1
|
Chen Y, Branch A, Shuai C, Gallagher M, Knierim JJ. Object-place-context learning impairment correlates with spatial learning impairment in aged Long-Evans rats. Hippocampus 2024; 34:88-99. [PMID: 38073523 PMCID: PMC10843702 DOI: 10.1002/hipo.23591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/28/2023] [Accepted: 11/18/2023] [Indexed: 01/23/2024]
Abstract
The hippocampal formation is vulnerable to the process of normal aging. In humans, the extent of this age-related deterioration varies among individuals. Long-Evans rats replicate these individual differences as they age, and therefore they serve as a valuable model system to study aging in the absence of neurodegenerative diseases. In the Morris water maze, aged memory-unimpaired (AU) rats navigate to remembered goal locations as effectively as young rats and demonstrate minimal alterations in physiological markers of synaptic plasticity, whereas aged memory-impaired (AI) rats show impairments in both spatial navigation skills and cellular and molecular markers of plasticity. The present study investigates whether another cognitive domain is affected similarly to navigation in aged Long-Evans rats. We tested the ability of young, AU, and AI animals to recognize novel object-place-context (OPC) configurations and found that performance on the novel OPC recognition paradigm was significantly correlated with performance on the Morris water maze. In the first OPC test, young and AU rats, but not AI rats, successfully recognized and preferentially explored objects in novel OPC configurations. In a second test with new OPC configurations, all age groups showed similar OPC associative recognition memory. The results demonstrated similarities in the behavioral expression of associative, episodic-like memory between young and AU rats and revealed age-related, individual differences in functional decline in both navigation and episodic-like memory abilities.
Collapse
Affiliation(s)
- Yuxi Chen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Audrey Branch
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cecelia Shuai
- Undergraduate Studies, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - James J Knierim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Portero-Tresserra M, Galofré-López N, Pallares E, Gimenez-Montes C, Barcia C, Granero R, Rojic-Becker D, Vale-Martínez A, Martí-Nicolovius M, Guillazo-Blanch G. Effects of Caloric Restriction on Spatial Object Recognition Memory, Hippocampal Neuron Loss and Neuroinflammation in Aged Rats. Nutrients 2023; 15:nu15071572. [PMID: 37049417 PMCID: PMC10096994 DOI: 10.3390/nu15071572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Age-related neurobiological changes significantly affect hippocampal structure and function, such that the main cognitive impairments associated with aging are related to the integrity of this brain structure, including the deterioration in spatial object recognition (SOR) memory. Previous studies have shown that intrinsic factors such as neuroinflammation, as well as lifestyle factors such as diet, can affect aging-associated brain functions and cognitive performance. In this regard, caloric restriction (CR) produces beneficial effects on health and life expectancy, although its ability to slow down age-dependent effects on cognitive decline and hippocampus (HPC) functioning remains unclear. Therefore, we set out to evaluate the effects of CR on SOR memory in aged male Wistar rats, as well as those on hippocampal neuron loss, neurogenesis and inflammation. The data show that CR in aged rats attenuates the decline in SOR memory, age-associated hippocampal neuron loss, and age-dependent microglial activation. Furthermore, we found a significant reduction in neurogenesis in the dentate gyrus of the old animals relative to adult rats. These findings support the positive effect of CR on SOR memory, suggesting that it dampens hippocampal neuronal loss and reduces proinflammatory activity.
Collapse
Affiliation(s)
- Marta Portero-Tresserra
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Neus Galofré-López
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Elisabet Pallares
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Claudia Gimenez-Montes
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Carlos Barcia
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Roser Granero
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Divka Rojic-Becker
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Anna Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Margarita Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gemma Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
3
|
Mañas-Padilla MC, Melgar-Locatelli S, Vicente L, Gil-Rodríguez S, Rivera P, Rodríguez-Pérez C, Castilla-Ortega E. Temozolomide treatment inhibits spontaneous motivation for exploring a complex object in mice: A potential role of adult hippocampal neurogenesis in "curiosity". J Comp Neurol 2023; 531:548-560. [PMID: 36515664 PMCID: PMC10107499 DOI: 10.1002/cne.25442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022]
Abstract
Intrinsic exploratory biases are an innate motivation for exploring certain types of stimuli or environments over others, and they may be associated with cognitive, emotional, and even personality-like traits. However, their neurobiological basis has been scarcely investigated. Considering the involvement of the hippocampus in novelty recognition and in spatial and pattern separation tasks, this work researched the role of adult hippocampal neurogenesis (AHN) in intrinsic exploratory bias for a perceptually complex object in mice. Spontaneous object preference tasks revealed that both male and female C57BL/6J mice showed a consistent unconditioned preference for exploring "complex"-irregular-objects over simpler ones. Furthermore, increasing objects' complexity resulted in an augmented time of object exploration. In a different experiment, male mice received either vehicle or the DNA alkylating agent temozolomide (TMZ) for 4 weeks, a pharmacological treatment that reduced AHN as evidenced by immunohistochemistry. After assessment in a behavioral test battery, the TMZ-treated mice did not show any alterations in general exploratory and anxiety-like responses. However, when tested in the spontaneous object preference task, the TMZ-treated mice did not display enhanced exploration of the complex object, as evidenced both by a reduced exploration time-specifically for the complex object-and a lack of preference for the complex object over the simple one. This study supports a novel role of AHN in intrinsic exploratory bias for perceptual complexity. Moreover, the spontaneous complex object preference task as a rodent model of "curiosity" is discussed.
Collapse
Affiliation(s)
- M Carmen Mañas-Padilla
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Sonia Melgar-Locatelli
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Lucía Vicente
- Centro de Experimentación y Conducta Animal, Universidad de Málaga, Málaga, Spain.,Departamento de Psicología, Universidad de Deusto, Bilbao, Spain
| | - Sara Gil-Rodríguez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Celia Rodríguez-Pérez
- Departamento de Nutrición y Bromatología, Universidad de Granada, Campus de Melilla, Melilla, Spain.,Instituto de Nutrición y Tecnología de los Alimentos 'José Mataix', Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
4
|
Santín-Márquez R, Ramírez-Cordero B, Toledo-Pérez R, Luna-López A, López-Diazguerrero NE, Hernández-Arciga U, Pérez-Morales M, Ortíz-Retana JJ, García-Servín M, Alcauter S, Hernández-Godínez B, Ibañez-Contreras A, Concha L, Gómez-González B, Königsberg M. Sensory and memory processing in old female and male Wistar rat brain, and its relationship with the cortical and hippocampal redox state. GeroScience 2021; 43:1899-1920. [PMID: 33837484 PMCID: PMC8492817 DOI: 10.1007/s11357-021-00353-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/09/2021] [Indexed: 12/27/2022] Open
Abstract
The brain is one of the most sensitive organs damaged during aging due to its susceptibility to the aging-related oxidative stress. Hence, in this study, the sensory nerve pathway integrity and the memory were evaluated and related to the redox state, the antioxidant enzymes function, and the protein oxidative damage in the brain cortex (Cx) and the hippocampus (Hc) of young (4-month-old) and old (24-month-old) male and female Wistar rats. Evoked potentials (EP) were performed for the auditory, visual, and somatosensory pathways. In both males and females, the old rat groups' latencies were larger in almost all waves when compared to the young same-sex animals. The novel object test was performed to evaluate memory. The superoxide dismutase and catalase antioxidant activity, as well as the protein oxidative damage, and the redox state were evaluated. Magnetic resonance (MR) imaging was used to obtain the diffusion tensor imaging, and the brain volume, while MR spectroscopy was used to obtain the brain metabolite concentrations (glutamine, glutamate, Myo-inositol, N-acetyl-aspartate, creatine) in the Cx and the Hc of young and old females. Our data suggest that, although there are limited variations regarding memory and nerve conduction velocity by sex, the differences concerning the redox status might be important to explain the dissimilar reactions during brain aging between males and females. Moreover, the increment in Myo-inositol levels in the Hc of old rats and the brain volume decrease suggest that redox state alterations might be correlated to neuroinflammation during brain aging.
Collapse
Affiliation(s)
- Roberto Santín-Márquez
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México
- Posgrado en Biología Experimental, UAMI, México, México
| | - Belén Ramírez-Cordero
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México
| | - Rafael Toledo-Pérez
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México
- Posgrado en Biología Experimental, UAMI, México, México
| | | | - Norma E López-Diazguerrero
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México
| | - Ulalume Hernández-Arciga
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México
| | - Marcel Pérez-Morales
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México
| | - Juan José Ortíz-Retana
- Laboratorio Nacional Enfocado en Imagenología por Resonancia Magnética, Instituto de Neurobiología, UNAM, Juriquilla, Mexico
| | | | - Sarael Alcauter
- Laboratorio Nacional Enfocado en Imagenología por Resonancia Magnética, Instituto de Neurobiología, UNAM, Juriquilla, Mexico
| | | | | | - Luis Concha
- Laboratorio Nacional Enfocado en Imagenología por Resonancia Magnética, Instituto de Neurobiología, UNAM, Juriquilla, Mexico
| | - Beatriz Gómez-González
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México
| | - Mina Königsberg
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México.
| |
Collapse
|
5
|
De Castro V, Girard P. Location and temporal memory of objects declines in aged marmosets (Callithrix jacchus). Sci Rep 2021; 11:9138. [PMID: 33911122 PMCID: PMC8080792 DOI: 10.1038/s41598-021-88357-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Episodic memory decline is an early marker of cognitive aging in human. Although controversial in animals and called “episodic-like memory”, several models have been successfully developed, however they rarely focused on ageing. While marmoset is an emerging primate model in aging science, episodic-like memory has never been tested in this species and importantly in aged marmosets. Here, we examined if the recall of the what-when and what-where building blocks of episodic-like memory declines in ageing marmosets. We developed a naturalistic approach using spontaneous exploration of real objects by young and old marmosets in the home cage. We implemented a three-trial task with 1 week inter-trial interval. Two different sets of identical objects were presented in sample trials 1 and 2, respectively. For the test trial, two objects from each set were presented in a former position and two in a new one. We quantified the exploratory behaviour and calculated discrimination indices in a cohort of 20 marmosets. Young animals presented a preserved memory for combined what-where, and what-when components of the experiment, which declined with aging. These findings lead one to expect episodic-like memory deficits in aged marmosets.
Collapse
Affiliation(s)
- Vanessa De Castro
- Centre de Recherche Cerveau et Cognition (CerCo), Toulouse, France. .,Centre National de la Recherche Scientifique (CNRS) - UMR 5549, Toulouse, France.
| | - Pascal Girard
- Centre de Recherche Cerveau et Cognition (CerCo), Toulouse, France. .,Institut national de la santé et de la recherche médicale (INSERM), Toulouse, France.
| |
Collapse
|
6
|
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci 2019; 13:363. [PMID: 31440144 PMCID: PMC6692714 DOI: 10.3389/fncel.2019.00363] [Citation(s) in RCA: 764] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Brain Derived Neurotrophic Factor (BDNF) is a key molecule involved in plastic changes related to learning and memory. The expression of BDNF is highly regulated, and can lead to great variability in BDNF levels in healthy subjects. Changes in BDNF expression are associated with both normal and pathological aging and also psychiatric disease, in particular in structures important for memory processes such as the hippocampus and parahippocampal areas. Some interventions like exercise or antidepressant administration enhance the expression of BDNF in normal and pathological conditions. In this review, we will describe studies from rodents and humans to bring together research on how BDNF expression is regulated, how this expression changes in the pathological brain and also exciting work on how interventions known to enhance this neurotrophin could have clinical relevance. We propose that, although BDNF may not be a valid biomarker for neurodegenerative/neuropsychiatric diseases because of its disregulation common to many pathological conditions, it could be thought of as a marker that specifically relates to the occurrence and/or progression of the mnemonic symptoms that are common to many pathological conditions.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Juan Facundo Morici
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - María Belén Zanoni
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| |
Collapse
|
7
|
Impact of high sucrose diets on the discrimination of spatial and object memories with overlapping features. Physiol Behav 2018; 192:127-133. [DOI: 10.1016/j.physbeh.2018.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/06/2023]
|
8
|
Cès A, Burg T, Herbeaux K, Héraud C, Bott JB, Mensah-Nyagan AG, Mathis C. Age-related vulnerability of pattern separation in C57BL/6J mice. Neurobiol Aging 2017; 62:120-129. [PMID: 29149630 DOI: 10.1016/j.neurobiolaging.2017.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/25/2017] [Accepted: 10/16/2017] [Indexed: 01/22/2023]
Abstract
Aging is associated with impaired performance in behavioral pattern separation (PS) tasks based on similarities in object features and in object location. These deficits have been attributed to functional alterations in the dentate gyrus (DG)-CA3 region. Animal studies suggested a role of adult-born DG neurons in PS performance. The present study investigated the effect of aging in C57BL/6J mice performing PS tasks based on either object features or object location. At the age of 18 months or more, performance was severely impaired in both tasks. Spatial PS performance declined gradually over adult lifespan from 3 to 21 months. Subchronic treatment with the cognitive enhancer D-serine fully rescued spatial PS performance in 18-month-old mice and induced a modest increase in the number of 4-week-old adult-born cells in the DG. Performance of mice in these PS tasks shows an age dependence, which appears to translate well to that found in humans. This model should help in deciphering physiological changes underlying PS deficits and in identifying future therapeutic targets.
Collapse
Affiliation(s)
- Aurélia Cès
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg, France
| | - Thibaut Burg
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg, France
| | - Karine Herbeaux
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg, France
| | - Céline Héraud
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg, France
| | - Jean-Bastien Bott
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg, France
| | - Ayikoe Guy Mensah-Nyagan
- Université de Strasbourg, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Bâtiment 3 de la Faculté de Médecine, 11 Rue Humann, Strasbourg, France
| | - Chantal Mathis
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg, France.
| |
Collapse
|
9
|
Morillas E, Gómez-Chacón B, Gallo M. Flavor and object recognition memory impairment induced by excitotoxic lesions of the perirhinal cortex. Neurobiol Learn Mem 2017; 144:230-234. [DOI: 10.1016/j.nlm.2017.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/28/2017] [Accepted: 08/10/2017] [Indexed: 01/01/2023]
|
10
|
Behavioral and Neurochemical Consequences of Pentylenetetrazol-Induced Kindling in Young and Middle-Aged Rats. Pharmaceuticals (Basel) 2017; 10:ph10030075. [PMID: 28902172 PMCID: PMC5620619 DOI: 10.3390/ph10030075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 11/23/2022] Open
Abstract
(1) Objectives: Epilepsy disorder is likely to increase with aging, leading to an increased incidence of comorbidities and mortality. In spite of that, there is a lack of information regarding this issue and little knowledge of cognitive and emotional responses in aging subjects following epileptogenesis. We investigated whether and how aging distress epilepsy-related behavioral and biochemical outcomes are associated with cognition and emotion. (2) Methods: Young and middle-aged Wistar rats (3 or 12 months old) were treated with pentylenetetrazol (PTZ, 35 mg/kg) and injected on alternated days for 20 (young rats) and 32 days (middle-aged rats). Kindling was reached after two consecutive stages 4 plus one stage 5 or 6 in Racine scale. Control and kindled rats were evaluated in the elevated plus-maze (EPM) and object-recognition tests and their hippocampus was collected 24 h later for mitogen-activated protein kinases (MAPK) dosage. (3) Results: Middle-aged rats presented a higher resistance to develop kindling, with a decrease in the seizure severity index observed following the 4th and 9th PTZ injections. Middle-aged rats displayed an increased duration of the first myoclonic seizure and an increased latency to the first generalized seizure when compared to younger rats. The induction of kindling did not impair the animals’ performance (regardless of age) in the object-recognition task and the EPM test as well as it did not alter the hippocampal levels of MAPKs. (4) Significance: Our findings reveal that, despite age-related differences during epileptogenesis, middle-aged rats evaluated after kindling performed similarly during discriminative learning and emotional tasks in comparison to young animals, with no alteration of hippocampal MAPKs. Additional investigation must be carried out to explore the electrophysiological mechanisms underlying these responses, as well as the long-term effects displayed after kindling.
Collapse
|
11
|
Arias-Cavieres A, Adasme T, Sánchez G, Muñoz P, Hidalgo C. Aging Impairs Hippocampal- Dependent Recognition Memory and LTP and Prevents the Associated RyR Up-regulation. Front Aging Neurosci 2017; 9:111. [PMID: 28484388 PMCID: PMC5402473 DOI: 10.3389/fnagi.2017.00111] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/06/2017] [Indexed: 11/21/2022] Open
Abstract
Recognition memory comprises recollection judgment and familiarity, two different processes that engage the hippocampus and the perirhinal cortex, respectively. Previous studies have shown that aged rodents display defective recognition memory and alterations in hippocampal synaptic plasticity. We report here that young rats efficiently performed at short-term (5 min) and long-term (24 h) hippocampus-associated object-location tasks and perirhinal cortex-related novel-object recognition tasks. In contrast, aged rats successfully performed the object-location and the novel-object recognition tasks only at short-term. In addition, aged rats displayed defective long-term potentiation (LTP) and enhanced long-term depression (LTD). Successful long-term performance of object-location but not of novel-object recognition tasks increased the protein levels of ryanodine receptor types-2/3 (RyR2/RyR3) and of IP3R1 in young rat hippocampus. Likewise, sustained LTP induction (1 h) significantly increased RyR2, RyR3 and IP3R1 protein levels in hippocampal slices from young rats. In contrast, LTD induction (1 h) did not modify the levels of these three proteins. Naïve (untrained) aged rats displayed higher RyR2/RyR3 hippocampal protein levels but similar IP3R1 protein content relative to young rats; these levels did not change following exposure to either memory recognition task or after LTP or LTD induction. The perirhinal cortex from young or aged rats did not display changes in the protein contents of RyR2, RyR3, and IP3R1 after exposure at long-term (24 h) to the object-location or the novel-object recognition tasks. Naïve aged rats displayed higher RyR2 channel oxidation levels in the hippocampus compared to naïve young rats. The RyR2/RyR3 up-regulation and the increased RyR2 oxidation levels exhibited by aged rat hippocampus are likely to generate anomalous calcium signals, which may contribute to the well-known impairments in hippocampal LTP and spatial memory that take place during aging.
Collapse
Affiliation(s)
| | - Tatiana Adasme
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'HigginsSantiago, Chile
| | - Gina Sánchez
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile.,Pathophysiology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de ChileSantiago, Chile
| | - Pablo Muñoz
- Center for Applied Neurological Sciences and Interdisciplinary Center for Innovation in Health, School of Medicine, Universidad de ValparaísoValparaíso, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de ChileSantiago, Chile.,Center of Molecular Studies of the Cell and Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de ChileSantiago, Chile
| |
Collapse
|
12
|
Johnson SA, Turner SM, Santacroce LA, Carty KN, Shafiq L, Bizon JL, Maurer AP, Burke SN. Rodent age-related impairments in discriminating perceptually similar objects parallel those observed in humans. Hippocampus 2017; 27:759-776. [PMID: 28342259 DOI: 10.1002/hipo.22729] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/13/2017] [Accepted: 03/14/2017] [Indexed: 01/24/2023]
Abstract
The ability to accurately remember distinct episodes is supported by high-level sensory discrimination. Performance on mnemonic similarity tasks, which test high-level discrimination, declines with advancing age in humans and these deficits have been linked to altered activity in hippocampal CA3 and dentate gyrus. Lesion studies in animal models, however, point to the perirhinal cortex as a brain region critical for sensory discriminations that serve memory. Reconciliation of the contributions of different regions within the cortical-hippocampal circuit requires the development of a discrimination paradigm comparable to the human mnemonic similarity task that can be used in rodents. In the present experiments, young and aged rats were cross-characterized on a spatial water maze task and two variants of an object discrimination task: one in which rats incrementally learned which object of a pair was rewarded and different pairs varied in their similarity (Experiment 1), and a second in which rats were tested on their ability to discriminate a learned target object from multiple lure objects with an increasing degree of feature overlap (Experiment 2). In Experiment 1, aged rats required more training than young to correctly discriminate between similar objects. Comparably, in Experiment 2, aged rats were impaired in discriminating a target object from lures when the pair shared more features. Discrimination deficits across experiments were correlated within individual aged rats, though, for the cohort tested, aged rats were not impaired overall in spatial learning and memory. This could suggest discrimination deficits emerging with age precede declines in spatial or episodic memory, an observation that has been made in humans. Findings of robust impairments in object discrimination abilities in the aged rats parallel results from human studies, supporting use of the developed tasks for mechanistic investigation of cortical-hippocampal circuit dysfunction in aging and disease.
Collapse
Affiliation(s)
- Sarah A Johnson
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Sean M Turner
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Lindsay A Santacroce
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Katelyn N Carty
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Leila Shafiq
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Jennifer L Bizon
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Andrew P Maurer
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL.,Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Sara N Burke
- Department of Neuroscience, Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, FL.,Institute on Aging, University of Florida, Gainesville, FL
| |
Collapse
|
13
|
Gómez-Chacón B, Morillas E, Gallo M. Altered perirhinal cortex activity patterns during taste neophobia and their habituation in aged rats. Behav Brain Res 2015; 281:245-9. [DOI: 10.1016/j.bbr.2014.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/03/2014] [Accepted: 12/07/2014] [Indexed: 02/04/2023]
|
14
|
Gross M, Sheinin A, Nesher E, Tikhonov T, Baranes D, Pinhasov A, Michaelevski I. Early onset of cognitive impairment is associated with altered synaptic plasticity and enhanced hippocampal GluA1 expression in a mouse model of depression. Neurobiol Aging 2015; 36:1938-52. [PMID: 25796132 DOI: 10.1016/j.neurobiolaging.2015.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 10/24/2022]
Abstract
Memory deficit is a common manifestation of age-related cognitive impairment, of which depression is a frequently occurring comorbidity. Previously, we developed a submissive (Sub) mouse line, validated as a model of depressive-like behavior. Using learning paradigms testing hippocampus-dependent spatial and nonspatial memory, we demonstrate here that Sub mice developed cognitive impairments at earlier age (3 months), compared with wild-type mice. Furthermore, acute hippocampal slices from Sub animals failed to display paired-pulse facilitation, whereas primed burst stimulation elicited significantly enhanced long-term potentiation in region CA1, relative to control mice. Changes in synaptic plasticity were accompanied by markedly reduced hippocampal messenger RNA expression of insulin-like growth factor and brain-derived neurotrophic factor. Finally, we identified markedly elevated protein levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 in the hippocampi of Sub mice, which was exacerbated with age. Taken together, the results point to a linkage between depressive-like behavior and the susceptibility to develop age-related cognitive impairment, potentially by hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated glutamatergic signaling.
Collapse
Affiliation(s)
- Moshe Gross
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Anton Sheinin
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Elimelech Nesher
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Tatiana Tikhonov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Danny Baranes
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Izhak Michaelevski
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
15
|
Galeano P, Blanco E, Logica Tornatore TMA, Romero JI, Holubiec MI, Rodríguez de Fonseca F, Capani F. Life-long environmental enrichment counteracts spatial learning, reference and working memory deficits in middle-aged rats subjected to perinatal asphyxia. Front Behav Neurosci 2015; 8:406. [PMID: 25601829 PMCID: PMC4283640 DOI: 10.3389/fnbeh.2014.00406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/10/2014] [Indexed: 01/19/2023] Open
Abstract
Continuous environmental stimulation induced by exposure to enriched environment (EE) has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is associated with long-lasting neurological deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are unknown. Therefore, the aim of the present study was to assess whether life-long exposure to EE could counteract the cognitive and behavioral alterations in middle-aged asphyctic rats. Experimental groups consisted of rats born vaginally (CTL), by cesarean section (C+), or by C+ following 19 min of asphyxia at birth (PA). At weaning, rats were assigned to standard (SE) or enriched environment (EE) for 18 months. During the last month of housing, animals were submitted to a behavioral test battery including Elevated Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM). Results showed that middle-aged asphyctic rats, reared in SE, exhibited an impaired performance in the spatial reference and working memory versions of the MWM. EE was able to counteract these cognitive impairments. Moreover, EE improved the spatial learning performance of middle-aged CTL and C+ rats. On the other hand, all groups reared in SE did not differ in locomotor activity and anxiety levels, while EE reduced locomotion and anxiety, regardless of birth condition. Recognition memory was altered neither by birth condition nor by housing environment. These results support the importance of environmental stimulation across the lifespan to prevent cognitive deficits induced by perinatal asphyxia.
Collapse
Affiliation(s)
- Pablo Galeano
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina ; Instituto de Investigaciones Bioquímicas de Buenos Aires (CONICET), Fundación Instituto Leloir Buenos Aires, Argentina
| | - Eduardo Blanco
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina ; Laboratorio de Investigación, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga - Hospital Regional Universitario de Málaga (UGC Salud Mental) Málaga, Spain ; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga Málaga, Spain
| | - Tamara M A Logica Tornatore
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina
| | - Juan I Romero
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina
| | - Mariana I Holubiec
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Investigación, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga - Hospital Regional Universitario de Málaga (UGC Salud Mental) Málaga, Spain
| | - Francisco Capani
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires (CONICET) Buenos Aires, Argentina
| |
Collapse
|
16
|
Wiescholleck V, Emma André MA, Manahan-Vaughan D. Early age-dependent impairments of context-dependent extinction learning, object recognition, and object-place learning occur in rats. Hippocampus 2013; 24:270-9. [PMID: 24132946 DOI: 10.1002/hipo.22220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2013] [Indexed: 01/23/2023]
Abstract
The hippocampus is vulnerable to age-dependent memory decline. Multiple forms of memory depend on adequate hippocampal function. Extinction learning comprises active inhibition of no longer relevant learned information concurrent with suppression of a previously learned reaction. It is highly dependent on context, and evidence exists that it requires hippocampal activation. In this study, we addressed whether context-based extinction as well as hippocampus-dependent tasks, such as object recognition and object-place recognition, are equally affected by moderate aging. Young (7-8 week old) and older (7-8 month old) Wistar rats were used. For the extinction study, animals learned that a particular floor context indicated that they should turn into one specific arm (e.g., left) to receive a food reward. On the day after reaching the learning criterion of 80% correct choices, the floor context was changed, no reward was given and animals were expected to extinguish the learned response. Both, young and older rats managed this first extinction trial in the new context with older rats showing a faster extinction performance. One day later, animals were returned to the T-maze with the original floor context and renewal effects were assessed. In this case, only young but not older rats showed the expected renewal effect (lower extinction ratio as compared to the day before). To assess general memory abilities, animals were tested in the standard object recognition and object-place memory tasks. Evaluations were made at 5 min, 1 h and 7 day intervals. Object recognition memory was poor at short-term and intermediate time-points in older but not young rats. Object-place memory performance was unaffected at 5 min, but impaired at 1 h in older but not young rats. Both groups were impaired at 7 days. These findings support that not only aspects of general memory, but also context-dependent extinction learning, are affected by moderate aging. This may reflect less flexibility in revising hard-wired knowledge or reduced adaptability to new learning challenges.
Collapse
|