1
|
Boxy P, Nykjær A, Kisiswa L. Building better brains: the pleiotropic function of neurotrophic factors in postnatal cerebellar development. Front Mol Neurosci 2023; 16:1181397. [PMID: 37251644 PMCID: PMC10213292 DOI: 10.3389/fnmol.2023.1181397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
The cerebellum is a multifunctional brain region that controls diverse motor and non-motor behaviors. As a result, impairments in the cerebellar architecture and circuitry lead to a vast array of neuropsychiatric and neurodevelopmental disorders. Neurotrophins and neurotrophic growth factors play essential roles in the development as well as maintenance of the central and peripheral nervous system which is crucial for normal brain function. Their timely expression throughout embryonic and postnatal stages is important for promoting growth and survival of both neurons and glial cells. During postnatal development, the cerebellum undergoes changes in its cellular organization, which is regulated by a variety of molecular factors, including neurotrophic factors. Studies have shown that these factors and their receptors promote proper formation of the cerebellar cytoarchitecture as well as maintenance of the cerebellar circuits. In this review, we will summarize what is known on the neurotrophic factors' role in cerebellar postnatal development and how their dysregulation assists in developing various neurological disorders. Understanding the expression patterns and signaling mechanisms of these factors and their receptors is crucial for elucidating their function within the cerebellum and for developing therapeutic strategies for cerebellar-related disorders.
Collapse
Affiliation(s)
- Pia Boxy
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| | - Anders Nykjær
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| | - Lilian Kisiswa
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE)–Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- The Danish National Research Foundation Center, PROMEMO, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Sathyanesan A, Zhou J, Scafidi J, Heck DH, Sillitoe RV, Gallo V. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat Rev Neurosci 2019; 20:298-313. [PMID: 30923348 DOI: 10.1038/s41583-019-0152-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cerebellum has a protracted developmental timeline compared with the neocortex, expanding the window of vulnerability to neurological disorders. As the cerebellum is critical for motor behaviour, it is not surprising that most neurodevelopmental disorders share motor deficits as a common sequela. However, evidence gathered since the late 1980s suggests that the cerebellum is involved in motor and non-motor function, including cognition and emotion. More recently, evidence indicates that major neurodevelopmental disorders such as intellectual disability, autism spectrum disorder, attention-deficit hyperactivity disorder and Down syndrome have potential links to abnormal cerebellar development. Out of recent findings from clinical and preclinical studies, the concept of the 'cerebellar connectome' has emerged that can be used as a framework to link the role of cerebellar development to human behaviour, disease states and the design of better therapeutic strategies.
Collapse
Affiliation(s)
- Aaron Sathyanesan
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA.
| | - Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Scafidi
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA.,George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA. .,George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
3
|
Abe Y, Honsho M, Itoh R, Kawaguchi R, Fujitani M, Fujiwara K, Hirokane M, Matsuzaki T, Nakayama K, Ohgi R, Marutani T, Nakayama KI, Yamashita T, Fujiki Y. Peroxisome biogenesis deficiency attenuates the BDNF-TrkB pathway-mediated development of the cerebellum. Life Sci Alliance 2018; 1:e201800062. [PMID: 30519675 PMCID: PMC6277683 DOI: 10.26508/lsa.201800062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/22/2023] Open
Abstract
Peroxisome biogenesis disorders (PBDs) manifest as neurological deficits in the central nervous system, including neuronal migration defects and abnormal cerebellum development. However, the mechanisms underlying pathogenesis remain enigmatic. Here, to investigate how peroxisome deficiency causes neurological defects of PBDs, we established a new PBD model mouse defective in peroxisome assembly factor Pex14p, termed Pex14 ΔC/ΔC mouse. Pex14 ΔC/ΔC mouse manifests a severe symptom such as disorganization of cortical laminar structure and dies shortly after birth, although peroxisomal biogenesis and metabolism are partially defective. The Pex14 ΔC/ΔC mouse also shows malformation of the cerebellum including the impaired dendritic development of Purkinje cells. Moreover, extracellular signal-regulated kinase and AKT signaling are attenuated in this mutant mouse by an elevated level of brain-derived neurotrophic factor (BDNF) together with the enhanced expression of TrkB-T1, a dominant-negative isoform of the BDNF receptor. Our results suggest that dysregulation of the BDNF-TrkB pathway, an essential signaling for cerebellar morphogenesis, gives rise to the pathogenesis of the cerebellum in PBDs.
Collapse
Affiliation(s)
- Yuichi Abe
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masanori Honsho
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Ryota Itoh
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Ryoko Kawaguchi
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Masashi Fujitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazushirou Fujiwara
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Masaaki Hirokane
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Takashi Matsuzaki
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Keiko Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryohei Ohgi
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Toshihiro Marutani
- Graduate School of Systems Life Sciences and Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Ding B, Dobner PR, Mullikin-Kilpatrick D, Wang W, Zhu H, Chow CW, Cave JW, Gronostajski RM, Kilpatrick DL. BDNF activates an NFI-dependent neurodevelopmental timing program by sequestering NFATc4. Mol Biol Cell 2018; 29:975-987. [PMID: 29467254 PMCID: PMC5896935 DOI: 10.1091/mbc.e16-08-0595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
We show that BDNF regulates the timing of neurodevelopment via a novel mechanism of extranuclear sequestration of NFATc4 in Golgi. This leads to accelerated derepression of an NFI temporal occupancy gene program in cerebellar granule cells that includes Bdnf itself, revealing an autoregulatory loop within the program driven by BDNF and NFATc4.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605-2324
| | - Paul R. Dobner
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605-2324
| | - Debra Mullikin-Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605-2324
| | - Wei Wang
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605-2324
| | - Hong Zhu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461
| | - Chi-Wing Chow
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461
| | - John W. Cave
- Burke Medical Research Institute, White Plains, NY 10605
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065
| | - Richard M. Gronostajski
- Department of Biochemistry, Program in Neuroscience and Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203
| | - Daniel L. Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605-2324
| |
Collapse
|
5
|
Regulation of GABAergic synapse development by postsynaptic membrane proteins. Brain Res Bull 2016; 129:30-42. [PMID: 27453545 DOI: 10.1016/j.brainresbull.2016.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023]
Abstract
In the adult mammalian brain, GABAergic neurotransmission provides the majority of synaptic inhibition that balances glutamatergic excitatory drive and thereby controls neuronal output. It is generally accepted that synaptogenesis is initiated through highly specific protein-protein interactions mediated by membrane proteins expressed in developing presynaptic terminals and postsynaptic membranes. Accumulating studies have uncovered a number of membrane proteins that regulate different aspects of GABAergic synapse development. In this review, we summarize recent advances in understanding of GABAergic synapse development with a focus on postsynaptic membrane molecules, including receptors, synaptogenic cell adhesion molecules and immunoglobulin superfamily proteins.
Collapse
|
6
|
Glutamatergic axon-derived BDNF controls GABAergic synaptic differentiation in the cerebellum. Sci Rep 2016; 6:20201. [PMID: 26830657 PMCID: PMC4735332 DOI: 10.1038/srep20201] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/23/2015] [Indexed: 01/05/2023] Open
Abstract
To study mechanisms that regulate the construction of inhibitory circuits, we examined the role of brain-derived neurotrophic factor (BDNF) in the assembly of GABAergic inhibitory synapses in the mouse cerebellar cortex. We show that within the cerebellum, BDNF-expressing cells are restricted to the internal granular layer (IGL), but that the BDNF protein is present within mossy fibers which originate from cells located outside of the cerebellum. In contrast to deletion of TrkB, the cognate receptor for BDNF, deletion of Bdnf from cerebellar cell bodies alone did not perturb the localization of pre- or postsynaptic constituents at the GABAergic synapses formed by Golgi cell axons on granule cell dendrites within the IGL. Instead, we found that BDNF derived from excitatory mossy fiber endings controls their differentiation. Our findings thus indicate that cerebellar BDNF is derived primarily from excitatory neurons--precerebellar nuclei/spinal cord neurons that give rise to mossy fibers--and promotes GABAergic synapse formation as a result of release from axons. Thus, within the cerebellum the preferential localization of BDNF to axons enhances the specificity through which BDNF promotes GABAergic synaptic differentiation.
Collapse
|
7
|
Caporali P, Cutuli D, Gelfo F, Laricchiuta D, Foti F, De Bartolo P, Mancini L, Angelucci F, Petrosini L. Pre-reproductive maternal enrichment influences offspring developmental trajectories: motor behavior and neurotrophin expression. Front Behav Neurosci 2014; 8:195. [PMID: 24910599 PMCID: PMC4038762 DOI: 10.3389/fnbeh.2014.00195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/12/2014] [Indexed: 12/24/2022] Open
Abstract
Environmental enrichment is usually applied immediately after weaning or in adulthood, with strong effects on CNS anatomy and behavior. To examine the hypothesis that a pre-reproductive environmental enrichment of females could affect the motor development of their offspring, female rats were reared in an enriched environment from weaning to sexual maturity, while other female rats used as controls were reared under standard conditions. Following mating with standard-reared males, all females were housed individually. To evaluate the eventual transgenerational influence of positive pre-reproductive maternal experiences, postural and motor development of male pups was analyzed from birth to weaning. Moreover, expression of Brain Derived Neurotrophic Factor and Nerve Growth Factor in different brain regions was evaluated at birth and weaning. Pre-reproductive environmental enrichment of females affected the offspring motor development, as indicated by the earlier acquisition of complex motor abilities displayed by the pups of enriched females. The earlier acquisition of motor abilities was associated with enhanced neurotrophin levels in striatum and cerebellum. In conclusion, maternal positive experiences were transgenerationally transmitted, and influenced offspring phenotype at both behavioral and biochemical levels.
Collapse
Affiliation(s)
- Paola Caporali
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S. Santa Lucia Foundation Rome, Italy
| | - Debora Cutuli
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S. Santa Lucia Foundation Rome, Italy
| | - Francesca Gelfo
- I.R.C.C.S. Santa Lucia Foundation Rome, Italy ; Department of Systemic Medicine, University of Rome "Tor Vergata" Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S. Santa Lucia Foundation Rome, Italy
| | - Francesca Foti
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S. Santa Lucia Foundation Rome, Italy
| | - Paola De Bartolo
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S. Santa Lucia Foundation Rome, Italy
| | - Laura Mancini
- Department of Psychology, University "Sapienza" of Rome Rome, Italy
| | | | - Laura Petrosini
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S. Santa Lucia Foundation Rome, Italy
| |
Collapse
|
8
|
Huang Y, Ko H, Cheung ZH, Yung KKL, Yao T, Wang JJ, Morozov A, Ke Y, Ip NY, Yung WH. Dual actions of brain-derived neurotrophic factor on GABAergic transmission in cerebellar Purkinje neurons. Exp Neurol 2012; 233:791-8. [PMID: 22178325 DOI: 10.1016/j.expneurol.2011.11.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/18/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
Abstract
The ability to regulate inhibitory synapses is a critical feature of the nervous system and a growing body of evidence indicates that brain-derived neurotrophic factor (BDNF) acutely modulates the efficacy of GABA synaptic transmission. Although the neuronal potassium-chloride cotransporter 2 (KCC2) has been implied in this BDNF-induced ionic plasticity, the reports about actions of BDNF on GABA signaling remain conflicting. Here we show dual effects of BDNF on GABAergic synaptic transmission in Purkinje neurons in rat cerebellar slices. BDNF decreased the amplitude of evoked outward IPSCs postsynaptically. It induced a depolarizing shift in the reversal potential (E(IPSC)), which reduced the driving force for outward IPSCs. However, in the absence of KCC2 activity, BDNF directly potentiated rather than inhibited GABA(A) receptor, which was reflected by an increase in the amplitude of outward IPSCs. This action of BDNF coincided with its effect in increasing the amplitude of inward IPSCs. Furthermore, an interaction between GABA(A) receptor and KCC2 was revealed by co-immunoprecipitation. The effects of BDNF on both GABA(A) receptor and KCC2 were dependent on TrkB and also activation of cyclin-dependent kinase 5 (Cdk5). However, only the effect of BDNF on KCC2 activity was dependent on a rise of intracellular calcium. Taken together, these data highlight distinct actions of BDNF on KCC2 and GABA(A) receptor in the regulation of GABAergic synaptic transmission.
Collapse
Affiliation(s)
- Ying Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Porcher C, Hatchett C, Longbottom RE, McAinch K, Sihra TS, Moss SJ, Thomson AM, Jovanovic JN. Positive feedback regulation between gamma-aminobutyric acid type A (GABA(A)) receptor signaling and brain-derived neurotrophic factor (BDNF) release in developing neurons. J Biol Chem 2011; 286:21667-77. [PMID: 21474450 DOI: 10.1074/jbc.m110.201582] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During the early development of the nervous system, γ-aminobutyric acid (GABA) type A receptor (GABA(A)R)-mediated signaling parallels the neurotrophin/tropomyosin-related kinase (Trk)-dependent signaling in controlling a number of processes from cell proliferation and migration, via dendritic and axonal outgrowth, to synapse formation and plasticity. Here we present the first evidence that these two signaling systems regulate each other through a complex positive feedback mechanism. We first demonstrate that GABA(A)R activation leads to an increase in the cell surface expression of these receptors in cultured embryonic cerebrocortical neurons, specifically at the stage when this activity causes depolarization of the plasma membrane and Ca(2+) influx through L-type voltage-gated Ca(2+) channels. We further demonstrate that GABA(A)R activity triggers release of the brain-derived neurotrophic factor (BDNF), which, in turn by activating TrkB receptors, mediates the observed increase in cell surface expression of GABA(A)Rs. This BDNF/TrkB-dependent increase in surface levels of GABA(A)Rs requires the activity of phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC) and does not involve the extracellular signal-regulated kinase (ERK) 1/2 activity. The increase in GABA(A)R surface levels occurs due to an inhibition of the receptor endocytosis by BDNF, whereas the receptor reinsertion into the plasma membrane remains unaltered. Thus, GABA(A)R activity is a potent regulator of the BDNF release during neuronal development, and at the same time, it is strongly enhanced by the activity of the BDNF/TrkB/PI3K/PKC signaling pathway.
Collapse
Affiliation(s)
- Christophe Porcher
- Institut de Neurobiologie de la Méditerranée, INSERM Unité 901 and Université de La Méditerranée, 13273 Marseille Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW To review the role of brain-derived neurotrophic factor (BDNF) in neuroplasticity related to schizophrenia and the recent findings that have been reported on the status of BDNF in patients with schizophrenia and its association with the clinical measures. RECENT FINDINGS Peripheral BDNF levels have been found altered in first-episode patients with psychosis and also in chronic schizophrenia patients. A few studies have reported changes in peripheral BDNF levels following antipsychotic treatment. The role of Val66Met polymorphism in BDNF has been shown to play an important role in structural and functional plasticity in schizophrenia. SUMMARY Although peripheral BDNF levels hold promise for providing new perspectives for the development of novel therapeutic strategies for the treatment of schizophrenia, additional studies including efforts to prove its potential as a biomarker are warranted.
Collapse
|
11
|
Takumi K, Mori T, Shimizu K, Hayashi M. Developmental changes in concentrations and distributions of neurotrophins in the monkey cerebellar cortex. J Chem Neuroanat 2005; 30:212-20. [PMID: 16219447 DOI: 10.1016/j.jchemneu.2005.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 08/08/2005] [Accepted: 08/12/2005] [Indexed: 11/30/2022]
Abstract
Neurotrophins are involved in the survival, differentiation, migration and neurite outgrowth of various neuronal populations. Neurotrophins and their receptors are widely expressed in the developing cerebellum of various experimental animals. To gain some insight into the possible roles played by these molecules in monkey cerebellum, we examined the protein levels of BDNF, NT-4/5 and NT-3 and distributions of those neurotrophins and TrkC, a high affinity receptor for NT-3, in the cerebellum of developing macaque monkeys using ELISAs and immunohistochemical methods. We found that the level of BDNF increased during development, while the level of NT-3 was higher during embryonic stages and decreased toward adulthood. The level of NT-4/5 increased from embryonic stages to infant stages and gradually declined with age. Among the three neurotrophins, BDNF immunoreactivity was found in all kinds of cerebellar neurons, including all inhibitory interneurons, throughout the postnatal periods examined, indicating that BDNF may be an essential factor for the maintenance of cerebellar neural functions. The Bergmann glial fibers and the internal part of the external granule cell layer were strongly NT-3 immunopositive at the early postnatal stages, and more weakly immunoreactive toward adulthood. In addition, we found that the premigratory precursors of the granule cells were TrkC immunopositive at early postnatal stages. These findings suggest that NT-3 in Bergmann glial fibers may be involved in the migration of the premigratory granule cells.
Collapse
Affiliation(s)
- Ken Takumi
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | | | | | | |
Collapse
|
12
|
Henneberger C, Jüttner R, Rothe T, Grantyn R. Postsynaptic action of BDNF on GABAergic synaptic transmission in the superficial layers of the mouse superior colliculus. J Neurophysiol 2002; 88:595-603. [PMID: 12163512 DOI: 10.1152/jn.2002.88.2.595] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) is involved in numerous aspects of synapse development and plasticity. The present study was aimed at clarifying the significance of endogenous BDNF for the synaptically driven spontaneous network activity and GABAergic inhibition in the superficial layers of the mouse superior colliculus. In this structure neuron survival is unaffected by the absence of BDNF. Two experimental approaches were used: comparison of BDNF-deficient (-/-) and wild-type (+/+) mice and blockade of BDNF receptor signaling by the tyrosine kinase inhibitor K-252a. Patch-clamp recordings were performed on horizontal slices during postnatal days 15 and 16. The lack of BDNF in -/- mice caused a significant reduction of the spontaneous action potential frequency and an increase in the pharmacologically induced disinhibition of spike discharge. This change was accompanied by an increase in the amplitudes of GABAergic evoked, spontaneous, and miniature inhibitory postsynaptic currents (IPSCs). BDNF gene inactivation had no effect on the degree of paired-pulse facilitation or the frequency of miniature IPSCs. The increase of IPSC amplitudes by chronic BDNF deprivation was completely mimicked by acute exposure to K-252a in +/+ animals. The enhancement of GABAergic IPSCs in -/- animals was reversed by acute application of 100 ng/ml BDNF, but this rescue was completely prevented by blocking postsynaptic protein kinase C (PKC) activation with the PKC inhibitor peptide 19-31. From these results we conclude that BDNF increases spontaneous network activity by suppressing GABAergic inhibition, the site of action of BDNF is predominantly postsynaptic, BDNF-induced suppression of GABAergic synaptic transmission is caused by acute downregulation of GABA(A) receptors, and BDNF effects are mediated by its TrkB receptor and require PKC activation in the postsynaptic cell.
Collapse
Affiliation(s)
- Christian Henneberger
- Developmental Physiology, Johannes Müller Institute of Physiology, Charité, D-10117 Berlin, Germany
| | | | | | | |
Collapse
|