1
|
Bein O, Niv Y. Schemas, reinforcement learning and the medial prefrontal cortex. Nat Rev Neurosci 2025:10.1038/s41583-024-00893-z. [PMID: 39775183 DOI: 10.1038/s41583-024-00893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Schemas are rich and complex knowledge structures about the typical unfolding of events in a context; for example, a schema of a dinner at a restaurant. In this Perspective, we suggest that reinforcement learning (RL), a computational theory of learning the structure of the world and relevant goal-oriented behaviour, underlies schema learning. We synthesize literature about schemas and RL to offer that three RL principles might govern the learning of schemas: learning via prediction errors, constructing hierarchical knowledge using hierarchical RL, and dimensionality reduction through learning a simplified and abstract representation of the world. We then suggest that the orbitomedial prefrontal cortex is involved in both schemas and RL due to its involvement in dimensionality reduction and in guiding memory reactivation through interactions with posterior brain regions. Last, we hypothesize that the amount of dimensionality reduction might underlie gradients of involvement along the ventral-dorsal and posterior-anterior axes of the orbitomedial prefrontal cortex. More specific and detailed representations might engage the ventral and posterior parts, whereas abstraction might shift representations towards the dorsal and anterior parts of the medial prefrontal cortex.
Collapse
Affiliation(s)
- Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| | - Yael Niv
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Psychology Department, Princeton University, Princeton, NJ, USA
| |
Collapse
|
2
|
Liu XL, Ranganath C, O'Reilly RC. A complementary learning systems model of how sleep moderates retrieval practice effects. Psychon Bull Rev 2024; 31:2022-2035. [PMID: 38530592 PMCID: PMC11543715 DOI: 10.3758/s13423-024-02489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2024] [Indexed: 03/28/2024]
Abstract
While many theories assume that sleep is critical in stabilizing and strengthening memories, our recent behavioral study (Liu & Ranganath, 2021, Psychonomic Bulletin & Review, 28[6], 2035-2044) suggests that sleep does not simply stabilize memories. Instead, it plays a more complex role, integrating information across two temporally distinct learning episodes. In the current study, we simulated the results of Liu and Ranganath (2021) using our biologically plausible computational model, TEACH, developed based on the complementary learning systems (CLS) framework. Our model suggests that when memories are activated during sleep, the reduced influence of temporal context establishes connections across temporally separated events through mutual training between the hippocampus and neocortex. In addition to providing a compelling mechanistic explanation for the selective effect of sleep, this model offers new examples of the diverse ways in which the cortex and hippocampus can interact during learning.
Collapse
Affiliation(s)
- Xiaonan L Liu
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Charan Ranganath
- Department of Psychology, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Randall C O'Reilly
- Department of Psychology, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
- Department of Computer Science, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Li M, Haihambo N, Bylemans T, Ma Q, Heleven E, Baeken C, Baetens K, Deroost N, Van Overwalle F. Create your own path: social cerebellum in sequence-based self-guided navigation. Soc Cogn Affect Neurosci 2024; 19:nsae015. [PMID: 38554289 PMCID: PMC10981473 DOI: 10.1093/scan/nsae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 04/01/2024] Open
Abstract
Spatial trajectory planning and execution in a social context play a vital role in our daily lives. To study this process, participants completed a goal-directed task involving either observing a sequence of preferred goals and self-planning a trajectory (Self Sequencing) or observing and reproducing the entire trajectory taken by others (Other Sequencing). The results indicated that in the observation phase, witnessing entire trajectories created by others (Other Sequencing) recruited cerebellar mentalizing areas (Crus 2 and 1) and cortical mentalizing areas in the precuneus, ventral and dorsal medial prefrontal cortex and temporo-parietal junction more than merely observing several goals (Self Sequencing). In the production phase, generating a trajectory by oneself (Self Sequencing) activated Crus 1 more than merely reproducing the observed trajectories from others (Other Sequencing). Additionally, self-guided observation and planning (Self Sequencing) activated the cerebellar lobules IV and VIII more than Other Sequencing. Control conditions involving non-social objects and non-sequential conditions where the trajectory did not have to be (re)produced revealed no differences with the main Self and Other Sequencing conditions, suggesting limited social and sequential specificity. These findings provide insights into the neural mechanisms underlying trajectory observation and production by the self or others during social navigation.
Collapse
Affiliation(s)
- Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Tom Bylemans
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Qianying Ma
- Language Pathology and Brain Science MEG Lab, School of Communication Sciences, Beijing Language and Culture University, Beijing 100083, China
| | - Elien Heleven
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Chris Baeken
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent 9000, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels 1090, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, the Netherlands
| | - Kris Baetens
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Natacha Deroost
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
4
|
Haihambo N, Ma Q, Baetens K, Bylemans T, Heleven E, Baeken C, Deroost N, Van Overwalle F. Two is company: The posterior cerebellum and sequencing for pairs versus individuals during social preference prediction. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1482-1499. [PMID: 37821755 PMCID: PMC10684703 DOI: 10.3758/s13415-023-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Previous studies have identified that the posterior cerebellum, which plays a role in processing temporal sequences in social events, is consistently and robustly activated when we predict future action sequences based on personality traits (Haihambo Haihambo et al. Social Cognitive and Affective Neuroscience 17(2), 241-251, 2022) and intentions (Haihambo et al. Cognitive, Affective, and Behavioral Neuroscience 23(2), 323-339, 2023). In the current study, we investigated whether these cerebellar areas are selectively activated when we predict the sequences of (inter)actions based on protagonists' preferences. For the first time, we also compared predictions based on person-to-person interactions or single person activities. Participants were instructed to predict actions of one single or two interactive protagonists by selecting them and putting them in the correct chronological order after being informed about one of the protagonists' preferences. These conditions were contrasted against nonsocial (involving objects) and nonsequencing (prediction without generating a sequence) control conditions. Results showed that the posterior cerebellar Crus 1, Crus 2, and lobule IX, alongside the temporoparietal junction and dorsal medial prefrontal cortex were more robustly activated when predicting sequences of behavior of two interactive protagonists, compared to one single protagonist and nonsocial objects. Sequence predictions based on one single protagonist recruited lobule IX activation in the cerebellum and more ventral areas of the medial prefrontal cortex compared to a nonsocial object. These cerebellar activations were not found when making predictions without sequences. Together, these findings suggest that cerebellar mentalizing areas are involved in social mentalizing processes which require temporal sequencing, especially when they involve social interactions, rather than behaviors of single persons.
Collapse
Affiliation(s)
- Naem Haihambo
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Qianying Ma
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Kris Baetens
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Tom Bylemans
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Elien Heleven
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Chris Baeken
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
- Department of Psychiatry, University Hospital UZBrussel, Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Natacha Deroost
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| |
Collapse
|
5
|
Lee SLT, Timmerman B, Pflomm R, Roy N, Kumar M, Markus EJ. Sequential order spatial memory in male rats: Characteristics and impact of medial prefrontal cortex and hippocampus disruption. Neurobiol Learn Mem 2023; 200:107739. [PMID: 36822465 DOI: 10.1016/j.nlm.2023.107739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/25/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Remembering an experience entails linking what happened, where the event transpired, and when it occurred. Most rodent hippocampal studies involve tests of spatial memory, but fewer investigate temporal and sequential order memory. Here we provide a demonstration of rats learning an aversive sequential order task using a radial arm water maze. Male rats learned a fixed sequence of up to seven spatial locations, with each decision session separated by a temporal delay. Rats relied on visuospatial cues and the number of times they had entered the maze for a given day in order to successfully perform the task. Behavioral patterns during asymptotic performance showed similarities to the serial-position effect, especially with regards to faster first choice latency. Rats at asymptotic performance were implanted with bilateral cannula in medial prefrontal cortex, dorsal, and ventral hippocampus. After re-training, we injected muscimol to temporarily disrupt targeted brain regions. While control rats made prospective errors, rats with mPFC muscimol exhibited more retrospective errors. Rats with hippocampal muscimol no longer exhibited a prospective bias and were at chance levels in their error choices. Taken together, our results suggest disruption of mPFC, but not the hippocampus, produced an error choice bias during an aversive sequential order spatial processing task.
Collapse
Affiliation(s)
- Shang Lin Tommy Lee
- Division of Behavioral Neuroscience, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Brian Timmerman
- Division of Behavioral Neuroscience, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Riley Pflomm
- Division of Behavioral Neuroscience, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Nikita Roy
- Division of Behavioral Neuroscience, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Mahathi Kumar
- Division of Behavioral Neuroscience, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Etan J Markus
- Division of Behavioral Neuroscience, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
6
|
Zeltser G, Sukhanov IM, Nevorotin AJ. MMM - The molecular model of memory. J Theor Biol 2022; 549:111219. [PMID: 35810778 DOI: 10.1016/j.jtbi.2022.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
Identifying mechanisms underlying neurons ability to process information including acquisition, storage, and retrieval plays an important role in the understanding of the different types of memory, pathogenesis of many neurological diseases affecting memory and therapeutic target discovery. However, the traditional understanding of the mechanisms of memory associated with the electrical signals having a unique combination of frequency and amplitude does not answer the question how the memories can survive for life-long periods of time, while exposed to synaptic noise. Recent evidence suggests that, apart from neuronal circuits, a diversity of the molecular memory (MM) carriers, are essential for memory performance. The molecular model of memory (MMM) is proposed, according to which each item of incoming information (the elementary memory item - eMI) is encoded by both circuitries, with the unique for a given MI electrical parameters, and also the MM carriers, unique by its molecular composition. While operating as the carriers of incoming information, the MMs, are functioning within the neuron plasma membrane. Inactive (latent) initially, during acquisition each of the eMIs is activated to become a virtual copy of some real fact or events bygone. This activation is accompanied by the considerable remodeling of the MM molecule associated with the resonance effect.
Collapse
Affiliation(s)
| | - Ilya M Sukhanov
- Lab. Behavioral Pharmacology, Dept. Psychopharmacology, Valdman Institute of Pharmacology, I.P. Pavlov Medical University, Leo Tolstoi Street 6/8, St. Petersburg 197022, The Russian Federation
| | - Alexey J Nevorotin
- Laboratory of Electron Microscopy, I.P. Pavlov Medical University, Leo Tolstoi Street 6/8, St. Petersburg 197022, The Russian Federation
| |
Collapse
|
7
|
Shridhar S, Singh VP, Bhatt R, Kundu S, Balaji J. A new paradigm for investigating temporal order memory shows higher order associations are present in recent but not in remote retrieval. Exp Brain Res 2022; 240:611-629. [PMID: 34988597 DOI: 10.1007/s00221-021-06282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022]
Abstract
Memory of a sequence of distinct events requires encoding the temporal order as well as the intervals that separates these events. In this study, using order-place association task where the animal learns to associate the location of the food pellet to the order of entry into the event arena, we probe the nature of temporal order memory in mice. In our task, individual trials become distinct events, as the animal is trained to form a unique association between entry order and a correct location. The inter-trial intervals (> 30 min) are chosen deliberately to minimize the inputs from working memory. We develop this paradigm initially using four order-place associates and later extend it to five paired associates. Our results show that animals not only acquire these explicit (entry order to place) associations but also higher order associations that can only be inferred implicitly (temporal relation between the events) from the temporal order of these events. As an indicator of such higher order learning during the probe trial, the mice exhibit predominantly prospective errors that decline proportionally with temporal distance. On the other hand, prior to acquiring the sequence, the retrospective errors are dominant. In addition, we also tested the nature of such acquisitions when temporal order CS is presented along with flavored pellet as a compound stimulus comprising of order and flavor both simultaneously being paired with location. Results from these experiments indicate that the animal learns both order-place and flavor-place associations. Comparing with pure order-place training, we find that the additional flavor stimulus in a compound training paradigm did not interfere with the ability of the animals to acquire the order-place associations. When tested remotely, pure order-place associations could be retrieved only after a reminder training. Further higher order associations representing the temporal relationship between the events is markedly absent in the remote time.
Collapse
Affiliation(s)
- Shruti Shridhar
- Center for Neurosciences, Indian Institute of Science, Bangalore, 560012, India
| | - Vikram Pal Singh
- Center for Neurosciences, Indian Institute of Science, Bangalore, 560012, India
| | - Richa Bhatt
- Center for Neurosciences, Indian Institute of Science, Bangalore, 560012, India
| | - Sankhanava Kundu
- Center for Neurosciences, Indian Institute of Science, Bangalore, 560012, India
| | - J Balaji
- Center for Neurosciences, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|