revised: 06/03/2005] [Accepted: 06/06/2005] [Indexed: 02/02/2023]
Abstract
Mammalian preimplantation embryos provide an excellent opportunity to study temporal and spatial gene expression in whole mount in situ hybridization (WISH). However, large-scale studies are made difficult by the size of the embryos ( approximately 60mum diameter) and their fragility. We have developed a chamber system that allows parallel processing of embryos without the aid of a microscope. We first selected 91 candidate genes that were transcription factors highly expressed in blastocysts, and more highly expressed in embryonic (ES) than in trophoblast (TS) stem cells. We then used the WISH to identify 48 genes expressed predominantly in the inner cell mass (ICM) and to follow several of these genes in all seven preimplantation stages. The ICM-predominant expressions of these genes suggest their involvement in the pluripotency of embryonic cells. This system provides a useful tool to a systematic genome-scale analysis of preimplantation embryos.
Collapse
Affiliation(s)
- Toshiyuki Yoshikawa
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Walker DL, Vacha SJ, Kirby ML, Lo CW. Connexin43 deficiency causes dysregulation of coronary vasculogenesis. Dev Biol 2005; 284:479-98. [PMID: 16039638 DOI: 10.1016/j.ydbio.2005.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 06/03/2005] [Accepted: 06/08/2005] [Indexed: 11/29/2022]
Abstract
The connexin43 knockout (Cx43alpha1 KO) mouse dies at birth from outflow obstruction associated with infundibular pouches. To elucidate the origin of the infundibular pouches, we used microarray analysis to investigate gene expression changes in the pouch tissue. We found elevated expression of many genes encoding markers for vascular smooth muscle (VSM), endothelial cells, and fibroblasts, cell types that are epicardially derived and essential for coronary vasculogenesis. This was accompanied by increased expression of VEGF and genes in the TGFbeta and VEGF/Notch/Eph cell-signaling pathways known to regulate vasculogenesis/angiogenesis. Using immunohistochemistry and a VSM lacZ reporter gene, we confirmed an abundance of ectopic VSM and endothelial cells in the infundibular pouch and in some regions of the right ventricle forming secondary pouches. This was associated with distinct thinning of the compact myocardium. TUNEL labeling showed increased apoptosis in the pouch tissue, in agreement with the finding of altered expression of many apoptotic genes. Defects in vascular remodeling were indicated by a marked reduction in the branching complexity of the distal coronary arteries. In the near term KO mouse, we also observed a profusion of large coronary vascular plexuses subepicardially. This was associated with elevated epicardial expression of VEGF and abnormal epicardial cell morphology. Together, these observations indicate that dysregulated coronary vasculogenesis plays a pivotal role in formation of the infundibular pouches and suggests an essential role for Cx43alpha1 gap junctions in coronary vasculogenesis and vascular remodeling.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers
- Connexin 43/deficiency
- Connexin 43/genetics
- Coronary Vessels/embryology
- Crosses, Genetic
- Endothelial Cells/physiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Fibroblasts/physiology
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Heart/embryology
- Heterozygote
- Immunohistochemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microarray Analysis
- Models, Biological
- Muscle, Smooth, Vascular/metabolism
- Neovascularization, Physiologic/physiology
- Receptors, Notch
- Signal Transduction
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Diana L Walker
- Laboratory of Developmental Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50/Room 4537, Bethesda, MD 20892-8019, USA
| | | | | | | |
Collapse
|
27
|
Zenz R, Eferl R, Kenner L, Florin L, Hummerich L, Mehic D, Scheuch H, Angel P, Tschachler E, Wagner EF. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 2005; 437:369-75. [PMID: 16163348 DOI: 10.1038/nature03963] [Citation(s) in RCA: 434] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 05/25/2005] [Indexed: 12/24/2022]
Abstract
Psoriasis is a frequent, inflammatory disease of skin and joints with considerable morbidity. Here we report that in psoriatic lesions, epidermal keratinocytes have decreased expression of JunB, a gene localized in the psoriasis susceptibility region PSORS6. Likewise, inducible epidermal deletion of JunB and its functional companion c-Jun in adult mice leads (within two weeks) to a phenotype resembling the histological and molecular hallmarks of psoriasis, including arthritic lesions. In contrast to the skin phenotype, the development of arthritic lesions requires T and B cells and signalling through tumour necrosis factor receptor 1 (TNFR1). Prior to the disease onset, two chemotactic proteins (S100A8 and S100A9) previously mapped to the psoriasis susceptibility region PSORS4, are strongly induced in mutant keratinocytes in vivo and in vitro. We propose that the abrogation of JunB/activator protein 1 (AP-1) in keratinocytes triggers chemokine/cytokine expression, which recruits neutrophils and macrophages to the epidermis thereby contributing to the phenotypic changes observed in psoriasis. Thus, these data support the hypothesis that epidermal alterations are sufficient to initiate both skin lesions and arthritis in psoriasis.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Arthritis, Psoriatic/genetics
- Arthritis, Psoriatic/metabolism
- Arthritis, Psoriatic/pathology
- Chemotaxis/drug effects
- Cytokines/metabolism
- Down-Regulation
- Epidermis/metabolism
- Gene Deletion
- Genes, jun/genetics
- Humans
- Mice
- Phenotype
- Proto-Oncogene Proteins c-jun/deficiency
- Proto-Oncogene Proteins c-jun/genetics
- Proto-Oncogene Proteins c-jun/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- S100 Proteins/metabolism
- Signal Transduction
- T-Lymphocytes/metabolism
- T-Lymphocytes/physiology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Rainer Zenz
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Macrae M, Neve RM, Rodriguez-Viciana P, Haqq C, Yeh J, Chen C, Gray JW, McCormick F. A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell 2005; 8:111-8. [PMID: 16098464 DOI: 10.1016/j.ccr.2005.07.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 05/23/2005] [Accepted: 07/22/2005] [Indexed: 01/09/2023]
Abstract
The EphA2 receptor tyrosine kinase is frequently overexpressed in many cancers, including 40% of breast cancers. Here, we show that EphA2 is a direct transcriptional target of the Ras-Raf-MAPK pathway and that ligand-stimulated EphA2 attenuates the growth factor-induced activation of Ras. Thus, a negative feedback loop is created that regulates Ras activity. Interestingly, the expression of EphA2 and ephrin-A1 is mutually exclusive in a panel of 28 breast cancer cell lines. We show that the MAPK pathway inhibits ephrin-A1 expression, and the ligand expression inhibits EphA2 levels contributing to the receptor-ligand reciprocal expression pattern in these cell lines. Our results suggest that an escape from the negative effects of this interaction may be important in the development of cancer.
Collapse
Affiliation(s)
- Madhu Macrae
- Cancer Research Institute and Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ko MSH. Molecular biology of preimplantation embryos: primer for philosophical discussions. Reprod Biomed Online 2005; 10 Suppl 1:80-7. [PMID: 15820015 DOI: 10.1016/s1472-6483(10)62212-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This article is based on a presentation at the First International Conference on Ethics, Science and Moral Philosophy of Assisted Human Reproduction. The goal is to provide scientific background for the discussion of philosophic issues. Recent advances in the systematic molecular analysis of preimplantation embryos are summarized, including the molecular identification of nearly all genes involved in preimplantation development and their detailed expression patterns. Notwithstanding a quantum leap in molecular understanding of preimplantation embryos, molecular evidence seems to provide no decisive definition of a threshold for the beginning of human life during preimplantation development.
Collapse
Affiliation(s)
- Minoru S H Ko
- Developmental Genomics and Ageing Section, Laboratory of Genetics, National Institute on Ageing, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
30
|
Gunji W, Kai T, Sameshima E, Iizuka N, Katagi H, Utsugi T, Fujimori F, Murakami Y. Global analysis of the expression patterns of transcriptional regulatory factors in formation of embryoid bodies using sensitive oligonucleotide microarray systems. Biochem Biophys Res Commun 2005; 325:265-75. [PMID: 15522228 DOI: 10.1016/j.bbrc.2004.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Indexed: 11/21/2022]
Abstract
We manufactured a highly sensitive oligonucleotide microarray system comprised entirely of transcription regulatory factors (a TF oligo microarray) in order to comprehensively analyze the expression profiles of transcription factors in mice. We compared the expression profiles of transcription regulatory factors in mouse embryonic stem (ES) cells and ES-differentiated cells by using this TF oligo microarray, a cDNA microarray, a GeneChip system, and quantitative RT-PCR. The TF oligo microarray was able to comprehensively analyze the expression profile of transcription regulatory factors. In addition, we used the manufactured TF oligo microarray to analyze the expression patterns of transcriptional regulatory factors during the formation of embryoid bodies. The TF array was able to reveal the chronologic expression profile of transcription regulatory factors involved in embryogenesis or the maintenance of pluripotency in ES cells.
Collapse
Affiliation(s)
- Wataru Gunji
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Seli E, Lalioti MD, Flaherty SM, Sakkas D, Terzi N, Steitz JA. An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos. Proc Natl Acad Sci U S A 2005; 102:367-72. [PMID: 15630085 PMCID: PMC544294 DOI: 10.1073/pnas.0408378102] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gene expression during oocyte maturation, fertilization, and early embryo development until zygotic gene activation is regulated mainly by translational activation of maternally derived mRNAs. This process requires the presence of a poly(A)-binding protein. However, the cytoplasmic somatic cell poly(A)-binding protein (PABP1) is not expressed until later in embryogenesis. We recently identified an embryonic poly(A)-binding protein (ePAB) in Xenopus. ePAB is the predominant cytoplasmic PABP in Xenopus oocytes and early embryos and prevents deadenylation of mRNAs, suggesting its importance in the regulation of gene expression during early Xenopus development. Here we report the identification of the mouse ortholog of Xenopus ePAB. The mouse ePAB gene on chromosome 2 contains 14 exons that specify an alternatively spliced mRNA encoding a protein of 608 or 561 aa with approximately 65% identity to Xenopus ePAB. Mouse ePAB mRNA is expressed in ovaries and testis but not in somatic tissues. In situ hybridization localizes ePAB RNA to oocytes and confirms its absence from surrounding somatic cells in the mouse ovary. During early development, mouse ePAB is expressed in prophase I and metaphase II oocytes and one-cell and two-cell embryos and then becomes undetectable in four-or-more-cell embryos. In contrast, PABP1 mRNA expression is minimal in oocytes and early embryos until the eight-cell stage when it increases, becoming predominant at the blastocyst stage. The expression of mouse ePAB before zygotic gene activation argues for its importance in translational activation of maternally derived mRNAs during mammalian oocyte and early preimplantation embryo development.
Collapse
Affiliation(s)
- Emre Seli
- Department of Obstetrics and Gynecology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8063, USA
| | | | | | | | | | | |
Collapse
|
32
|
Anisimov SV, Khavinson VK, Anisimov VN. Effect of melatonin and tetrapeptide on gene expression in mouse brain. Bull Exp Biol Med 2004; 138:504-9. [PMID: 15723138 DOI: 10.1007/s10517-005-0082-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A microchip technique was used to study expression of 16,897 clones from a cDNA library in the brain of mice receiving melatonin or tetrapeptide Epithalon (Ala-Glu-Asp-Gly). Expression of 53 transcripts in mouse brain underwent significant changes after treatment with the preparations. Melatonin and Epithalon modified expression of 38 and 22 transcripts, respectively. These preparations produced similar changes in the expression of 6 transcripts. Expression of 1 transcript (Rp119) was inhibited by melatonin, but induced by Epithalon. The target genes are physiologically related to the cell cycle, apoptosis, biosynthesis, processing, and transport of nucleic acids. Comparative study of gene expression in the brain and heart of CBA mice receiving melatonin and Epithalon suggest that these preparations have a tissue-specific biological effect.
Collapse
Affiliation(s)
- S V Anisimov
- Wallenberg Center of Neurology, Lund University, Sweden.
| | | | | |
Collapse
|
33
|
Carter MG, Piao Y, Dudekula DB, Qian Y, VanBuren V, Sharov AA, Tanaka TS, Martin PR, Bassey UC, Stagg CA, Aiba K, Hamatani T, Matoba R, Kargul GJ, Ko MSH. The NIA cDNA project in mouse stem cells and early embryos. C R Biol 2004; 326:931-40. [PMID: 14744099 DOI: 10.1016/j.crvi.2003.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A catalog of mouse genes expressed in early embryos, embryonic and adult stem cells was assembled, including 250000 ESTs, representing approximately 39000 unique transcripts. The cDNA libraries, enriched in full-length clones, were condensed into the NIA 15 and 7.4K clone sets, freely distributed to the research community, providing a standard platform for expression studies using microarrays. They are essential tools for studying mammalian development and stem cell biology, and to provide hints about the differential nature of embryonic and adult stem cells.
Collapse
Affiliation(s)
- Mark G Carter
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ko MSH. Embryogenomics of pre-implantation mammalian development: current status. Reprod Fertil Dev 2004. [DOI: 10.1071/rd03080] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pre-implantation development is marked by many critical molecular events, including the maternal to zygotic transition and the first differentiation of cells. Understanding such events is important, for both basic reproductive biology and practical applications, including regenerative medicine and livestock production. Scarcity of materials has hampered the progress of the field, but systematic genomics approaches are beginning to be applied to the study of pre-implantation development, resulting in unprecedented amounts of data about the pre-implantation process. The first step in embryogenomics is to collect and sequence cDNAs (expressed sequence tags (ESTs)) for genes that are expressed and function in these early embryos. Mouse work is the most advanced, with 140111 ESTs derived from all stages of pre-implantation development currently available in the public sequence database. For other mammals, at present only approximately 1000 ESTs can be found in the public database, but efforts by several groups are generating cDNA libraries and ESTs. In the present review, the current status of the implementation of these investigative tools for mammalian pre-implantation embryos is discussed.
Collapse
|
35
|
Sharov AA, Piao Y, Matoba R, Dudekula DB, Qian Y, VanBuren V, Falco G, Martin PR, Stagg CA, Bassey UC, Wang Y, Carter MG, Hamatani T, Aiba K, Akutsu H, Sharova L, Tanaka TS, Kimber WL, Yoshikawa T, Jaradat SA, Pantano S, Nagaraja R, Boheler KR, Taub D, Hodes RJ, Longo DL, Schlessinger D, Keller J, Klotz E, Kelsoe G, Umezawa A, Vescovi AL, Rossant J, Kunath T, Hogan BLM, Curci A, D'Urso M, Kelso J, Hide W, Ko MSH. Transcriptome analysis of mouse stem cells and early embryos. PLoS Biol 2003; 1:E74. [PMID: 14691545 PMCID: PMC300684 DOI: 10.1371/journal.pbio.0000074] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 10/13/2003] [Indexed: 12/26/2022] Open
Abstract
Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine. 250,000 EST sequences from oocytes, blastocysts, and embryonic and adult stem cells contribute to the annotation of the mouse genome and suggest genes that contribute to the unique features of these developmental stages and cell types
Collapse
Affiliation(s)
- Alexei A Sharov
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Yulan Piao
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Ryo Matoba
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Dawood B Dudekula
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Yong Qian
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Vincent VanBuren
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Geppino Falco
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Patrick R Martin
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Carole A Stagg
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Uwem C Bassey
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Yuxia Wang
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Mark G Carter
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Toshio Hamatani
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Kazuhiro Aiba
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Hidenori Akutsu
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Lioudmila Sharova
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Tetsuya S Tanaka
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Wendy L Kimber
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | | | - Saied A Jaradat
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Serafino Pantano
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Ramaiah Nagaraja
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Kenneth R Boheler
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Dennis Taub
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | - Richard J Hodes
- 1National Institute on AgingBaltimore, MarylandUnited States of America
- 2National Cancer InstituteBethesda, MarylandUnited States of America
| | - Dan L Longo
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| | | | - Jonathan Keller
- 3Basic Research Program, SAIC–Frederick, National Cancer Institute at FrederickFrederick, MarylandUnited States of America
| | - Emily Klotz
- 2National Cancer InstituteBethesda, MarylandUnited States of America
| | - Garnett Kelsoe
- 4Duke University Medical CenterDurham, North CarolinaUnited States of America
| | - Akihiro Umezawa
- 5National Research Institute for Child Health and DevelopmentTokyoJapan
| | - Angelo L Vescovi
- 6Institute for Stem Cell Research, Ospedale San RaffaeleMilanItaly
| | | | | | - Brigid L. M Hogan
- 4Duke University Medical CenterDurham, North CarolinaUnited States of America
| | - Anna Curci
- 8Institute of Genetics and Biophysics, Consiglio Nazionale delle RicercheNaplesItaly
| | - Michele D'Urso
- 8Institute of Genetics and Biophysics, Consiglio Nazionale delle RicercheNaplesItaly
| | - Janet Kelso
- 9South African National Bioinformatics Institute, University of the Western CapeBellvilleSouth Africa
| | - Winston Hide
- 9South African National Bioinformatics Institute, University of the Western CapeBellvilleSouth Africa
| | - Minoru S. H Ko
- 1National Institute on AgingBaltimore, MarylandUnited States of America
| |
Collapse
|
36
|
Yu J, Farjo R, MacNee SP, Baehr W, Stambolian DE, Swaroop A. Annotation and analysis of 10,000 expressed sequence tags from developing mouse eye and adult retina. Genome Biol 2003; 4:R65. [PMID: 14519200 PMCID: PMC328454 DOI: 10.1186/gb-2003-4-10-r65] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 07/01/2003] [Accepted: 08/19/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a biomarker of cellular activities, the transcriptome of a specific tissue or cell type during development and disease is of great biomedical interest. We have generated and analyzed 10,000 expressed sequence tags (ESTs) from three mouse eye tissue cDNA libraries: embryonic day 15.5 (M15E) eye, postnatal day 2 (M2PN) eye and adult retina (MRA). RESULTS Annotation of 8,633 non-mitochondrial and non-ribosomal high-quality ESTs revealed that 57% of the sequences represent known genes and 43% are unknown or novel ESTs, with M15E having the highest percentage of novel ESTs. Of these, 2,361 ESTs correspond to 747 unique genes and the remaining 6,272 are represented only once. Phototransduction genes are preferentially identified in MRA, whereas transcripts for cell structure and regulatory proteins are highly expressed in the developing eye. Map locations of human orthologs of known genes uncovered a high density of ocular genes on chromosome 17, and identified 277 genes in the critical regions of 37 retinal disease loci. In silico expression profiling identified 210 genes and/or ESTs over-expressed in the eye; of these, more than 26 are known to have vital retinal function. Comparisons between libraries provided a list of temporally regulated genes and/or ESTs. A few of these were validated by qRT-PCR analysis. CONCLUSIONS Our studies present a large number of potentially interesting genes for biological investigation, and the annotated EST set provides a useful resource for microarray and functional genomic studies.
Collapse
Affiliation(s)
- Jindan Yu
- Ophthalmology and Visual Science, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | - Rafal Farjo
- Ophthalmology and Visual Science, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | - Sean P MacNee
- Ophthalmology and Visual Science, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | - Wolfgang Baehr
- Moran Eye Center, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | - Dwight E Stambolian
- Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, PA 19014, USA
| | - Anand Swaroop
- Ophthalmology and Visual Science, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA
- Human Genetics, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA
| |
Collapse
|
37
|
Carter MG, Hamatani T, Sharov AA, Carmack CE, Qian Y, Aiba K, Ko NT, Dudekula DB, Brzoska PM, Hwang SS, Ko MSH. In situ-synthesized novel microarray optimized for mouse stem cell and early developmental expression profiling. Genome Res 2003; 13:1011-21. [PMID: 12727912 PMCID: PMC430900 DOI: 10.1101/gr.878903] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 02/25/2003] [Indexed: 11/24/2022]
Abstract
Applications of microarray technologies to mouse embryology/genetics have been limited, due to the nonavailability of microarrays containing large numbers of embryonic genes and the gap between microgram quantities of RNA required by typical microarray methods and the miniscule amounts of tissue available to researchers. To overcome these problems, we have developed a microarray platform containing in situ-synthesized 60-mer oligonucleotide probes representing approximately 22,000 unique mouse transcripts, assembled primarily from sequences of stem cell and embryo cDNA libraries. We have optimized RNA labeling protocols and experimental designs to use as little as 2 ng total RNA reliably and reproducibly. At least 98% of the probes contained in the microarray correspond to clones in our publicly available collections, making cDNAs readily available for further experimentation on genes of interest. These characteristics, combined with the ability to profile very small samples, make this system a resource for stem cell and embryogenomics research.
Collapse
Affiliation(s)
- Mark G Carter
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging (NIA), National Institutes of Health, Baltimore, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|