1
|
Lee TW, Li CSR, Tramontano G. Tripod transcranial alternating current stimulation at 5-Hz to alleviate anxiety symptoms: A preliminary report. J Affect Disord 2024; 360:156-162. [PMID: 38821364 DOI: 10.1016/j.jad.2024.05.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
INTRODUCTION One of the most common applications of transcranial electrical stimulation (tES) at low current intensity is to induce a relaxed state or reduce anxiety. With technical advancement, different waveforms, montages, and parameters can be incorporated into the treatment regimen. We developed a novel protocol to treat individuals with anxiety disorders by transcranial alternating current stimulation (tACS). METHODS A total of 27 individuals with anxiety disorders underwent tACS treatment for 12 sessions, with each session lasting 25 min. tACS at 5 Hz was applied to F4 (1.0 mA), P4 (1.0 mA), and T8 (2.0 mA) EEG lead positions (tripod), with sinewave oscillation between T8 and F4/P4. We evaluated the primary and secondary outcomes using the Beck Anxiety Inventory (BAI) and neuropsychological assessments. RESULTS Of the 27 patients, 19 (70.4 %) experienced a reduction in symptom severity >50 %, with an average reduction of BAI 58.5 %. All reported side effects were mild, with itching or tingling being the most common complaint. No significant differences were noted in attention, linguistic working memory, visuospatial working memory, or long-term memory in neuropsychological assessments. CONCLUSION The results suggest the potential of this novel tripod tACS design as a rapid anxiety alleviator and the importance of a clinical trial to verify its efficacy.
Collapse
Affiliation(s)
- Tien-Wen Lee
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, NJ 07856, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Wu Tsai Institute, Yale University, New Haven, CT 06520, USA.
| | - Gerald Tramontano
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, NJ 07856, USA.
| |
Collapse
|
2
|
Maksimenko V, Kuc A, Frolov N, Kurkin S, Hramov A. Effect of repetition on the behavioral and neuronal responses to ambiguous Necker cube images. Sci Rep 2021; 11:3454. [PMID: 33568692 PMCID: PMC7876129 DOI: 10.1038/s41598-021-82688-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023] Open
Abstract
A repeated presentation of an item facilitates its subsequent detection or identification, a phenomenon of priming. Priming may involve different types of memory and attention and affects neural activity in various brain regions. Here we instructed participants to report on the orientation of repeatedly presented Necker cubes with high (HA) and low (LA) ambiguity. Manipulating the contrast of internal edges, we varied the ambiguity and orientation of the cube. We tested how both the repeated orientation (referred to as a stimulus factor) and the repeated ambiguity (referred to as a top-down factor) modulated neuronal and behavioral response. On the behavioral level, we observed higher speed and correctness of the response to the HA stimulus following the HA stimulus and a faster response to the right-oriented LA stimulus following the right-oriented stimulus. On the neuronal level, the prestimulus theta-band power grew for the repeated HA stimulus, indicating activation of the neural networks related to attention and uncertainty processing. The repeated HA stimulus enhanced hippocampal activation after stimulus onset. The right-oriented LA stimulus following the right-oriented stimulus enhanced activity in the precuneus and the left frontal gyri before the behavioral response. During the repeated HA stimulus processing, enhanced hippocampal activation may evidence retrieving information to disambiguate the stimulus and define its orientation. Increased activation of the precuneus and the left prefrontal cortex before responding to the right-oriented LA stimulus following the right-oriented stimulus may indicate a match between their orientations. Finally, we observed increased hippocampal activation after responding to the stimuli, reflecting the encoding stimulus features in memory. In line with the large body of works relating the hippocampal activity with episodic memory, we suppose that this type of memory may subserve the priming effect during the repeated presentation of ambiguous images.
Collapse
Affiliation(s)
- Vladimir Maksimenko
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500 ,grid.412420.10000 0000 8546 8761Saratov State Medical University, 112 Bolshaya Kazachia str., Saratov, Russia 410012
| | - Alexander Kuc
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500
| | - Nikita Frolov
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500
| | - Semen Kurkin
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500
| | - Alexander Hramov
- grid.465471.50000 0004 4910 8311Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, Republic of Tatarstan Russia 420500 ,grid.412420.10000 0000 8546 8761Saratov State Medical University, 112 Bolshaya Kazachia str., Saratov, Russia 410012
| |
Collapse
|
3
|
Hampel H, Lista S, Teipel SJ, Garaci F, Nisticò R, Blennow K, Zetterberg H, Bertram L, Duyckaerts C, Bakardjian H, Drzezga A, Colliot O, Epelbaum S, Broich K, Lehéricy S, Brice A, Khachaturian ZS, Aisen PS, Dubois B. Perspective on future role of biological markers in clinical therapy trials of Alzheimer's disease: a long-range point of view beyond 2020. Biochem Pharmacol 2013; 88:426-49. [PMID: 24275164 DOI: 10.1016/j.bcp.2013.11.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/13/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
Recent advances in understanding the molecular mechanisms underlying various paths toward the pathogenesis of Alzheimer's disease (AD) has begun to provide new insight for interventions to modify disease progression. The evolving knowledge gained from multidisciplinary basic research has begun to identify new concepts for treatments and distinct classes of therapeutic targets; as well as putative disease-modifying compounds that are now being tested in clinical trials. There is a mounting consensus that such disease modifying compounds and/or interventions are more likely to be effectively administered as early as possible in the cascade of pathogenic processes preceding and underlying the clinical expression of AD. The budding sentiment is that "treatments" need to be applied before various molecular mechanisms converge into an irreversible pathway leading to morphological, metabolic and functional alterations that characterize the pathophysiology of AD. In light of this, biological indicators of pathophysiological mechanisms are desired to chart and detect AD throughout the asymptomatic early molecular stages into the prodromal and early dementia phase. A major conceptual development in the clinical AD research field was the recent proposal of new diagnostic criteria, which specifically incorporate the use of biomarkers as defining criteria for preclinical stages of AD. This paradigm shift in AD definition, conceptualization, operationalization, detection and diagnosis represents novel fundamental opportunities for the modification of interventional trial designs. This perspective summarizes not only present knowledge regarding biological markers but also unresolved questions on the status of surrogate indicators for detection of the disease in asymptomatic people and diagnosis of AD.
Collapse
Affiliation(s)
- Harald Hampel
- Université Pierre et Marie Curie, Département de Neurologie, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Pavillon François Lhermitte, Hôpital de la Salpêtrière, Paris, France.
| | - Simone Lista
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany.
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Francesco Garaci
- Department of Diagnostic Imaging, Molecular Imaging, Interventional Radiology, and Radiotherapy, University of Rome "Tor Vergata", Rome, Italy; IRCCS San Raffaele Pisana, Rome and San Raffaele Cassino, Cassino, Italy
| | - Robert Nisticò
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy; IRCSS Santa Lucia Foundation, Rome, Italy
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; University College London Institute of Neurology, Queen Square, London, UK
| | - Lars Bertram
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Charles Duyckaerts
- Laboratoire de Neuropathologie Raymond-Escourolle, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Hovagim Bakardjian
- IM2A - Institute of Memory and Alzheimer's Disease, Paris, France; IHU-A-ICM - Paris Institute of Translational Neurosciences Pitié-Salpêtrière University Hospital, Paris, France
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany
| | - Olivier Colliot
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, UMR-S975 Paris, France; Inserm, U975, Paris, France; CNRS, UMR 7225, Paris, France; ICM - Institut du Cerveau et de la Moelle Épinière, Paris, France; INRIA, Aramis Team, Centre de Recherche Paris-Rocquencourt, France
| | - Stéphane Epelbaum
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié Salpêtrière, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Karl Broich
- Federal Institute of Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Stéphane Lehéricy
- IHU-A-ICM - Paris Institute of Translational Neurosciences Pitié-Salpêtrière University Hospital, Paris, France; Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, UMR-S975 Paris, France; Inserm, U975, Paris, France; CNRS, UMR 7225, Paris, France; ICM - Institut du Cerveau et de la Moelle Épinière, Paris, France
| | - Alexis Brice
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, UMR-S975 Paris, France; Inserm, U975, Paris, France; CNRS, UMR 7225, Paris, France; ICM - Institut du Cerveau et de la Moelle Épinière, Paris, France; AP-HP, Hôpital de la Salpêtrière, Département de Génétique et Cytogénétique, Paris, France
| | | | - Paul S Aisen
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié Salpêtrière, Paris, France; Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
4
|
Teipel SJ, Grothe M, Lista S, Toschi N, Garaci FG, Hampel H. Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease. Med Clin North Am 2013; 97:399-424. [PMID: 23642578 DOI: 10.1016/j.mcna.2012.12.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hippocampus volumetry currently is the best-established imaging biomarker for AD. However, the effect of multicenter acquisition on measurements of hippocampus volume needs to be explicitly considered when it is applied in large clinical trials, for example by using mixed-effects models to take the clustering of data within centers into account. The marker needs further validation in respect of the underlying neurobiological substrate and potential confounds such as vascular disease, inflammation, hydrocephalus, and alcoholism, and with regard to clinical outcomes such as cognition but also to demographic and socioeconomic outcomes such as mortality and institutionalization. The use of hippocampus volumetry for risk stratification of predementia study samples will further increase with the availability of automated measurement approaches. An important step in this respect will be the development of a standard hippocampus tracing protocol that harmonizes the large range of presently available manual protocols. In the near future, regionally differentiated automated methods will become available together with an appropriate statistical model, such as multivariate analysis of deformation fields, or techniques such as cortical-thickness measurements that yield a meaningful metrics for the detection of treatment effects. More advanced imaging protocols, including DTI, DSI, and functional MRI, are presently being used in monocenter and first multicenter studies. In the future these techniques will be relevant for the risk stratification in phase IIa type studies (small proof-of-concept trials). By contrast, the application of the broader established structural imaging biomarkers, such as hippocampus volume, for risk stratification and as surrogate end point is already today part of many clinical trial protocols. However, clinical care will also be affected by these new technologies. Radiologic expert centers already offer “dementia screening” for well-off middle-aged people who undergo an MRI scan with subsequent automated, typically VBM-based analysis, and determination of z-score deviation from a matched control cohort. Next-generation scanner software will likely include radiologic expert systems for automated segmentation, deformation-based morphometry, and multivariate analysis of anatomic MRI scans for the detection of a typical AD pattern. As these developments will start to change medical practice, first for selected subject groups that can afford this type of screening but later eventually also for other cohorts, clinicians must become aware of the potentials and limitations of these technologies. It is decidedly unclear to date how a middle-aged cognitively intact subject with a seemingly AD-positive MRI scan should be clinically advised. There is no evidence for individual risk prediction and even less for specific treatments. Thus, the development of preclinical diagnostic imaging poses not only technical but also ethical problems that must be critically discussed on the basis of profound knowledge. From a neurobiological point of view, the main determinants of cognitive impairment in AD are the density of synapses and neurons in distributed cortical and subcortical networks. MRI-based measures of regional gray matter volume and associated multivariate analysis techniques of regional interactions of gray matter densities provide insight into the onset and temporal dynamics of cortical atrophy as a close proxy for regional neuronal loss and a basis of functional impairment in specific neuronal networks. From the clinical point of view, clinicians must bear in mind that patients do not suffer from hippocampus atrophy or disconnection but from memory impairment, and that dementia screening in asymptomatic subjects should not be used outside of clinical studies.
Collapse
|
5
|
Neural correlates of virtual route recognition in congenital blindness. Proc Natl Acad Sci U S A 2010; 107:12716-21. [PMID: 20616025 DOI: 10.1073/pnas.1006199107] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite the importance of vision for spatial navigation, blind subjects retain the ability to represent spatial information and to move independently in space to localize and reach targets. However, the neural correlates of navigation in subjects lacking vision remain elusive. We therefore used functional MRI (fMRI) to explore the cortical network underlying successful navigation in blind subjects. We first trained congenitally blind and blindfolded sighted control subjects to perform a virtual navigation task with the tongue display unit (TDU), a tactile-to-vision sensory substitution device that translates a visual image into electrotactile stimulation applied to the tongue. After training, participants repeated the navigation task during fMRI. Although both groups successfully learned to use the TDU in the virtual navigation task, the brain activation patterns showed substantial differences. Blind but not blindfolded sighted control subjects activated the parahippocampus and visual cortex during navigation, areas that are recruited during topographical learning and spatial representation in sighted subjects. When the navigation task was performed under full vision in a second group of sighted participants, the activation pattern strongly resembled the one obtained in the blind when using the TDU. This suggests that in the absence of vision, cross-modal plasticity permits the recruitment of the same cortical network used for spatial navigation tasks in sighted subjects.
Collapse
|
6
|
Widmann CN, Beinhoff U, Riepe MW. Everyday memory deficits in very mild Alzheimer's disease. Neurobiol Aging 2010; 33:297-303. [PMID: 20392540 DOI: 10.1016/j.neurobiolaging.2010.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 02/01/2010] [Accepted: 03/18/2010] [Indexed: 11/30/2022]
Abstract
Memory complaints of patients sometimes are not verified via standard cognitive testing. Acquisition of information in everyday life requires memorization in complex three-dimensional environments. The authors mimicked this with a photorealistic virtual environment (VE). Memory for verbal material and spatial scenery was tested in healthy controls (HC) and patients with mild Alzheimer's disease (AD); mini-mental state evaluation (MMSE) 25.7 ± 1.8 (mean ± standard deviation). The number of memorized items increased to 90% in both classical list learning and for items memorized in VE in HC. In contrast, only 40% of items were recalled in list learning and 20% in VE in AD patients. Unlike the gender difference favoring female HC on list learning, performance was alike for both genders in VE. We conclude that verbal learning abilities in healthy elderly subjects are alike in standard settings and under virtual reality conditions. In AD patients memory deficits that are relevant to everyday life yet not detectable with list learning are unmasked in virtual reality. In future, this may aid objective appraisal of interventions with regard to their everyday relevance.
Collapse
Affiliation(s)
- Catherine N Widmann
- Department of Psychiatry, Mental Health and Old Age Psychiatry, Charité Medical University, Berlin, Germany
| | | | | |
Collapse
|
7
|
Abstract
A motor component is pre-requisite to any communicative act as one must inherently move to communicate. To learn to make a communicative act, the brain must be able to dynamically associate arbitrary percepts to the neural substrate underlying the pre-requisite motor activity. We aimed to investigate whether brain regions involved in complex gestures (ventral pre-motor cortex, Brodmann Area 44) were involved in mediating association between novel abstract auditory stimuli and novel gestural movements. In a functional resonance imaging (fMRI) study we asked participants to learn associations between previously unrelated novel sounds and meaningless gestures inside the scanner. We use functional connectivity analysis to eliminate the often present confound of ‘strategic covert naming’ when dealing with BA44 and to rule out effects of non-specific reductions in signal. Brodmann Area 44, a region incorporating Broca's region showed strong, bilateral, negative correlation of BOLD (blood oxygen level dependent) response with learning of sound-action associations during data acquisition. Left-inferior-parietal-lobule (l-IPL) and bilateral loci in and around visual area V5, right-orbital-frontal-gyrus, right-hippocampus, left-para-hippocampus, right-head-of-caudate, right-insula and left-lingual-gyrus also showed decreases in BOLD response with learning. Concurrent with these decreases in BOLD response, an increasing connectivity between areas of the imaged network as well as the right-middle-frontal-gyrus with rising learning performance was revealed by a psychophysiological interaction (PPI) analysis. The increasing connectivity therefore occurs within an increasingly energy efficient network as learning proceeds. Strongest learning related connectivity between regions was found when analysing BA44 and l-IPL seeds. The results clearly show that BA44 and l-IPL is dynamically involved in linking gesture and sound and therefore provides evidence that one of the mechanisms required for the evolution of human communication is found within these motor regions.
Collapse
|
8
|
Lange-Asschenfeldt C, Lohmann P, Riepe MW. Spatial performance in a complex maze is associated with persistent long-term potentiation enhancement in mouse hippocampal slices at early training stages. Neuroscience 2007; 147:318-24. [PMID: 17533119 DOI: 10.1016/j.neuroscience.2007.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 03/21/2007] [Accepted: 04/11/2007] [Indexed: 11/19/2022]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are principal reflections of synaptic plasticity that have been implicated in learning and memory. We have previously shown that spatial learning in a newly validated complex maze is accompanied by depression of hippocampal CA1 synaptic activity in hippocampal slices of trained mice ("behavioral LTD"). In the present study, we investigated whether behavioral LTD is accompanied by alterations of subsequent LTP induced by high-frequency stimulation (HFS). Moreover, we were interested in the time course of such alterations in relation to training stage. Animals underwent 1, 2, and 8 days of spatial training in the complex maze, respectively. Hippocampal slices were taken 24 h after the last training session. We found a simultaneous decrease of basal synaptic response and increase of HFS induced LTP magnitude compared with slices of untrained animals. Synaptic plasticity was not influenced by repeated running wheel exercise in an additional control group without spatial learning. The mentioned alterations occurred already after day 2 of maze exploration parallel to the most pronounced improvement of behavioral performance but did not change thereafter until day 8 despite further learning progress. They were also found when animals were trained for 2 days and kept at rest for a subsequent 6 days. In conclusion, spatial learning may be reflected by distinct and persistent measurable alterations of synaptic plasticity in hippocampal CA1 neurons at early training stages.
Collapse
Affiliation(s)
- C Lange-Asschenfeldt
- Department of Psychiatry and Psychotherapy, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | | | | |
Collapse
|
9
|
Iaria G, Chen JK, Guariglia C, Ptito A, Petrides M. Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. Eur J Neurosci 2007; 25:890-9. [PMID: 17298595 DOI: 10.1111/j.1460-9568.2007.05371.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to orientate within familiar environments relies on the formation and use of a mental representation of the environment, namely a cognitive map. Neuropsychological and neuroimaging studies suggest that the retrosplenial and hippocampal brain regions are involved in topographical orientation. We combined functional magnetic resonance imaging with a virtual-reality paradigm to investigate the functional interaction of the hippocampus and retrosplenial cortex during the formation and utilization of cognitive maps by human subjects. We found that the anterior hippocampus is involved during the formation of the cognitive map, while the posterior hippocampus is involved when using it. In conjunction with the hippocampus, the retrosplenial cortex was active during both the formation and the use of the cognitive map. In accordance with earlier studies in non-human animals, these findings suggest that, while navigating within the environment, the retrosplenial cortex complements the hippocampal contribution to topographical orientation by updating the individual's location as the frame of reference changes.
Collapse
Affiliation(s)
- Giuseppe Iaria
- Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada, H3A 2B4.
| | | | | | | | | |
Collapse
|
10
|
Li L, Chen S, Liu J, Zhang J, He Z, Lin X. Magnetic resonance imaging and magnetic resonance spectroscopy study of deficits in hippocampal structure in fire victims with recent-onset posttraumatic stress disorder. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2006; 51:431-7. [PMID: 16838824 DOI: 10.1177/070674370605100704] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore hippocampal structural abnormalities in fire victims with recent-onset posttraumatic stress disorder (PTSD). METHOD We compared 12 patients with recent-onset PTSD diagnosed according to DSM-IV criteria 6 to 8 months after a major fire with 12 individuals without PTSD who were victims of the same fire accident. Voxel-based morphometry (VBM) and magnetic resonance spectroscopy (MRS) were combined to examine hippocampal structural abnormalities in patients with recent-onset PTSD. RESULTS Results of VBM showed that the grey matter density of the left hippocampus was lower in the group with PTSD than it was in the group without PTSD. Results of MRS showed that the ratio of N-acetyl asparate and creatine in the left hippocampus was significantly lower in patients with PTSD than in control subjects. CONCLUSION Patients with recent-onset PTSD had hippocampal structural abnormalities.
Collapse
Affiliation(s)
- Lingjiang Li
- Mental Health Institute, The Second Xiangya Hospital, Central South University Changsha, Hunan, PR China
| | | | | | | | | | | |
Collapse
|
11
|
Wolbers T, Büchel C. Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. J Neurosci 2006; 25:3333-40. [PMID: 15800188 PMCID: PMC6724902 DOI: 10.1523/jneurosci.4705-04.2005] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During everyday navigation, humans encounter complex environments predominantly from a first-person perspective. Behavioral evidence suggests that these perceptual experiences can be used not only to acquire route knowledge but also to directly assemble map-like survey representations. Most studies of human navigation focus on the retrieval of previously learned environments, and the neural foundations of integrating sequential views into a coherent representation are not yet fully understood. We therefore used our recently introduced virtual-reality paradigm, which provides accuracy and reaction-time measurements precisely indicating the emergence of survey knowledge, and functional magnetic resonance imaging while participants repeatedly encoded a complex environment from a first-person ground-level perspective. Before the experiment, we gave specific instructions to induce survey learning, which, based on the clear evidence for emerging survey knowledge in the behavioral data from 11 participants, proved successful. Neuroimaging data revealed increasing activation across sessions only in bilateral retrosplenial cortices, thus paralleling behavioral measures of map expertise. In contrast, hippocampal activation did not follow absolute performance but rather reflected the amount of knowledge acquired in a given session. In other words, hippocampal activation was most prominent during the initial learning phase and decayed after performance had approached ceiling level. We therefore conclude that, during navigational learning, retrosplenial areas mainly serve to integrate egocentric spatial information with cues about self-motion, whereas the hippocampus is needed to incorporate new information into an emerging memory representation.
Collapse
Affiliation(s)
- Thomas Wolbers
- NeuroImage Nord, Department of Neurology, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | | |
Collapse
|
12
|
Trivedi MA, Schmitz TW, Ries ML, Torgerson BM, Sager MA, Hermann BP, Asthana S, Johnson SC. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer's disease: a cross-sectional study. BMC Med 2006; 4:1. [PMID: 16412236 PMCID: PMC1373642 DOI: 10.1186/1741-7015-4-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 01/13/2006] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The presence of the apolipoprotein E (APOE) epsilon4 allele is a major risk factor for the development of Alzheimer's disease (AD), and has been associated with metabolic brain changes several years before the onset of typical AD symptoms. Functional MRI (fMRI) is a brain imaging technique that has been used to demonstrate hippocampal activation during measurement of episodic encoding, but the effect of the epsilon4 allele on hippocampal activation has not been firmly established. METHODS The present study examined the effects of APOE genotype on brain activation patterns in the medial temporal lobe (MTL) during an episodic encoding task using a well-characterized novel item versus familiar item contrast in cognitively normal, middle-aged (mean = 54 years) individuals who had at least one parent with AD. RESULTS We found that epsilon3/4 heterozygotes displayed reduced activation in the hippocampus and MTL compared to epsilon3/3 homozygotes. There were no significant differences between the groups in age, education or neuropsychological functioning, suggesting that the altered brain activation seen in epsilon3/4 heterozygotes was not associated with impaired cognitive function. We also found that participants' ability to encode information on a neuropsychological measure of learning was associated with greater activation in the anterior MTL in the epsilon3/3 homozygotes, but not in the epsilon3/4 heterozygotes. CONCLUSION Together with previous studies reporting reduced glucose metabolism and AD-related neuropathology, this study provides convergent validity for the idea that the MTL exhibits functional decline associated with the APOE epsilon4 allele. Importantly, these changes were detected in the absence of meaningful neuropsychological differences between the groups. A focus of ongoing work in this laboratory is to determine if these findings are predictive of subsequent cognitive decline.
Collapse
Affiliation(s)
- Mehul A Trivedi
- Geriatric Research Education and Clinical Center, William S. Middleton Veteran's Affairs Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA
| | - Taylor W Schmitz
- Geriatric Research Education and Clinical Center, William S. Middleton Veteran's Affairs Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA
| | - Michele L Ries
- Geriatric Research Education and Clinical Center, William S. Middleton Veteran's Affairs Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA
| | - Britta M Torgerson
- Geriatric Research Education and Clinical Center, William S. Middleton Veteran's Affairs Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA
| | - Mark A Sager
- Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA
| | - Bruce P Hermann
- Department of Neurology, University of Wisconsin Medical School, Madison, WI, USA
| | - Sanjay Asthana
- Geriatric Research Education and Clinical Center, William S. Middleton Veteran's Affairs Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center, William S. Middleton Veteran's Affairs Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin Medical School, Madison, WI, USA
| |
Collapse
|
13
|
Grön G, Brandenburg I, Wunderlich AP, Riepe MW. Inhibition of hippocampal function in mild cognitive impairment: targeting the cholinergic hypothesis. Neurobiol Aging 2006; 27:78-87. [PMID: 16298243 DOI: 10.1016/j.neurobiolaging.2004.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 11/23/2004] [Accepted: 12/01/2004] [Indexed: 10/25/2022]
Abstract
Mild cognitive impairment (MCI) is a condition with an increased risk of developing Alzheimer's disease. Chief complaint and diagnostic criterion in subjects with mild cognitive impairment is memory failure. We hypothesized that cholinergic malfunction may underlie memory impairment in these subjects and applied a low dosage of an acetylcholinesterase inhibitor and modulator of nicotinic acetylcholine receptors, galantamine (4 mg bid), for 7 days. We used neuropsychological tests to investigate attention, cognitive flexibility, verbal and visual short-term and working memory, susceptibility to interference and episodic memory and functional magnetic resonance imaging to assess spatial navigation both prior to and after treatment. Late episodic learning and delayed recall improved on treatment as did recruitment of the hippocampal region during spatial navigation. Performance in all other neuropsychological measures remained unchanged. We show that an increase of cholinergic neurotransmission in subjects with MCI specifically improves hippocampal function and thus that a cholinergic deficit is functionally relevant in subjects with MCI. Malfunction of the cholinergic system may be tackled pharmacologically via the inhibition of acetylcholinesterase even when the impairment is slight.
Collapse
Affiliation(s)
- G Grön
- Memory Clinic, Department of Neurology, University of Ulm, Steinhoevelstr. 1, 89075 Ulm, Germany
| | | | | | | |
Collapse
|
14
|
Grön G, Kirstein M, Thielscher A, Riepe MW, Spitzer M. Cholinergic enhancement of episodic memory in healthy young adults. Psychopharmacology (Berl) 2005; 182:170-9. [PMID: 16021483 DOI: 10.1007/s00213-005-0043-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 04/20/2005] [Indexed: 12/20/2022]
Abstract
RATIONALE Acetylcholine esterase (AchE) inhibitors are known to remediate symptoms of Alzheimer's disease. However, only few systematic data exist on the effects of cholinergic treatment on cognitive functions in normal subjects. OBJECTIVE This study evaluated the effects of donepezil, an inhibitor of AchE, on cognitive performance in young and healthy subjects. METHODS We used a randomised double-blind parallel group placebo-controlled repeated measures design to investigate changes of cognitive functions in a group of 30 young healthy male subjects (mean age 23.9 years+/-2.24 SD) upon application of donepezil or placebo for 30 days. Attentional and executive functions, visual and verbal short-term and working memory, semantic memory, as well as verbal and visual episodic memory were investigated using an extensive neuropsychological test battery. RESULTS Time-by-group interactions demonstrated significant drug effects that were specific to episodic memory in both the verbal and visual domain. Additionally, donezepil significantly improved long-term visual episodic recall. In none of the other functions under investigation any significant treatment effects were observed. CONCLUSION Given this specific drug effect and the well-known relevance of the hippocampal region for episodic memory, we conclude that this region appears to be the major target of cholinergic enhancement in healthy subjects due to long-term inhibition of AchE.
Collapse
Affiliation(s)
- Georg Grön
- Department of Psychiatry, University of Ulm, Leimgrubenweg 12, 89075 Ulm, Germany.
| | | | | | | | | |
Collapse
|
15
|
Bai F, Sözen MA, Lukiw WJ, Argyropoulos G. Expression of AgRP, NPY, POMC and CART in human fetal and adult hippocampus. Neuropeptides 2005; 39:439-43. [PMID: 15885775 DOI: 10.1016/j.npep.2005.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 02/12/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
The Agouti-Related Protein (AgRP), Neuropeptide Y (NPY), Proopiomelanocortin (POMC) and the Cocaine and Amphetamine-Regulated Transcript (CART) are four neuropeptides that play essential roles in the regulation of food intake and energy homeostasis in mammals. CART, POMC and NPY have also been suggested to play a role in the development of the hippocampus. We therefore employed quantitative real-time RT-PCR (qPCR) to analyze the expression levels of these genes in the fetal and adult human hippocampus to examine whether the four neuropeptides are differentially regulated in the hippocampus during development. CART (6.5-fold) and POMC (8.3-fold) mRNAs were significantly higher in the adult hippocampus. NPY on the other hand, was significantly reduced (2.1-fold) in the adult hippocampus, while AgRP mRNA was comparatively unchanged between fetal and adult hippocampus. In relative terms, CART mRNA was the highest and AgRP the lowest in both the fetal and adult hippocampus. CART, POMC and NPY are, therefore, differentially expressed in the human fetal and adult hippocampus and could play a role in its development or could be regulated by various stimuli involved in the development of this brain structure.
Collapse
Affiliation(s)
- Fulu Bai
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
16
|
Abstract
We describe a principal component analysis (PCA) method for functional magnetic resonance imaging (fMRI) data based on functional data analysis, an advanced nonparametric approach. The data delivered by the fMRI scans are viewed as continuous functions of time sampled at the interscan interval and subject to observational noise, and are used accordingly to estimate an image in which smooth functions replace the voxels. The techniques of functional data analysis are used to carry out PCA directly on these functions. We show that functional PCA is more effective than is its ordinary counterpart in recovering the signal of interest, even if limited or no prior knowledge of the form of hemodynamic function or the structure of the experimental design is specified. We discuss the rationale and advantages of the proposed approach relative to other exploratory methods, such as clustering or independent component analysis, as well as the differences from methods based on expanded design matrices.
Collapse
Affiliation(s)
- Roberto Viviani
- Department of Psychiatry III, University of Ulm, 89075 Ulm, Germany.
| | | | | |
Collapse
|
17
|
Schönfeldt-Lecuona C, Grön G, Walter H, Büchler N, Wunderlich A, Spitzer M, Herwig U. Stereotaxic rTMS for the treatment of auditory hallucinations in schizophrenia. Neuroreport 2004; 15:1669-73. [PMID: 15232304 DOI: 10.1097/01.wnr.0000126504.89983.ec] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Auditory verbal hallucinations in schizophrenia may be due to dysfunctional inner speech-related cortical areas. Repetitive transcranial magnetic stimulation (rTMS) has been reported to be an effective treatment of hallucinations. In a cross-over sham controlled study, we guided rTMS stereotactically to inner speech-related cortical areas in hallucinating patients. These areas were identified individually prior to rTMS using fMRI in a subgroup of our patients. Active stimulation was applied over Broca's area and over the superior temporal gyrus as determined by fMRI, or according to structural images in the remaining patients. rTMS did not lead to a significant reduction of hallucination severity. Conclusively, rTMS has to be regarded critically as a possible novel tool for the treatment of hallucinations.
Collapse
|
18
|
Grön G, Schul D, Bretschneider V, Wunderlich AP, Riepe MW. Alike performance during nonverbal episodic learning from diversely imprinted neural networks. Eur J Neurosci 2003; 18:3112-20. [PMID: 14656307 DOI: 10.1111/j.1460-9568.2003.03060.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Performance on neuropsychological testing permits inferences to be made regarding neural networks required to solve the task. In healthy young human subjects it is common sense that differential performance in cognitive tasks results from recruitment of different neural networks and that alike performance results from recruitment of alike neural networks. It was the goal of the present study to investigate whether these assumptions are also valid in cross-cultural studies. To address this, we used functional MRI during a nonverbal episodic memory task with repeated learning of abstract geometric patterns. Behavioural performance in this task was alike over repeated trials in native Chinese and Caucasian subjects. Given this equivalent performance, the distinct pattern of neuronal activation observed is interpreted as the outcome of different culturally imprinted processing routines. In the 'what' and 'where' framework of visuo-spatial processing initial learning in Chinese subjects activated the dorsal stream for analysis of spatial features whereas Caucasians recruited the ventral stream for object identification. With repeated learning Chinese subjects integrated visuo-spatial processing to object coding and vice versa. Thus, imprints of culture result in activation of distinct neural networks and mandate monitoring of both behavioural performance and neural recruitment in cross-cultural studies of cognition.
Collapse
Affiliation(s)
- Georg Grön
- Memory Clinic, Department of Psychiatry, University of Ulm, Steinhoevelstr. 1, 89075 Ulm, Germany
| | | | | | | | | |
Collapse
|