1
|
Kourout M, Espich S, Fisher C, Tiper I, Purkayastha A, Smith S, Santana-Quintero L, Duncan R. Multiplex detection and identification of viral, bacterial, and protozoan pathogens in human blood and plasma using an expanded high-density resequencing microarray platform. Front Mol Biosci 2024; 11:1419213. [PMID: 38966129 PMCID: PMC11222771 DOI: 10.3389/fmolb.2024.1419213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction: Nucleic acid tests for blood donor screening have improved the safety of the blood supply; however, increasing numbers of emerging pathogen tests are burdensome. Multiplex testing platforms are a potential solution. Methods: The Blood Borne Pathogen Resequencing Microarray Expanded (BBP-RMAv.2) can perform multiplex detection and identification of 80 viruses, bacteria and parasites. This study evaluated pathogen detection in human blood or plasma. Samples spiked with selected pathogens, each with one of 6 viruses, 2 bacteria and 5 protozoans were tested on this platform. The nucleic acids were extracted, amplified using multiplexed sets of primers, and hybridized to a microarray. The reported sequences were aligned to a database to identify the pathogen. To directly compare the microarray to an emerging molecular approach, the amplified nucleic acids were also submitted to nanopore next generation sequencing (NGS). Results: The BBP-RMAv.2 detected viral pathogens at a concentration as low as 100 copies/ml and a range of concentrations from 1,000 to 100,000 copies/ml for all the spiked pathogens. Coded specimens were identified correctly demonstrating the effectiveness of the platform. The nanopore sequencing correctly identified most samples and the results of the two platforms were compared. Discussion: These results indicated that the BBP-RMAv.2 could be employed for multiplex detection with potential for use in blood safety or disease diagnosis. The NGS was nearly as effective at identifying pathogens in blood and performed better than BBP-RMAv.2 at identifying pathogen-negative samples.
Collapse
Affiliation(s)
- Moussa Kourout
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Scott Espich
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Carolyn Fisher
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Irina Tiper
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | | | - Sean Smith
- HIVE Team, Office of Biostatistics and Pharmacovigilance, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Luis Santana-Quintero
- HIVE Team, Office of Biostatistics and Pharmacovigilance, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Robert Duncan
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
2
|
Short Signature rpoB Gene Sequence to Differentiate Species in Mycobacterium abscessus Group. Microbiol Spectr 2022; 10:e0253421. [PMID: 35950771 PMCID: PMC9431568 DOI: 10.1128/spectrum.02534-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium abscessus group (MAG) are rapidly growing acid-fast bacteria that consist of three closely related species: M. abscessus (Ma), M. bolletii (Mb), and M. massiliense (Mm). Differentiation of these species can be difficult but is increasingly requested owing to recent infectious outbreaks and their differential drug resistance. We developed a novel and rapid pyrosequencing method using short signature sequences (35 to 45 bp) at a hypervariable site in the rpoB gene to differentiate the three MAG species, along with M. chelonae (Mc), and M. immunogenum (Mi). This method was evaluated using 111 M. chelonae-abscessus complex (MCAC) isolates, including six reference strains. All isolates were successfully differentiated to the species level (69 Ma, four Mb, six Mm, 23 Mc, and nine Mi). The species identifications by this method had 100% agreement with Sanger sequencing as well as an in-silico rpoB typing method. This short signature sequencing (SSS) method is rapid (6 to 7 h), accurately differentiates MAG species, and is useful for informing antimicrobial therapy decision. IMPORTANCEMycobacterium abscessus group (MAG) are rapidly growing acid-fast bacteria that include three species: M. abscessus, M. massiliense, and M. bolletii. These species are among the leading causes of nontuberculosis mycobacteria infections in humans but difficult to differentiate using commonly used methods. The differences of drug resistance among the species shape the treatment regimens and make it significant for them to be differentiated accurately and quickly. We developed and evaluated a novel short signature sequencing (SSS) method utilizing a gene called rpoB to differentiate the three MAG species, as well as other two species (M. chelonae and M. immunogenum). The identification results had 100% agreement with both the reference method of Sanger sequencing and rpoB typing method via a computer-simulated analysis. This SSS method was accurate and quick (6 to 7 h) for species differentiation, which will benefit patient care. The technology used for this method is affordable and easy to operate.
Collapse
|
3
|
Zhang C, Sun L, Wang D, Li Y, Zhang L, Wang L, Peng J. Advances in antimicrobial resistance testing. Adv Clin Chem 2022; 111:1-68. [DOI: 10.1016/bs.acc.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Campelo TA, Cardoso de Sousa PR, Nogueira LDL, Frota CC, Zuquim Antas PR. Revisiting the methods for detecting Mycobacterium tuberculosis: what has the new millennium brought thus far? Access Microbiol 2021; 3:000245. [PMID: 34595396 PMCID: PMC8479963 DOI: 10.1099/acmi.0.000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Tuberculosis (TB) affects around 10 million people worldwide in 2019. Approximately 3.4 % of new TB cases are multidrug-resistant. The gold standard method for detecting Mycobacterium tuberculosis, which is the aetiological agent of TB, is still based on microbiological culture procedures, followed by species identification and drug sensitivity testing. Sputum is the most commonly obtained clinical specimen from patients with pulmonary TB. Although smear microscopy is a low-cost and widely used method, its sensitivity is 50-60 %. Thus, owing to the need to improve the performance of current microbiological tests to provide prompt treatment, different methods with varied sensitivity and specificity for TB diagnosis have been developed. Here we discuss the existing methods developed over the past 20 years, including their strengths and weaknesses. In-house and commercial methods have been shown to be promising to achieve rapid diagnosis. Combining methods for mycobacterial detection systems demonstrates a correlation of 100 %. Other assays are useful for the simultaneous detection of M. tuberculosis species and drug-related mutations. Novel approaches have also been employed to rapidly identify and quantify total mycobacteria RNA, including assessments of global gene expression measured in whole blood to identify the risk of TB. Spoligotyping, mass spectrometry and next-generation sequencing are also promising technologies; however, their cost needs to be reduced so that low- and middle-income countries can access them. Because of the large impact of M. tuberculosis infection on public health, the development of new methods in the context of well-designed and -controlled clinical trials might contribute to the improvement of TB infection control.
Collapse
Affiliation(s)
- Thales Alves Campelo
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | | | - Lucas de Lima Nogueira
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiane Cunha Frota
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Renato Zuquim Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Zhou YC, He SM, Wen ZL, Zhao JW, Song YZ, Zhang Y, Zhang SL. A Rapid and Accurate Detection Approach for Multidrug-Resistant Tuberculosis Based on PCR-ELISA Microplate Hybridization Assay. Lab Med 2021; 51:606-613. [PMID: 32447387 DOI: 10.1093/labmed/lmaa016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rapid and accurate diagnosis of multidrug-resistant tuberculosis (MDR-TB) is important for timely and appropriate therapy. In this study, a rapid and easy-to-perform molecular test that integrated polymerase chain reaction (PCR) amplification and a specific 96-well microplate hybridization assay, called PCR-ELISA (enzyme-linked immunosorbent assay), were developed for detection of mutations in rpoB, katG, and inhA genes responsible for rifampin (RIF) and isoniazid (INH) resistance and prediction of drug susceptibility in Mycobacterium tuberculosis clinical isolates. We evaluated the utility of this method by using 32 multidrug-resistent (MDR) isolates and 22 susceptible isolates; subsequently, we compared the results with data obtained by conventional drug susceptibility testing and DNA sequencing. The sensitivity and specificity of the PCR-ELISA test were 93.7% and 100% for detecting RIF resistance, and 87.5% and 100% for detecting INH resistance, respectively. These results were comparable to those yielded by commercially available molecular tests such as the GenoType MTBDRplus assay. Based on the aforementioned results, we conclude that the PCR-ELISA microplate hybridization assay is a rapid, inexpensive, convenient, and reliable test that will be useful for rapid diagnosis of MDR-TB, for improved clinical care.
Collapse
Affiliation(s)
- Ye-Cheng Zhou
- Shanghai Public Health Clinical Center, Shanghai, China.,Key Laboratory of Biological Resource and Ecological Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Mei He
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, Xianyang, China.,Key Laboratory of High Altitude Environment and Gene-Related Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Zi-Lu Wen
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Jun-Wei Zhao
- Clinical Laboratory, First Affiliated Hospital of Zhengzhou Universityy, Zhengzhou, China
| | | | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Shu-Lin Zhang
- Shanghai Public Health Clinical Center, Shanghai, China.,Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Xu G, Mao X, Wang J, Pan H. Clustering and recent transmission of Mycobacterium tuberculosis in a Chinese population. Infect Drug Resist 2018; 11:323-330. [PMID: 29563813 PMCID: PMC5846054 DOI: 10.2147/idr.s156534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The objectives of the present study were to characterize the clinical isolates prevailing in the northeast of Jiangsu and to investigate the mode of transmission. The study also aimed to explore the extent to which Mycobacterium tuberculosis strains contributed to drug resistance and the possible factors related to the recent transmission. Patients and methods We consecutively enrolled 912 culture-confirmed pulmonary tuberculosis (TB) cases from 1 January 2013 to 31 December 2014 in Lianyungang City, which is located in the center of China’s vast ocean area and the northeast of Jiangsu province. Isolates were genotyped using 15-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing. The Hunter–Gaston discrimination index (HGDI) was used to estimate the discriminatory power and diversity of molecular markers. Results Among 741 successfully genotyped isolates, 144 (19.43%) strains formed 46 clusters, while 597 (80.57%) isolates had the unique MIRU pattern. The total HGDI for all 15 loci was 0.999. The average cluster size was 3 (2–13) patients. The estimated proportion of recent transmission was 13.34%. Patients with unfavorable treatment outcomes were infected with clustered strains at a higher proportion than were those with favorable treatment outcomes (adjusted OR: 1.78, 95% CI: 1.14–2.85, P=0.012). Conclusion The probability of recent TB transmission was relatively low in the study site, while the cases mainly arose from the activation of previous infection. Spatial analysis showed that strains forming larger clusters had the characteristics of regional aggregation.
Collapse
Affiliation(s)
- Guisheng Xu
- Department of Epidemiology, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuhua Mao
- Department of Clinical Laboratory, Yixing People's Hospital, Wuxi, China
| | - Jianming Wang
- Department of Epidemiology, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third Hospital of Zhenjiang, Zhenjiang, China
| |
Collapse
|
7
|
Kourout M, Fisher C, Purkayastha A, Tibbetts C, Winkelman V, Williamson P, Nakhasi HL, Duncan R. Multiplex detection and identification of viral, bacterial, and protozoan pathogens in human blood and plasma using a high-density resequencing pathogen microarray platform. Transfusion 2016; 56:1537-47. [DOI: 10.1111/trf.13524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Moussa Kourout
- Division of Emerging and Transfusion Transmitted Diseases; OBRR, CBER, FDA; Silver Spring Maryland
| | - Carolyn Fisher
- Division of Emerging and Transfusion Transmitted Diseases; OBRR, CBER, FDA; Silver Spring Maryland
| | | | | | | | | | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases; OBRR, CBER, FDA; Silver Spring Maryland
| | - Robert Duncan
- Division of Emerging and Transfusion Transmitted Diseases; OBRR, CBER, FDA; Silver Spring Maryland
| |
Collapse
|
8
|
Grunwald A, Dahan M, Giesbertz A, Nilsson A, Nyberg LK, Weinhold E, Ambjörnsson T, Westerlund F, Ebenstein Y. Bacteriophage strain typing by rapid single molecule analysis. Nucleic Acids Res 2015; 43:e117. [PMID: 26019180 PMCID: PMC4605287 DOI: 10.1093/nar/gkv563] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 01/12/2023] Open
Abstract
Rapid characterization of unknown biological samples is under the focus of many current studies. Here we report a method for screening of biological samples by optical mapping of their DNA. We use a novel, one-step chemo-enzymatic reaction to covalently bind fluorophores to DNA at the four-base recognition sites of a DNA methyltransferase. Due to the diffraction limit of light, the dense distribution of labels results in a continuous fluorescent signal along the DNA. The amplitude modulations (AM) of the fluorescence intensity along the stretched DNA molecules exhibit a unique molecular fingerprint that can be used for identification. We show that this labelling scheme is highly informative, allowing accurate genotyping. We demonstrate the method by labelling the genomes of λ and T7 bacteriophages, resulting in a consistent, unique AM profile for each genome. These profiles are also successfully used for identification of the phages from a background phage library. Our method may provide a facile route for screening and typing of various organisms and has potential applications in metagenomics studies of various ecosystems.
Collapse
Affiliation(s)
- Assaf Grunwald
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moran Dahan
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anna Giesbertz
- Institute of Organic Chemistry, RWTH Aachen University, Aachen D-52056 Germany
| | - Adam Nilsson
- Department of Astronomy and Theoretical Physics, Lund University, Lund 223 62, Sweden
| | - Lena K Nyberg
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, Aachen D-52056 Germany
| | - Tobias Ambjörnsson
- Department of Astronomy and Theoretical Physics, Lund University, Lund 223 62, Sweden
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Yuval Ebenstein
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Miller S, Karaoz U, Brodie E, Dunbar S. Solid and Suspension Microarrays for Microbial Diagnostics. METHODS IN MICROBIOLOGY 2015; 42:395-431. [PMID: 38620236 PMCID: PMC7172482 DOI: 10.1016/bs.mim.2015.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Advancements in molecular technologies have provided new platforms that are being increasingly adopted for use in the clinical microbiology laboratory. Among these, microarray methods are particularly well suited for diagnostics as they allow multiplexing, or the ability to test for multiple targets simultaneously from the same specimen. Microarray technologies commonly used for the detection and identification of microbial targets include solid-state microarrays, electronic microarrays and bead suspension microarrays. Microarray methods have been applied to microbial detection, genotyping and antimicrobial resistance gene detection. Microarrays can offer a panel approach to diagnose specific patient presentations, such as respiratory or gastrointestinal infections, and can discriminate isolates by genotype for tracking epidemiology and outbreak investigations. And, as more information has become available on specific genes and pathways involved in antimicrobial resistance, we are beginning to be able to predict susceptibility patterns based on sequence detection for particular organisms. With further advances in automated microarray processing methods and genotype-phenotype prediction algorithms, these tests will become even more useful as an adjunct or replacement for conventional antimicrobial susceptibility testing, allowing for more rapid selection of targeted therapy for infectious diseases.
Collapse
Affiliation(s)
- Steve Miller
- Clinical Microbiology Laboratory, University of California, San Francisco, California, USA
| | - Ulas Karaoz
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Eoin Brodie
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | |
Collapse
|
10
|
Sharma N, Singh RK, Sharma P. Molecular Mycobacteriology and Expansion in Disease Diagnosis. Indian J Clin Biochem 2015; 31:138-47. [PMID: 27069321 DOI: 10.1007/s12291-015-0504-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/12/2015] [Indexed: 11/27/2022]
Abstract
Molecular diagnostic tools for tuberculosis (TB) have evolved quickly with new innovations which can provide unprecedented opportunities for the rapid, sensitive and specific diagnosis of M. tuberculosis in clinical specimens and the status of its drug sensitivity. Microscopy and culture methods can not be replaced but the molecular assays can be applied in parallel with any new molecular tests for the diagnosis of TB. For extra pulmonary specimens, the use of the amplification methods is advocated, since rapid and accurate laboratory diagnosis is critical. Customization of the diagnostic usefulness of a molecular assay, according to the ease, reliability and need for health care sector is of immense value in a modern clinical mycobacteriology laboratory.
Collapse
Affiliation(s)
- Narotam Sharma
- Central Molecular Research Laboratory, Department of Biochemistry, SGRR Institute of Medical & Health Sciences, Dehradun, India
| | - R K Singh
- Central Molecular Research Laboratory, Department of Biochemistry, SGRR Institute of Medical & Health Sciences, Dehradun, India
| | - Praveen Sharma
- Biochemistry Department, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| |
Collapse
|
11
|
Evaluation of a low-density hydrogel microarray technique for mycobacterial species identification. J Clin Microbiol 2015; 53:1103-14. [PMID: 25609722 DOI: 10.1128/jcm.02579-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In addition to the obligatory pathogenic species of the Mycobacterium tuberculosis complex and Mycobacterium leprae, the genus Mycobacterium also includes conditionally pathogenic species that in rare cases can lead to the development of nontuberculous mycobacterial diseases. Because tuberculosis and mycobacteriosis have similar clinical signs, the accurate identification of the causative agent in a clinical microbiology laboratory is important for diagnostic verification and appropriate treatment. This report describes a low-density hydrogel-based microarray containing oligonucleotide probes based on the species-specific sequences of the gyrB gene fragment for mycobacterial species identification. The procedure included the amplification of a 352-nucleotide fragment of the gene and its hybridization on a microarray. The triple-species-specific probe design and the algorithm for hybridization profile recognition based on the calculation of Pearson correlation coefficients, followed by the construction of a profile database, allowed for the reliable and accurate identification of mycobacterial species, including mixed-DNA samples. The assay was used to evaluate 543 clinical isolates from two regions of Russia, demonstrating its ability to detect 35 mycobacterial species, with 99.8% sensitivity and 100% specificity when using gyrB, 16S, and internal transcribed spacer (ITS) fragment sequencing as the standard. The testing of clinical samples showed that the sensitivity of the assay was 89% to 95% for smear-positive samples and 36% for smear-negative samples. The large number of identified species, the high level of sensitivity, the ability to detect mycobacteria in clinical samples, and the up-to-date profile database make the assay suitable for use in routine laboratory practice.
Collapse
|
12
|
Comparison of LCD array and IS6110-PCR with conventional techniques for detection of Mycobacterium bovis isolated from Egyptian cattle and Buffaloes. Int J Mycobacteriol 2014; 3:197-204. [PMID: 26786488 DOI: 10.1016/j.ijmyco.2014.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/03/2014] [Indexed: 11/20/2022] Open
Abstract
Bovine tuberculosis is a chronic bacterial and major infectious disease of cattle and buffaloes caused by Mycobacterium bovis. Rapid diagnosis of bovine tuberculosis is considered one of the cornerstones for worldwide control as it permits early epidemiological and therapeutic interventions. Therefore, this study was designed to evaluate conventional techniques (tuberculin test, Ziehl Neelsen staining and culturing) in comparison with proven molecular laboratory techniques (LCD array and IS6110 PCR) for identification of Bovine tuberculosis. A total of 902 Egyptian animals (480 buffaloes and 422 cattle) were examined by tuberculin test, and the positive reactors were slaughtered. Tissue samples were collected for staining as well as culturing. Moreover, LCD array and PCR using IS6110 on DNA extracted from tissue and culture samples were carried out for molecular identification of M. bovis. According to the results, the tuberculin positive cases for cattle and buffaloes were 2.14% (9 cases) and 5.62% (27 cases), respectively. After post-mortem examination, the prevalence of tuberculin positive cases with visible lesions was 88.9% for cattle and 14.8% for buffaloes. Alternatively, these percentages were 11.1% and 85.2% for cattle and buffalo carcasses with non-visible lesions. The percentage of cattle and buffaloes showing positive culture was 88.9% and 62.9%, respectively. This percentage was 69.5% after staining with Ziehl Neelsen. In contrast, LCD array and IS6110 were 100%, confirming the isolation results. In conclusion, LCD array depending on 16S RNA and DNA hybridization with specific probes for detection of M. bovis are rapid, sensitive and labor-saving when combined with IS6110-PCR.
Collapse
|
13
|
Comparison of two assays for molecular determination of rifampin resistance in clinical samples from patients with Buruli ulcer disease. J Clin Microbiol 2014; 52:1246-9. [PMID: 24478404 DOI: 10.1128/jcm.03119-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study evaluates a novel assay for detecting rifampin resistance in clinical Mycobacterium ulcerans isolates. Although highly susceptible for PCR inhibitors in 50% of the samples tested, the assay was 100% M. ulcerans specific and yielded >98% analyzable sequences with a lower limit of detection of 100 to 200 copies of the target sequence.
Collapse
|
14
|
Bengtson HN, Kolpashchikov DM. A differential fluorescent receptor for nucleic acid analysis. Chembiochem 2014; 15:228-31. [PMID: 24339354 PMCID: PMC4066444 DOI: 10.1002/cbic.201300657] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Indexed: 01/28/2023]
Abstract
Differential receptors use an array of sensors to recognize analytes. Each sensor in the array can recognize not one, but several analytes with different rates, so a single analyte triggers a response of several sensors in the array. The receptor thus produces a pattern of signals that is unique for each analyte, thereby enabling identification of a specific analyte by producing a "fingerprint" pattern. We applied this approach for the analysis of DNA sequences of Mycobacterium tuberculosis strains that differ by single nucleotide substitutions in the 81-bp hot-spot region that imparts rifampin resistance. The technology takes advantage of the new multicomponent, selfassembling sensor, which produces a fluorescent signal in the presence of specific DNA sequences. A differential fluorescent receptor (DFR) contained an array of three such sensors and differentiated at least eight DNA sequences. The approach requires only one molecular-beacon-like fluorescent reporter, which can be used by all three sensors. The DFR developed in this study represents a cost-efficient alternative to molecular diagnostic technologies that use fluorescent hybridization probes.
Collapse
Affiliation(s)
- Hillary N. Bengtson
- Chemistry Department and Burnett School of Biomedical Sciences University of Central Florida 4000 Central Florida Blvd, Orlando, FL 32816 (USA)
| | - Dmitry M. Kolpashchikov
- Chemistry Department and Burnett School of Biomedical Sciences University of Central Florida 4000 Central Florida Blvd, Orlando, FL 32816 (USA)
| |
Collapse
|
15
|
Abstract
The sequencing of the entire human genome was completed in June 2000. The sequence, however, is only a starting point and gene-function is now of major interest. All this information shows that gene-based diagnostics can be helpful for treatment targeting and patient surveillance. High volume gene expression assays can optimize pharmaceutical therapies by targeting genome-based treatments to specific patient populations and providing methods to study genes involved with cancer growth patterns and tumor suppression. Molecular biology, so far, has elucidated many of the genetic mechanisms underlying heritable metabolic diseases, so that appropriate diagnostic assays will revolutionize molecular diagnostics in medicine and pharmaceuticals. One of the most promising new technologies designed to analyze large amounts of genomic information rapidly is the DNA chip.
Collapse
Affiliation(s)
- Roland Toder
- R. Toder Consulting, Oleweg 7, D-79279 Vorstetten, Germany.
| |
Collapse
|
16
|
Amano M, Ohkusu K, Kusaba K, Ikeda H, Nagasawa Z, Aoki Y, Kawamura Y, Kobatake S, Tanaka T, Matsuura S, Ezaki T. Quantitative Microarray-Based DNA-DNA Hybridization Assay for Measuring Genetic Distances among Bacterial Species and Its Application to the Identification of FamilyEnterobacteriaceae. Microbiol Immunol 2013; 49:255-63. [PMID: 15781999 DOI: 10.1111/j.1348-0421.2005.tb03727.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantitative DNA-DNA hybridization to measure the genetic distances among bacterial species is indispensable for taxonomical determination. In the current studies, we developed a method to determine bacterial DNA relatedness on a glass microarray. Reference DNAs representing a total 93 species of Enterobacteriaceae were arrayed on a glass microplate, and signal intensities were measured after 2 hr of hybridization with Cy3-labeled bacterial DNAs. All immobilized DNAs from members of the family Enterobacteriaceae were identified by this method except for DNAs from Yersinia pseudotuberculosis and Y. pestis. These results suggest that quantitative microarray hybridization could be an alternative to conventional DNA-DNA hybridization for measuring chromosome relatedness among bacterial species.
Collapse
Affiliation(s)
- Makoto Amano
- Osaka Research Laboratories, Wako Pure Chemical Industries, Ltd., Amagasaki, Hyogo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shubladze N, Tadumadze N, Bablishvili N. Molecular patterns of multidrug resistance of Mycobacterium tuberculosis in Georgia. Int J Mycobacteriol 2013; 2:73-78. [PMID: 24904758 PMCID: PMC4042859 DOI: 10.1016/j.ijmyco.2013.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) infections caused by multidrug-resistant Mycobacterium tuberculosis (MDR MTB) remain a significant public health concern worldwide. Georgia has a high prevalence of MDR MTB. The genetic mechanisms underlying the emergence of MDR MTB strains in this region are poorly understood and need to be determined for developing better strategies for TB control. This study investigated the frequency of major drug resistance mutations across rpoB, katG and inhA loci of Georgian MDR MTB strains and explored differences between new and previously treated patients. A total of 634 MTB strains were examined for which an MDR phenotype had been previously determined by the proportions method. The GenoType®MTBDRplus system was applied to screen the strains for the presence of rpoB (S531L, H526D, H526Y, and D516V), katG (S315T) and inhA promoter region (C15T and T8C) mutations. The target loci were amplified by PCR and then hybridized with the respective site-specific and wild type (control) probes. RESULTS Out of the 634 isolates tested considered by phenotypic testing to be resistant to RIF and INH, this resistance was confirmed by the GenoType®MTBDRplus assay in 575 (90.7%) isolates. RIF resistance was seen in 589 (92.9%) and INH resistance was seen in 584 (92.1%); 67.2% and 84.3% of MDR strains harbored respectively rpoB S531L and katG S315T mutations (generally known as having low or no fitness cost in MTB). The inhA C15T mutation was detected in 22.6% of the strains, whereas rpoB H526D, rpoB H526Y, rpoB D516V and inhA T8C were revealed at a markedly lower frequency (≤5.2%). The specific mutations responsible for the RIF resistance of 110 isolates (17.4%) could not be detected as no corresponding mutant probe was indicated in the assay. There was no specific association of the presence of mutations with the gender/age groups. All types of prevailing mutations had higher levels in new cases. A great majority of the Georgian MDR MTB strains have a strong preference for the drug resistance mutations carrying no or low fitness cost. Thus, it can be suggested that MDR MTB strains with such mutations will continue to arise in Georgia at a high frequency even in the absence of antibiotic pressure.
Collapse
Affiliation(s)
- N. Shubladze
- National Centre for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - N. Tadumadze
- National Centre for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - N. Bablishvili
- National Centre for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| |
Collapse
|
18
|
Kurokawa S, Kabayama J, Fukuyasu T, Hwang SD, Park CI, Park SB, del Castillo CS, Hikima JI, Jung TS, Kondo H, Hirono I, Takeyama H, Aoki T. Bacterial classification of fish-pathogenic Mycobacterium species by multigene phylogenetic analyses and MALDI Biotyper identification system. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:340-348. [PMID: 23229498 DOI: 10.1007/s10126-012-9492-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/19/2012] [Indexed: 06/01/2023]
Abstract
Mycobacterium marinum is difficult to distinguish from other species of Mycobacterium isolated from fish using biochemical methods. Here, we used genetic and proteomic analyses to distinguish three Mycobacterium strains: M. marinum strains MB2 and Europe were isolated from tropical and marine fish in Thailand and Europe, and Mycobacterium sp. 012931 strain was isolated from yellowtail in Japan. In phylogenetic trees based on gyrB, rpoB, and Ag85B genes, Mycobacterium sp. 012931 clustered with M. marinum strains MB2 and Europe, but in trees based on 16S rRNA, hsp65, and Ag85A genes Mycobacterium sp. 012931 did not cluster with the other strains. In proteomic analyses using a Bruker matrix-assisted laser desorption ionization Biotyper, the mass profile of Mycobacterium sp. 012931 differed from the mass profiles of the other two fish M. marinum strains. Therefore, Mycobacterium sp. 012931 is similar to M. marinum but is not the same, suggesting that it could be a subspecies of M. marinum.
Collapse
Affiliation(s)
- Satoru Kurokawa
- Animal Health Department of Research and Development Agricultural and Veterinary Division, Meiji Seika Pharma, 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chang KC, Yew WW, Zhang Y. A systematic review of rapid drug susceptibility tests for multidrug-resistant tuberculosis using rifampin resistance as a surrogate. ACTA ACUST UNITED AC 2013; 3:99-122. [PMID: 23485158 DOI: 10.1517/17530050802665694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The emergence of multidrug-resistant tuberculosis (MDR-TB) has prompted the development of rapid drug susceptibility assays with a focus on rifampin in recent years. Systematic reviews with evaluation of predictive values for different assays are scarce. METHOD MEDLINE was searched on 6 September 2008 for English articles that contain concurrent original data for generating summary measures of sensitivity, specificity and likelihood ratios of rapid rifampin susceptibility assays. RESULTS/CONCLUSIONS Significant heterogeneity was found in likelihood ratios across studies of all assays except nitrate reductase assay and colorimetric assays. Although rapid assays are fairly reliable for ruling out MDR-TB, careful consideration of clinical risk factors is required before using these assays to rule in MDR-TB under different epidemiological settings.
Collapse
Affiliation(s)
- Kwok-Chiu Chang
- Senior Medical and Health Officer Tuberculosis and Chest Service, Wanchai Chest Clinic, Department of Health, 1st Floor, Wanchai Polyclinic, 99, Kennedy Road, Wanchai, Hong Kong, China +852 25911147 ; +852 28346627 ;
| | | | | |
Collapse
|
20
|
Krothapalli S, May MK, Hestekin CN. Capillary electrophoresis-single strand conformation polymorphism for the detection of multiple mutations leading to tuberculosis drug resistance. J Microbiol Methods 2012; 91:147-54. [PMID: 22884688 PMCID: PMC3699206 DOI: 10.1016/j.mimet.2012.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/23/2022]
Abstract
Drug resistant tuberculosis (TB) is a major health problem in both developed and developing countries. Mutations in the Mycobacterium (M.) tuberculosis bacterial genome, such as those to the rpoB gene and mabA-inhA promoter region, have been linked to TB drug resistance in against rifampicin and isoniazid, respectively. The rapid, accurate, and inexpensive identification of these and other mutations leading to TB drug resistance is an essential tool for improving human health. Capillary electrophoresis (CE) single strand conformation polymorphism (SSCP) can be a highly sensitive technique for the detection of genetic mutation that has not been previously explored for drug resistance mutations in M. tuberculosis. This work explores the potential of CE-SSCP through the optimization of variables such as polymer separation matrix concentration, capillary wall coating, electric field strength, and temperature on resolution of mutation detection. The successful detection of an rpoB gene mutation and two mabA-inhA promoter region mutations while simultaneously differentiating a TB-causing mycobacteria from a non-TB bacteria was accomplished using the optimum conditions of 4.5% (w/v) PDMA in a PDMA coated capillary at 20°C using a separation voltage of 278 V/cm. This multiplexed analysis that can be completed in a few hours demonstrates the potential of CE-SSCP to be an inexpensive and rapid analysis method.
Collapse
Affiliation(s)
- Sowmya Krothapalli
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, AR 4188 Bell Engineering Center, Fayetteville, AR-72701
| | - Michael K. May
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, AR 4188 Bell Engineering Center, Fayetteville, AR-72701
| | - Christa N. Hestekin
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, AR 4188 Bell Engineering Center, Fayetteville, AR-72701
- University of Arkansas, Department of Chemical Engineering, Fayetteville, AR 3202 Bell Engineering Center, Fayetteville, AR-72701
| |
Collapse
|
21
|
Cornett EM, Campbell EA, Gulenay G, Peterson E, Bhaskar N, Kolpashchikov DM. Molecular logic gates for DNA analysis: detection of rifampin resistance in M. tuberculosis DNA. Angew Chem Int Ed Engl 2012; 51:9075-7. [PMID: 22888076 PMCID: PMC3517149 DOI: 10.1002/anie.201203708] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Indexed: 02/06/2023]
Abstract
Elementary, Dr. Watson! A combination of YES and OR logic gates was applied to differentiate between DNA sequences of wild-type and rifampin-resistant (Rif(r)) Mycobacterium tuberculosis (Mtb) in a multiplex real-time fluorescent assay.
Collapse
Affiliation(s)
- Evan M Cornett
- Chemistry Department, University of Central Florida, Orlando, FL 32816, USA
| | | | | | | | | | | |
Collapse
|
22
|
Leski TA, Lin B, Malanoski AP, Stenger DA. Application of resequencing microarrays in microbial detection and characterization. Future Microbiol 2012; 7:625-37. [PMID: 22568717 DOI: 10.2217/fmb.12.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Microarrays are powerful, highly parallel assays that are transforming microbiological diagnostics and research. The adaptation of microarray-based resequencing technology for microbial detection and characterization resulted in the development of a number assays that have unique advantages over other existing technologies. This technological platform seems to be especially useful for sensitive and high-resolution multiplexed diagnostics for clinical syndromes with similar symptoms, screening environmental samples for biothreat agents, as well as genotyping and whole-genome analysis of single pathogens.
Collapse
Affiliation(s)
- Tomasz A Leski
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, SW, Washington, DC 20375, USA.
| | | | | | | |
Collapse
|
23
|
Cornett EM, Campbell EA, Gulenay G, Peterson E, Bhaskar N, Kolpashchikov DM. Molecular Logic Gates for DNA Analysis: Detection of Rifampin Resistance in M. tuberculosis DNA. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Rapid and accurate identification of Mycobacterium tuberculosis complex and common non-tuberculous mycobacteria by multiplex real-time PCR targeting different housekeeping genes. Curr Microbiol 2012; 65:493-9. [PMID: 22797866 DOI: 10.1007/s00284-012-0188-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T (m)) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100 % for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100 %, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.
Collapse
|
25
|
Laboratory diagnosis of tuberculosis in resource-poor countries: challenges and opportunities. Clin Microbiol Rev 2011; 24:314-50. [PMID: 21482728 DOI: 10.1128/cmr.00059-10] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
With an estimated 9.4 million new cases globally, tuberculosis (TB) continues to be a major public health concern. Eighty percent of all cases worldwide occur in 22 high-burden, mainly resource-poor settings. This devastating impact of tuberculosis on vulnerable populations is also driven by its deadly synergy with HIV. Therefore, building capacity and enhancing universal access to rapid and accurate laboratory diagnostics are necessary to control TB and HIV-TB coinfections in resource-limited countries. The present review describes several new and established methods as well as the issues and challenges associated with implementing quality tuberculosis laboratory services in such countries. Recently, the WHO has endorsed some of these novel methods, and they have been made available at discounted prices for procurement by the public health sector of high-burden countries. In addition, international and national laboratory partners and donors are currently evaluating other new diagnostics that will allow further and more rapid testing in point-of-care settings. While some techniques are simple, others have complex requirements, and therefore, it is important to carefully determine how to link these new tests and incorporate them within a country's national diagnostic algorithm. Finally, the successful implementation of these methods is dependent on key partnerships in the international laboratory community and ensuring that adequate quality assurance programs are inherent in each country's laboratory network.
Collapse
|
26
|
Abstract
Microarrays or DNA chips have been hailed as the ultimate experimental tool for research, drug discovery and diagnostics. They have the potential to perform a multitude of molecular tests simultaneously and to produce a wealth of information from a single clinical sample. Applications include genotyping, expression analysis and sequencing (1-4). The aim of this review is to provide a brief summary of current microarray technology and highlight the many ways in which it is being developed for use in clinical microbiology laboratories.
Collapse
|
27
|
Mycobacterium tuberculosis spoligotypes and drug susceptibility pattern of isolates from tuberculosis patients in South-Western Uganda. BMC Infect Dis 2011; 11:81. [PMID: 21453482 PMCID: PMC3100262 DOI: 10.1186/1471-2334-11-81] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 03/31/2011] [Indexed: 11/18/2022] Open
Abstract
Background Determination of the prevalence and drug susceptibility of the M. tuberculosis strains is important in tuberculosis control. We determined the genetic diversity and susceptibility profiles of mycobacteria isolated from tuberculosis patients in Mbarara, South Western Uganda. Methods We enrolled, consecutively; all newly diagnosed and previously treated smear-positive TB patients aged ≥ 18 years. The isolates were characterized using regions of difference (RD) analysis and spoligotyping. Drug resistance against rifampicin and isoniazid were tested using the Genotype® MDRTBplus assay and the indirect proportion method on Lowenstein-Jensen media. HIV-1 testing was performed using two rapid HIV tests. Results A total of 125 isolates from 167 TB suspects (60% males) with a mean age 33.7 years and HIV prevalence of 67.9% (55/81) were analyzed. Majority (92.8%) were new cases while only 7.2% were retreatment cases. All the 125 isolates were identified as M. tuberculosis strict sense with the majority (92.8%) of the isolates being modern strains while seven (7.2%) isolates were ancestral strains. Spoligotyping revealed 79 spoligotype patterns, with an overall diversity of 63.2%. Sixty two (49.6%) of the isolates formed 16 clusters consisting of 2-15 isolates each. A majority (59.2%) of the isolates belong to the Uganda genotype group of strains. The major shared spoligotypes in our sample were SIT 135 (T2-Uganda) with 15 isolates and SIT 128 (T2) with 3 isolates. Sixty nine (87%) of the 79 patterns had not yet been defined in the SpolDB4.0.database. Resistance mutations to either RIF or INH were detected in 6.4% of the isolates. Multidrug resistance, INH and RIF resistance was 1.6%, 3.2% and 4.8%, respectively. The rpoβ gene mutations seen in the sample were D516V, S531L, H526Y H526D and D516V, while one strain had a Δ1 mutation in the wild type probes. There were three strains with katG (codon 315) gene mutations only while one strain showed the inhA promoter gene mutation. Conclusion The present study shows that the TB epidemic in Mbarara is caused by modern M. tuberculosis strains mainly belonging to the Uganda genotype and anti-TB drug resistance rate in the region is low.
Collapse
|
28
|
Abebe G, Paasch F, Apers L, Rigouts L, Colebunders R. Tuberculosis drug resistance testing by molecular methods: Opportunities and challenges in resource limited settings. J Microbiol Methods 2011; 84:155-60. [DOI: 10.1016/j.mimet.2010.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 11/30/2022]
|
29
|
Multiple-genome comparison reveals new loci for Mycobacterium species identification. J Clin Microbiol 2010; 49:144-53. [PMID: 21048007 DOI: 10.1128/jcm.00957-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify loci useful for species identification and to enhance our understanding of the population structure and genetic variability of the genus Mycobacterium, we conducted a multiple-genome comparison of a total of 27 sequenced genomes in the suborder of Corynebacterineae (18 from the Mycobacterium genus, 7 from the Corynebacterium genus, 1 each from the Nocardia and Rhodococcus genera). Our study revealed 26 informative loci for species identification in Mycobacterium. The sequences from these loci were used in a phylogenetic analysis to infer the evolutionary relations of the 18 mycobacterial genomes. Among the loci that we identified, rpoBC, dnaK, and hsp65 were amplified from 29 ATCC reference strains and 17 clinical isolates and sequenced. The phylogenetic trees generated from these loci show similar topologies. The newly identified dnaK locus is more discriminatory and more robust than the widely used hsp65 locus. The length-variable rpoBC locus is the first intergenic locus between two protein-encoding genes being used for mycobacterial species identification. A multilocus sequence analysis system including the rpoBC, dnaK, and hsp65 loci is a robust tool for accurate identification of Mycobacterium species.
Collapse
|
30
|
Chen R, Bi Y, Yang G, Liu Z, Liu Z, Zeng B, Tong T. Development of a Fluorescent Microsphere-based Multiplex Assay for Simultaneous Rapid Detection of Mycobacterium tuberculosis Complex and Differentiation of M. tuberculosis and M. bovis in Clinical Samples. ACTA ACUST UNITED AC 2010; 19:172-9. [DOI: 10.1097/pdm.0b013e3181d8c241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Stone AC, Wilbur AK, Buikstra JE, Roberts CA. Tuberculosis and leprosy in perspective. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 140 Suppl 49:66-94. [PMID: 19890861 DOI: 10.1002/ajpa.21185] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two of humankind's most socially and psychologically devastating diseases, tuberculosis and leprosy, have been the subject of intensive paleopathological research due to their antiquity, a presumed association with human settlement and subsistence patterns, and their propensity to leave characteristic lesions on skeletal and mummified remains. Despite a long history of medical research and the development of effective chemotherapy, these diseases remain global health threats even in the 21st century, and as such, their causative agents Mycobacterium tuberculosis and M. leprae, respectively, have recently been the subject of molecular genetics research. The new genome-level data for several mycobacterial species have informed extensive phylogenetic analyses that call into question previously accepted theories concerning the origins and antiquity of these diseases. Of special note is the fact that all new models are in broad agreement that human TB predated that in other animals, including cattle and other domesticates, and that this disease originated at least 35,000 years ago and probably closer to 2.6 million years ago. In this work, we review current phylogenetic and biogeographic models derived from molecular biology and explore their implications for the global development of TB and leprosy, past and present. In so doing, we also briefly review the skeletal evidence for TB and leprosy, explore the current status of these pathogens, critically consider current methods for identifying ancient mycobacterial DNA, and evaluate coevolutionary models.
Collapse
Affiliation(s)
- Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | | |
Collapse
|
32
|
Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants. PLoS One 2010; 5:e8995. [PMID: 20140251 PMCID: PMC2815781 DOI: 10.1371/journal.pone.0008995] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 01/04/2010] [Indexed: 11/19/2022] Open
Abstract
For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence, host-range, and resistance to antiviral agents.
Collapse
|
33
|
Leski TA, Malanoski AP, Stenger DA, Lin B. Target amplification for broad spectrum microbial diagnostics and detection. Future Microbiol 2010; 5:191-203. [DOI: 10.2217/fmb.09.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microarrays are massively parallel detection platforms that were first used extensively for gene expression studies, but have also been successfully applied to microbial detection in a number of diverse fields requiring broad-range microbial identification. This technology has enabled researchers to gain an insight into the microbial diversity of environmental samples, facilitated discovery of a number of new pathogens and enabled studies of multipathogen infections. In contrast to gene expression studies, the concentrations of targets in analyzed samples for microbial detection are usually much lower, and require the use of nucleic acid amplification techniques. The rapid advancement of manufacturing technologies has increased the content of the microarrays; thus, the required amplification is a challenging problem. The constant parallel improvements in both microarray and sample amplification techniques in the near future may lead to a radical progression in medical diagnostics and systems for efficient detection of microorganisms in the environment.
Collapse
Affiliation(s)
- Tomasz A Leski
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, DC, USA and Nova Research Inc., 1900 Elkin Street, Suite 230, Alexandria, VA, USA
| | - Anthony P Malanoski
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, DC, USA
| | - David A Stenger
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, DC, USA
| | - Baochuan Lin
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
34
|
Testing and validation of high density resequencing microarray for broad range biothreat agents detection. PLoS One 2009; 4:e6569. [PMID: 19668365 PMCID: PMC2719057 DOI: 10.1371/journal.pone.0006569] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 06/06/2009] [Indexed: 11/19/2022] Open
Abstract
Rapid and effective detection and identification of emerging microbiological threats and potential biowarfare agents is very challenging when using traditional culture-based methods. Contemporary molecular techniques, relying upon reverse transcription and/or polymerase chain reaction (RT-PCR/PCR) provide a rapid and effective alternative, however, such assays are generally designed and optimized to detect only a limited number of targets, and seldom are capable of differentiation among variants of detected targets. To meet these challenges, we have designed a broad-range resequencing pathogen microarray (RPM) for detection of tropical and emerging infectious agents (TEI) including biothreat agents: RPM-TEI v 1.0 (RPM-TEI). The scope of the RPM-TEI assay enables detection and differential identification of 84 types of pathogens and 13 toxin genes, including most of the class A, B and C select agents as defined by the Centers for Disease Control and Prevention (CDC, Atlanta, GA). Due to the high risks associated with handling these particular target pathogens, the sensitivity validation of the RPM-TEI has been performed using an innovative approach, in which synthetic DNA fragments are used as templates for testing the assay's limit of detection (LOD). Assay specificity and sensitivity was subsequently confirmed by testing with full-length genomic nucleic acids of selected agents. The LOD for a majority of the agents detected by RPM-TEI was determined to be at least 104 copies per test. Our results also show that the RPM-TEI assay not only detects and identifies agents, but is also able to differentiate near neighbors of the same agent types, such as closely related strains of filoviruses of the Ebola Zaire group, or the Machupo and Lassa arenaviruses. Furthermore, each RPM-TEI assay results in specimen-specific agent gene sequence information that can be used to assess pathogenicity, mutations, and virulence markers, results that are not generally available from multiplexed RT-PCR/PCR-based detection assays.
Collapse
|
35
|
Palomino JC. Molecular detection, identification and drug resistance detection inMycobacterium tuberculosis: Table 1. ACTA ACUST UNITED AC 2009; 56:103-11. [DOI: 10.1111/j.1574-695x.2009.00555.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
|
37
|
Ben Salah I, Adékambi T, Raoult D, Drancourt M. rpoB sequence-based identification of Mycobacterium avium complex species. MICROBIOLOGY-SGM 2009; 154:3715-3723. [PMID: 19047739 DOI: 10.1099/mic.0.2008/020164-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Mycobacterium avium complex (MAC) comprises slowly growing mycobacteria responsible for opportunistic infections and zoonoses. The ability to speciate MAC isolates in the clinical microbiology laboratory is critical for determining the organism implicated in clinical disease and for epidemiological investigation of the source of infection. Investigation of a 711 bp variable fragment of rpoB flanked by the Myco-F/Myco-R primers found a 0.7-5.1 % divergence among MAC reference strains, with Mycobacterium chimaera and Mycobacterium intracellulare being the most closely related. Using a 0.7 % divergence cut-off, 83 % of 100 clinical isolates, which had been previously identified by phenotypic characteristics and 16S-23S rDNA intergenic spacer (ITS) probing, were identified as M. avium, 8 % as M. intracellulare and 2 % as M. chimaera. The uniqueness of seven isolates, exhibiting < 99.3 % rpoB sequence similarity with MAC reference strains, was confirmed by 16S rDNA, ITS and hsp65 sequencing and phylogenetic analyses. Partial rpoB gene sequencing using the Myco-F/Myco-R primers permits one-step identification of MAC isolates at the species level and the detection of potentially novel MAC species.
Collapse
Affiliation(s)
- Iskandar Ben Salah
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR, CNRS-IRD 6236, IFR 48 Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Toidi Adékambi
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR, CNRS-IRD 6236, IFR 48 Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR, CNRS-IRD 6236, IFR 48 Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Michel Drancourt
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR, CNRS-IRD 6236, IFR 48 Faculté de Médecine, Université de la Méditerranée, Marseille, France
| |
Collapse
|
38
|
Abstract
Microarray technology has revolutionized the detection and analysis of microbial pathogens. The success of this technology is evident from the various microarrays that have been developed for this purpose, variation in the density of probes, and the time ranges required for assay completion. Among these, high-density re-sequencing microarrays have demonstrated great potential for detecting bacterial, viral pathogens, and virulence markers. Resequencing microarrays use closely overlapping probe sets to determine a target organism's nucleotide sequence. Hybridization to a series of perfect matched probes provides confirmatory presence/absence information, while hybridization to mismatched probes reveals strain-specific single nucleotide polymorphism (SNP) data. This approach provides sequence information of the diagnostic regions of detected organisms that is considerably more informative over that provided from other microarray techniques.
Collapse
|
39
|
Braun-Falco M, Schempp W, Weyers W. Molecular diagnosis in dermatopathology: What makes sense, and what doesn’t. Exp Dermatol 2009; 18:12-23. [DOI: 10.1111/j.1600-0625.2008.00805.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Neonakis IK, Gitti Z, Krambovitis E, Spandidos DA. Molecular diagnostic tools in mycobacteriology. J Microbiol Methods 2008; 75:1-11. [DOI: 10.1016/j.mimet.2008.05.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 05/14/2008] [Accepted: 05/23/2008] [Indexed: 10/22/2022]
|
41
|
Zhang SL, Shen JG, Xu PH, Li DX, Sun ZQ, Li L, Yang ZR, Sun Q. A novel genotypic test for rapid detection of multidrug-resistant Mycobacterium tuberculosis isolates by a multiplex probe array. J Appl Microbiol 2008; 103:1262-71. [PMID: 17897230 DOI: 10.1111/j.1365-2672.2007.03350.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS To develop and evaluate a novel genotypic test for rapid detection of rifampicin and isoniazid resistance of multidrug-resistant (MDR) Mycobacterium tuberculosis isolates by a multiplex probe array. METHODS AND RESULTS A multiplex probe array was designed for genotypic test to simultaneously screen the mutations of rpoB, katG, inhA and ahpC genes, associated with rifampin and isoniazid resistance in M. tuberculosis, with a probe detecting one of the recently confirmed genetic markers of isoniazid resistance ahpC-6 and -9 locus added. By using the genotypic test developed, 52 MDR isolates were identified, among which 46 isolates had mutations in rpoB (88.5%) and 45 at codon 315 of katG, regulatory region of inhA and oxyR-ahpC intergenic region (86.5%), whereas all 35 susceptible isolates identified showed a wild-type hybridization pattern. The sensitivity and specificity were 88.5% and 100% for rifampicin resistance, and 86.5% and 100% for isoniazid resistance, respectively. CONCLUSION A rapid and simultaneous detection of rifampicin and isoniazid resistance caused by the mutations of rpoB, katG, inhA and ahpC genes in M. tuberculosis isolates could be achieved by a multiplex probe array developed. SIGNIFICANCE AND IMPACT OF THE STUDY This genotypic test protocol has the potential to be developed on clinical application for the rapid detection of drug resistant M. tuberculosis isolates before an efficient chemotherapy is initiated.
Collapse
Affiliation(s)
- S-L Zhang
- College of Life Sciences, Key Laboratory of Bio-resource and Bio-control, Sichuan University, Chengdu, Sichuan, and Research Center for Tuberculosis, Henan Chest Hospital, Zhengzhou, Henan, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Berthet N, Dickinson P, Filliol I, Reinhardt AK, Batejat C, Vallaeys T, Kong KA, Davies C, Lee W, Zhang S, Turpaz Y, Heym B, Coralie G, Dacheux L, Burguière AM, Bourhy H, Old IG, Manuguerra J, Cole ST, Kennedy GC. Massively parallel pathogen identification using high-density microarrays. Microb Biotechnol 2008; 1:79-86. [PMID: 21261824 PMCID: PMC3864434 DOI: 10.1111/j.1751-7915.2007.00012.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 09/28/2007] [Indexed: 11/29/2022] Open
Abstract
Identification of microbial pathogens in clinical specimens is still performed by phenotypic methods that are often slow and cumbersome, despite the availability of more comprehensive genotyping technologies. We present an approach based on whole-genome amplification and resequencing microarrays for unbiased pathogen detection. This 10 h process identifies a broad spectrum of bacterial and viral species and predicts antibiotic resistance and pathogenicity and virulence profiles. We successfully identify a variety of bacteria and viruses, both in isolation and in complex mixtures, and the high specificity of the microarray distinguishes between different pathogens that cause diseases with overlapping symptoms. The resequencing approach also allows identification of organisms whose sequences are not tiled on the array, greatly expanding the repertoire of identifiable organisms and their variants. We identify organisms by hybridization of their DNA in as little as 1-4 h. Using this method, we identified Monkeypox virus and drug-resistant Staphylococcus aureus in a skin lesion taken from a child suspected of an orthopoxvirus infection, despite poor transport conditions of the sample, and a vast excess of human DNA. Our results suggest this technology could be applied in a clinical setting to test for numerous pathogens in a rapid, sensitive and unbiased manner.
Collapse
Affiliation(s)
- Nicolas Berthet
- Genotyping of Pathogens and Public Health Technological Platform
| | | | - Ingrid Filliol
- Genotyping of Pathogens and Public Health Technological Platform
| | | | | | | | | | | | - Walter Lee
- Affymetrix, 3420 Central Expressway, Santa Clara, CA, USA
| | - Shenglan Zhang
- Affymetrix, 3420 Central Expressway, Santa Clara, CA, USA
| | - Yaron Turpaz
- Affymetrix, 3420 Central Expressway, Santa Clara, CA, USA
| | - Beate Heym
- Ambroise‐Paré Hospital, Boulogne‐Billancourt, France
| | | | | | | | | | | | | | - Stewart T. Cole
- Bacterial Molecular Genetics Unit, Institut Pasteur, Paris, France
| | | |
Collapse
|
43
|
Lim SY, Kim BJ, Lee MK, Kim K. Development of a real-time PCR-based method for rapid differential identification of Mycobacterium species. Lett Appl Microbiol 2007; 46:101-6. [PMID: 18028331 DOI: 10.1111/j.1472-765x.2007.02278.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To develop a real-time PCR method for rapid differential identification of many clinically important mycobacteria to the species level. METHODS AND RESULTS Eighteen Mycobacterium species that are considered clinically important were targeted for the identification. One primer pair and 21 pairs of hybridization probes (HybProbes) specific for the genus, species or complex were designed based on the rpoB gene sequences of mycobacteria. Twenty-five different Mycobacterium reference species were tested. In a single round of real-time PCR, all the nontuberculous mycobacteria (NTM) species tested were identified at the genus level and 16 of the 18 targeted species were differentially identified to the species or complex level during the amplification cycles; subsequent melting curve analysis allowed the specific identification of all the target species at the species or complex level without cross-reactivity with the other species. CONCLUSIONS The developed real-time PCR assay rapidly identifies the NTM at the genus level and 18 clinically important Mycobacterium species at the species or complex level. SIGNIFICANCE AND IMPACT OF THE STUDY This real-time PCR assay provides a useful tool for the rapid differentiation of most clinically important Mycobacterium species.
Collapse
Affiliation(s)
- S Y Lim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
44
|
Mutations in DNA repair genes are associated with the Haarlem lineage of Mycobacterium tuberculosis independently of their antibiotic resistance. Tuberculosis (Edinb) 2007; 87:502-8. [DOI: 10.1016/j.tube.2007.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 01/09/2007] [Accepted: 05/21/2007] [Indexed: 11/18/2022]
|
45
|
Narayanan S, Gagneux S, Hari L, Tsolaki AG, Rajasekhar S, Narayanan PR, Small PM, Holmes S, Deriemer K. Genomic interrogation of ancestral Mycobacterium tuberculosis from south India. INFECTION GENETICS AND EVOLUTION 2007; 8:474-83. [PMID: 18024233 DOI: 10.1016/j.meegid.2007.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 09/19/2007] [Accepted: 09/24/2007] [Indexed: 11/16/2022]
Abstract
Mycobacterium tuberculosis is a very important global pathogen. One quarter of the world's TB cases occur in India. The tuberculosis strains isolated from south Indian patients exhibit certain phenotypic characteristics like low virulence in guinea-pigs, resistance to isoniazid, thiophene-2-carboxylic acid hydrazide (TCH) and para-amino salicylic acid (PAS), and enhanced susceptibility to H2O2. Besides this, a large percentage of the isolates harbor only a single copy of IS 6110 which makes these strains distinct. Hence, we have studied the genotypic characteristics of these strains by using advanced techniques like Deletion Micro array, deletion PCR, allelic discrimination RT-PCR using several lineage specific markers and KatG G1388T (non-synonymous) polymorphism along with spoligotyping. The analysis of 1215 tuberculosis patient isolates from south India revealed that 85.2% belonged to the ancestral lineage of M. tuberculosis. Comparative whole-genome hybridization identified six new genomic regions within this lineage that were variably deleted.
Collapse
Affiliation(s)
- Sujatha Narayanan
- Tuberculosis Research Centre, Mayor VR Ramanathan Road, Chetput, Chennai, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71:495-548. [PMID: 17804669 PMCID: PMC2168647 DOI: 10.1128/mmbr.00005-07] [Citation(s) in RCA: 597] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Actinobacteria constitute one of the largest phyla among bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, parco Area delle Scienze 11a, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Drobniewski F, Rüsch-Gerdes S, Hoffner S. Antimicrobial susceptibility testing of Mycobacterium tuberculosis (EUCAST document E.DEF 8.1)--report of the Subcommittee on Antimicrobial Susceptibility Testing of Mycobacterium tuberculosis of the European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Clin Microbiol Infect 2007; 13:1144-56. [PMID: 17727670 DOI: 10.1111/j.1469-0691.2007.01813.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review describes the methods available for drug susceptibility testing of Mycobacterium tuberculosis. The methods have been developed over several decades and are restricted to specialised centres in most European countries, as they are technically demanding, require appropriate isolation facilities and can be difficult to interpret. The absolute concentration, resistance ratio and proportion methods can all give accurate results, provided that they are carefully quality-controlled and standardised. Automated rapid culture and molecular methods have been evaluated at large reference centres and in multicentre collaborations, and perform well for testing susceptibility to most first- and second-line anti-tuberculosis drugs. Accuracy is more important than rapid testing, and this is most reliably achieved if drug susceptibility tests are done in a small number of well-equipped, experienced laboratories that participate and perform well in an international drug susceptibility testing quality assessment scheme. The WHO Supranational Laboratory Quality Control Network offers a global scheme that assesses the ability of participating laboratories to identify isoniazid, rifampicin, ethambutol and streptomycin resistance. Second-line drug resistance testing is currently being standardised, and such testing should only be performed at the national reference laboratories in western and central European countries because of the relatively small number of cases and the concomitant difficulty of maintaining testing proficiency in multiple centres performing small numbers of tests. There is a need to expand international external quality assessment to include second-line drug susceptibility testing.
Collapse
Affiliation(s)
- F Drobniewski
- Health Protection Agency National Mycobacterium Reference Unit, Centre for Infections, Institute for Cell and Molecular Sciences, London, UK.
| | | | | |
Collapse
|
48
|
Use of a novel multiplex probe array for rapid identification of Mycobacterium species from clinical isolates. World J Microbiol Biotechnol 2007; 23:1779-88. [PMID: 27517834 DOI: 10.1007/s11274-007-9428-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 04/29/2007] [Indexed: 10/23/2022]
Abstract
Conventional identification of mycobacteria is based on the analysis of their phenotypic and biochemical characteristics after culture; thus this method is time-consuming, laborious, and is not always conclusive. Developing a fast and accurate method for rapid identification of Mycobacterium species is in urgent need for early diagnosis of mycobacteriosis and effective patient management. In this study, an efficient and affordable novel multiplex probe array which allows simultaneous identification of 15 medically important mycobacterial species was developed. A pair of genus-specific primers and a set of genus- and species-specific probes were designed according to the conserved and polymorphic regions of the 16S rRNA gene, internal transcribed spacer (ITS) sequence, and 23S rRNA gene of mycobacteria. This probe array was applied for the identification of 78 clinical mycobacterial isolates recovered from Henan, China. The results showed that the specificity and sensitivity of the probe array were 100% for both genus-specific probe and Mycobacterium tuberculosis complex-specific probe. Among 52 isolates of nontuberculous mycobacteria, 43 isolates (82.7%) can be rapidly identified to the species level. Genetic variability of 16S-23S rRNA gene ITS region in M. avium, M. intracellulare, M. chelonae, M. abscessus and M. fortuitum were analyzed. With the accumulation of the sequences of ITS identified and further optimization of probes, the multiplex probe array has the potential to be developed into a practical tool for rapid and accurate identification of mycobacterial species in clinical laboratory.
Collapse
|
49
|
Abstract
Tuberculosis remains a major health problem in the world, which is compounded further by the alarmingly high rate of M. tuberculosis infections in AIDS patients. Thus, there is an urgent need to advance our understanding of the mycobacterium to develop new drugs. The extraordinary recent developments in mycobacterial genetic research, particularly in genomics will greatly facilitate this goal. The knowledge of the entire genome sequence of M. tuberculosis will help in designing new chemotherapeutic and immunotherapeutic interventions. This review highlights recent developments in genomics, mycobacterial genetics, novel vaccine strategies, and our understanding of tuberculous dormancy.
Collapse
Affiliation(s)
- A J Steyn
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | |
Collapse
|
50
|
Lipin MY, Stepanshina VN, Shemyakin IG, Shinnick TM. Association of specific mutations in katG, rpoB, rpsL and rrs genes with spoligotypes of multidrug-resistant Mycobacterium tuberculosis isolates in Russia. Clin Microbiol Infect 2007; 13:620-6. [PMID: 17403134 DOI: 10.1111/j.1469-0691.2007.01711.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most multidrug-resistant (MDR) Mycobacterium tuberculosis isolates in Russia belong to the Beijing or Latino-American and Mediterranean (LAM) spoligotype families. The objective of this study was to investigate possible associations between genotype and the frequencies of mutations that confer drug resistance in a population that has two large families of circulating strains. Spoligotyping, IS6110 restriction fragment length polymorphism typing, and sequencing of the katG and rpoB genes, were performed for 217 consecutive MDR M. tuberculosis isolates from patients. The rpsL and rrs genes were also sequenced for selected streptomycin-resistant isolates. Of the 217 MDR isolates, 99 (46%) belonged to the LAM family, 92 (42%) to the Beijing family, 21 (10%) to the Haarlem family and four (2%) to the T family. There was one unique spoligotype. Mutations in the katG gene were identified in 207 (95%) isolates, all of which had mutations in codon 315. Mutations in the rpoB gene were identified in 200 (92%) isolates; 75% of LAM isolates carried a mutation in codon 516, whereas 71% of Beijing isolates carried a mutation in codon 531. In the 33 isolates resistant to streptomycin 50 mg/L, the 43AGG rpsL mutation was found in 27% of Haarlem, 75% of Beijing and 0% of LAM isolates, and rrs mutations were found in 17% (516C-->T) of Beijing and 100% (513A-->C) of LAM isolates. Overall, there appeared to be a correlation between the genotype and specific mutations conferring resistance to rifampicin or streptomycin in the Beijing and LAM families. The biological implications of this correlation remain to be explored.
Collapse
Affiliation(s)
- M Y Lipin
- State Research Center for Applied Microbiology, Obolensk, Moscow Region, Russia
| | | | | | | |
Collapse
|