1
|
Ramey MM, Zabelina DL. Divergent thinking modulates interactions between episodic memory and schema knowledge: Controlled and spontaneous episodic retrieval processes. Mem Cognit 2024; 52:663-679. [PMID: 38228995 DOI: 10.3758/s13421-023-01493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 01/18/2024]
Abstract
The ability to generate novel ideas, known as divergent thinking, depends on both semantic knowledge and episodic memory. Semantic knowledge and episodic memory are known to interact to support memory decisions, but how they may interact to support divergent thinking is unknown. Moreover, it is debated whether divergent thinking relies on spontaneous or controlled retrieval processes. We addressed these questions by examining whether divergent thinking ability relates to interactions between semantic knowledge and different episodic memory processes. Participants completed the alternate uses task of divergent thinking, and completed a memory task in which they searched for target objects in schema-congruent or schema-incongruent locations within scenes. In a subsequent test, participants indicated where in each scene the target object had been located previously (i.e., spatial accuracy test), and provided confidence-based recognition memory judgments that indexed distinct episodic memory processes (i.e., recollection, familiarity, and unconscious memory) for the scenes. We found that higher divergent thinking ability-specifically in terms of the number of ideas generated-was related to (1) more of a benefit from recollection (a controlled process) and unconscious memory (a spontaneous process) on spatial accuracy and (2) beneficial differences in how semantic knowledge was combined with recollection and unconscious memory to influence spatial accuracy. In contrast, there were no effects with respect to familiarity (a spontaneous process). These findings indicate that divergent thinking is related to both controlled and spontaneous memory processes, and suggest that divergent thinking is related to the ability to flexibly combine semantic knowledge with episodic memory.
Collapse
Affiliation(s)
- Michelle M Ramey
- Department of Psychological Science, University of Arkansas, 203A Memorial Hall, Fayetteville, AR, 72701, USA.
| | - Darya L Zabelina
- Department of Psychological Science, University of Arkansas, 203A Memorial Hall, Fayetteville, AR, 72701, USA
| |
Collapse
|
2
|
Doidy F, Desaunay P, Rebillard C, Clochon P, Lambrechts A, Wantzen P, Guénolé F, Baleyte JM, Eustache F, Bowler DM, Lebreton K, Guillery-Girard B. How scene encoding affects memory discrimination: Analysing eye movements data using data driven methods. VISUAL COGNITION 2023. [DOI: 10.1080/13506285.2023.2188335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- F. Doidy
- Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - P. Desaunay
- Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
- Service de Psychiatrie de l’enfant et de l’adolescent, CHU de Caen, Caen, France
| | - C. Rebillard
- Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - P. Clochon
- Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - A. Lambrechts
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - P. Wantzen
- Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - F. Guénolé
- Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
- Service de Psychiatrie de l’enfant et de l’adolescent, CHU de Caen, Caen, France
| | - J. M. Baleyte
- Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
- Service de Psychiatrie de l’enfant et de l’adolescent, Centre Hospitalier Interuniversitaire de Créteil, Créteil, France
| | - F. Eustache
- Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - D. M. Bowler
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - K. Lebreton
- Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - B. Guillery-Girard
- Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| |
Collapse
|
3
|
Ramey MM, Henderson JM, Yonelinas AP. Eye movements dissociate between perceiving, sensing, and unconscious change detection in scenes. Psychon Bull Rev 2022; 29:2122-2132. [PMID: 35653039 PMCID: PMC11110961 DOI: 10.3758/s13423-022-02122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 11/08/2022]
Abstract
Detecting visual changes can be based on perceiving, whereby one can identify a specific detail that has changed, on sensing, whereby one knows that there is a change but is unable to identify what changed, or on unconscious change detection, whereby one is unaware of any change even though the change influences one's behavior. Prior work has indicated that the processes underlying these different types of change detection are functionally and neurally distinct, but the attentional mechanisms that are related to these different types of change detection remain largely unknown. In the current experiment, we examined eye movements during a change detection task in globally manipulated scenes, and participants indicated their change detection confidence on a scale that allowed us to isolate perceiving, sensing, and unconscious change detection. For perceiving-based change detection, but not sensing-based or unconscious change detection, participants were more likely to preferentially revisit highly changed scene regions across the first and second presentation of the scene (i.e., resampling). This increase in resampling started within 250 ms of the test scene onset, suggesting that the effect began within the first two fixations. In addition, changed scenes were related to more clustered (i.e., less dispersed) eye movements than unchanged scenes, particularly when the subjects were highly confident that no change had occurred - providing evidence for change detection outside of conscious awareness. The results indicate that perceiving, sensing, and unconscious change detection responses are related to partially distinct patterns of eye movements.
Collapse
Affiliation(s)
- Michelle M Ramey
- Department of Psychology, University of California, Davis, CA, USA.
- Center for Neuroscience, University of California, Davis, CA, USA.
- Center for Mind and Brain, University of California, Davis, CA, USA.
| | - John M Henderson
- Department of Psychology, University of California, Davis, CA, USA
- Center for Mind and Brain, University of California, Davis, CA, USA
| | - Andrew P Yonelinas
- Department of Psychology, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Ramey MM, Henderson JM, Yonelinas AP. Episodic memory processes modulate how schema knowledge is used in spatial memory decisions. Cognition 2022; 225:105111. [PMID: 35487103 PMCID: PMC11179179 DOI: 10.1016/j.cognition.2022.105111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022]
Abstract
Schema knowledge can dramatically affect how we encode and retrieve memories. Current models propose that schema information is combined with episodic memory at retrieval to influence memory decisions, but it is not known how the strength or type of episodic memory (i.e., unconscious memory versus familiarity versus recollection) influences the extent to which schema information is incorporated into memory decisions. To address this question, we had participants search for target objects in semantically expected (i.e., congruent) locations or in unusual (i.e., incongruent) locations within scenes. In a subsequent test, participants indicated where in each scene the target had been located previously, then provided confidence-based recognition memory judgments that indexed recollection, familiarity strength, and unconscious memory for the scenes. In both an initial online study (n = 133) and replication (n = 59), target location recall was more accurate for targets that had been located in schema-congruent rather than incongruent locations; importantly, this effect was strongest for new scenes, decreased with unconscious memory, decreased further with familiarity strength, and was eliminated entirely for recollected scenes. Moreover, when participants recollected an incongruent scene but did not correctly remember the target location, they were still biased away from congruent regions-suggesting that detrimental schema bias was suppressed in the presence of recollection even when precise target location information was not remembered. The results indicate that episodic memory modulates how schemas are used: Schema knowledge contributes to spatial memory judgments primarily when episodic memory fails to provide precise information, and recollection can override schema bias completely.
Collapse
Affiliation(s)
- Michelle M Ramey
- Department of Psychology, University of California, Davis, CA, USA; Center for Neuroscience, University of California, Davis, CA, USA; Center for Mind and Brain, University of California, Davis, CA, USA.
| | - John M Henderson
- Department of Psychology, University of California, Davis, CA, USA; Center for Mind and Brain, University of California, Davis, CA, USA
| | - Andrew P Yonelinas
- Department of Psychology, University of California, Davis, CA, USA; Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Rehrig G, Barker M, Peacock CE, Hayes TR, Henderson JM, Ferreira F. Look at what I can do: Object affordances guide visual attention while speakers describe potential actions. Atten Percept Psychophys 2022; 84:1583-1610. [PMID: 35484443 PMCID: PMC9246959 DOI: 10.3758/s13414-022-02467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 11/08/2022]
Abstract
As we act on the world around us, our eyes seek out objects we plan to interact with. A growing body of evidence suggests that overt visual attention selects objects in the environment that could be interacted with, even when the task precludes physical interaction. In previous work, objects that afford grasping interactions influenced attention when static scenes depicted reachable spaces, and attention was otherwise better explained by general informativeness. Because grasping is but one of many object interactions, previous work may have downplayed the influence of object affordances on attention. The current study investigated the relationship between overt visual attention and object affordances versus broadly construed semantic information in scenes as speakers describe or memorize scenes. In addition to meaning and grasp maps-which capture informativeness and grasping object affordances in scenes, respectively-we introduce interact maps, which capture affordances more broadly. In a mixed-effects analysis of 5 eyetracking experiments, we found that meaning predicted fixated locations in a general description task and during scene memorization. Grasp maps marginally predicted fixated locations during action description for scenes that depicted reachable spaces only. Interact maps predicted fixated regions in description experiments alone. Our findings suggest observers allocate attention to scene regions that could be readily interacted with when talking about the scene, while general informativeness preferentially guides attention when the task does not encourage careful consideration of objects in the scene. The current study suggests that the influence of object affordances on visual attention in scenes is mediated by task demands.
Collapse
Affiliation(s)
- Gwendolyn Rehrig
- Department of Psychology, University of California, Davis, Davis, CA, 95616, USA.
| | - Madison Barker
- Department of Psychology, University of California, Davis, Davis, CA, 95616, USA
| | - Candace E Peacock
- Department of Psychology and Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Taylor R Hayes
- Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - John M Henderson
- Department of Psychology and Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Fernanda Ferreira
- Department of Psychology, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
6
|
Ryan JD, Wynn JS, Shen K, Liu ZX. Aging changes the interactions between the oculomotor and memory systems. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:418-442. [PMID: 34856890 DOI: 10.1080/13825585.2021.2007841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The use of multi-modal approaches, particularly in conjunction with multivariate analytic techniques, can enrich models of cognition, brain function, and how they change with age. Recently, multivariate approaches have been applied to the study of eye movements in a manner akin to that of neural activity (i.e., pattern similarity). Here, we review the literature regarding multi-modal and/or multivariate approaches, with specific reference to the use of eyetracking to characterize age-related changes in memory. By applying multi-modal and multivariate approaches to the study of aging, research has shown that aging is characterized by moment-to-moment alterations in the amount and pattern of visual exploration, and by extension, alterations in the activity and function of the hippocampus and broader medial temporal lobe (MTL). These methodological advances suggest that age-related declines in the integrity of the memory system has consequences for oculomotor behavior in the moment, in a reciprocal fashion. Age-related changes in hippocampal and MTL structure and function may lead to an increase in, and change in the patterns of, visual exploration in an effort to upregulate the encoding of information. However, such visual exploration patterns may be non-optimal and actually reduce the amount and/or type of incoming information that is bound into a lasting memory representation. This research indicates that age-related cognitive impairments are considerably broader in scope than previously realized.
Collapse
Affiliation(s)
- Jennifer D Ryan
- Rotman Research Institute at Baycrest Health Sciences, Toronto, ON, Canada
- Departments of Psychology, Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jordana S Wynn
- Department of Psychology, Harvard University, Cambridge MA, USA
| | - Kelly Shen
- Rotman Research Institute at Baycrest Health Sciences, Toronto, ON, Canada
| | - Zhong-Xu Liu
- Department of Behavioral Sciences, University of Michigan-Dearborn, Dearborn MI, USA
| |
Collapse
|
7
|
Hayes TR, Henderson JM. Meaning maps detect the removal of local semantic scene content but deep saliency models do not. Atten Percept Psychophys 2022; 84:647-654. [PMID: 35138579 PMCID: PMC11128357 DOI: 10.3758/s13414-021-02395-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 11/08/2022]
Abstract
Meaning mapping uses human raters to estimate different semantic features in scenes, and has been a useful tool in demonstrating the important role semantics play in guiding attention. However, recent work has argued that meaning maps do not capture semantic content, but like deep learning models of scene attention, represent only semantically-neutral image features. In the present study, we directly tested this hypothesis using a diffeomorphic image transformation that is designed to remove the meaning of an image region while preserving its image features. Specifically, we tested whether meaning maps and three state-of-the-art deep learning models were sensitive to the loss of semantic content in this critical diffeomorphed scene region. The results were clear: meaning maps generated by human raters showed a large decrease in the diffeomorphed scene regions, while all three deep saliency models showed a moderate increase in the diffeomorphed scene regions. These results demonstrate that meaning maps reflect local semantic content in scenes while deep saliency models do something else. We conclude the meaning mapping approach is an effective tool for estimating semantic content in scenes.
Collapse
Affiliation(s)
- Taylor R Hayes
- Center for Mind and Brain, University of California, Davis, CA, USA.
| | - John M Henderson
- Center for Mind and Brain, University of California, Davis, CA, USA
- Department of Psychology, University of California, Davis, CA, USA
| |
Collapse
|
8
|
Henderson JM, Hayes TR, Peacock CE, Rehrig G. Meaning maps capture the density of local semantic features in scenes: A reply to Pedziwiatr, Kümmerer, Wallis, Bethge & Teufel (2021). Cognition 2021; 214:104742. [PMID: 33892912 PMCID: PMC11166323 DOI: 10.1016/j.cognition.2021.104742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Pedziwiatr, Kümmerer, Wallis, Bethge, & Teufel (2021) contend that Meaning Maps do not represent the spatial distribution of semantic features in scenes. We argue that Pesziwiatr et al. provide neither logical nor empirical support for that claim, and we conclude that Meaning Maps do what they were designed to do: represent the spatial distribution of meaning in scenes.
Collapse
Affiliation(s)
- John M Henderson
- Center for Mind and Brain, University of California, Davis, USA; Department of Psychology, University of California, Davis, USA.
| | - Taylor R Hayes
- Center for Mind and Brain, University of California, Davis, USA
| | - Candace E Peacock
- Center for Mind and Brain, University of California, Davis, USA; Department of Psychology, University of California, Davis, USA
| | | |
Collapse
|