1
|
Haydock L, Garneau AP, Tremblay L, Yen HY, Gao H, Harrisson R, Isenring P. Genetic abnormalities in biopsy-proven, adult-onset hemolytic uremic syndrome and C3 glomerulopathy. J Mol Med (Berl) 2021; 100:269-284. [PMID: 34714369 PMCID: PMC8770394 DOI: 10.1007/s00109-021-02102-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022]
Abstract
Abstract Atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G) have been linked to mutations in many of the proteins that are involved in alternative complement pathway activation. Age and etiology confounded, the prevalence of such mutations has been reported to be over 30 to 50% in these diseases. However, the cohorts studied included many children or individuals with a familial history of complement-related disorders and genetic tests were usually limited to exome sequencing of known causative or risk-associated genes. In this study, a retrospective adult cohort of 35 patients with biopsy-proven thrombotic microangiopathy (the largest in Canada) and 10 patients with C3 glomerulopathy was tested through an extended exome panel to identify causative defects in associated or candidate genes including those of the alternative and terminal complement pathways. A variant of unknown significance was also analyzed for pathogenicity through in vitro studies. To our surprise, the prevalence of known causative or risk-associated variants in either of these cohorts was found to be less than ~ 15% overall. However, the panel used and analyses carried out allowed to identify novel variants of potential clinical significance and a number of candidate genes. The prevalence of known genetic defects in adult-onset aHUS and C3G is thus probably much lower than 30 to 50%. Our results also point towards the importance of investigating diseases of the alternative complement pathway through extended exome panels and in vitro analyses. Key messages The alternative complement pathway plays a major role in the pathogenesis of hemolytic uremic syndrome and C3 glomerulopathy. Based on previous studies, both disorders have been commonly linked to variants in the various intermediates that sustain or regulate this pathway. The prevalence of such mutations in the adult-onset and sporadic forms of these diseases is probably much lower than expected based on larger series. The sporadic forms of complementopathies are likely to involve additional genes that are yet to be uncovered.
Supplementary information The online version contains supplementary material available at 10.1007/s00109-021-02102-1.
Collapse
Affiliation(s)
- Ludwig Haydock
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC, G1R2J6, Canada
| | - Alexandre P Garneau
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC, G1R2J6, Canada.,Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montréal, 900, rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| | - Laurence Tremblay
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC, G1R2J6, Canada
| | - Hai-Yun Yen
- Fulgent Genetics, Temple City, CA, 91780, USA
| | - Hanlin Gao
- Fulgent Genetics, Temple City, CA, 91780, USA
| | - Raphaël Harrisson
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC, G1R2J6, Canada
| | - Paul Isenring
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC, G1R2J6, Canada.
| |
Collapse
|
2
|
Rawish E, Sauter M, Sauter R, Nording H, Langer HF. Complement, inflammation and thrombosis. Br J Pharmacol 2021; 178:2892-2904. [PMID: 33817781 DOI: 10.1111/bph.15476] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
A mutual relationship exists between immune activation and mechanisms of thrombus formation. In particular, elements of the innate immune response such as the complement system can modulate platelet activation and subsequently thrombus formation. Several components of the complement system including C3 or the membrane attack complex have been reported to be associated with platelets and become functionally active in the micromilieu of platelet activation. The exact mechanisms how this interplay is regulated and its consequences for tissue inflammation, damage or recovery remain to be defined. This review addresses the current state of knowledge on this topic and puts it into context with diseases featuring both thrombosis and complement activation. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Harald F Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Zhao M, Havrilla JM, Fang L, Chen Y, Peng J, Liu C, Wu C, Sarmady M, Botas P, Isla J, Lyon GJ, Weng C, Wang K. Phen2Gene: rapid phenotype-driven gene prioritization for rare diseases. NAR Genom Bioinform 2020; 2:lqaa032. [PMID: 32500119 PMCID: PMC7252576 DOI: 10.1093/nargab/lqaa032] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Human Phenotype Ontology (HPO) terms are increasingly used in diagnostic settings to aid in the characterization of patient phenotypes. The HPO annotation database is updated frequently and can provide detailed phenotype knowledge on various human diseases, and many HPO terms are now mapped to candidate causal genes with binary relationships. To further improve the genetic diagnosis of rare diseases, we incorporated these HPO annotations, gene-disease databases and gene-gene databases in a probabilistic model to build a novel HPO-driven gene prioritization tool, Phen2Gene. Phen2Gene accesses a database built upon this information called the HPO2Gene Knowledgebase (H2GKB), which provides weighted and ranked gene lists for every HPO term. Phen2Gene is then able to access the H2GKB for patient-specific lists of HPO terms or PhenoPacket descriptions supported by GA4GH (http://phenopackets.org/), calculate a prioritized gene list based on a probabilistic model and output gene-disease relationships with great accuracy. Phen2Gene outperforms existing gene prioritization tools in speed and acts as a real-time phenotype-driven gene prioritization tool to aid the clinical diagnosis of rare undiagnosed diseases. In addition to a command line tool released under the MIT license (https://github.com/WGLab/Phen2Gene), we also developed a web server and web service (https://phen2gene.wglab.org/) for running the tool via web interface or RESTful API queries. Finally, we have curated a large amount of benchmarking data for phenotype-to-gene tools involving 197 patients across 76 scientific articles and 85 patients' de-identified HPO term data from the Children's Hospital of Philadelphia.
Collapse
Affiliation(s)
- Mengge Zhao
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - James M Havrilla
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Li Fang
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ying Chen
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jacqueline Peng
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cong Liu
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA
| | - Chao Wu
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Pablo Botas
- Foundation 29, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Julián Isla
- Foundation 29, Pozuelo de Alarcon, 28223 Madrid, Spain.,Dravet Syndrome European Federation, 29200 Brest, France
| | - Gholson J Lyon
- Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY 10314, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA
| | - Kai Wang
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Abstract
The recognition of microbial or danger-associated molecular patterns by complement proteins initiates a cascade of events that culminates in the activation of surface complement receptors on immune cells. Such signalling pathways converge with those activated downstream of pattern recognition receptors to determine the type and magnitude of the immune response. Intensive investigation in the field has uncovered novel pathways that link complement-mediated signalling with homeostatic and pathological T cell responses. More recently, the observation that complement proteins also act in the intracellular space to shape T cell fates has added a new layer of complexity. Here, we consider fundamental mechanisms and novel concepts at the interface of complement biology and immunity and discuss how these affect the maintenance of homeostasis and the development of human pathology.
Collapse
|
5
|
Andersson NG, Rossing M, Fager Ferrari M, Gabrielaite M, Leinøe E, Ljung R, Mårtensson A, Norström E, Zetterberg E. Genetic screening of children with suspected inherited bleeding disorders. Haemophilia 2020; 26:314-324. [DOI: 10.1111/hae.13948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Nadine G. Andersson
- Department of Clinical Sciences Paediatrics Lund University Lund Sweden
- Centre for Thrombosis and Haemostasis Skåne University Hospital Malmö Sweden
- Department for Paediatric Haematology and Oncology Skåne University Hospital Malmö Sweden
| | - Maria Rossing
- Centre for Genomic Medicine Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| | - Marcus Fager Ferrari
- Centre for Thrombosis and Haemostasis Skåne University Hospital Malmö Sweden
- Department of Translational Medicine Lund University Malmö Sweden
| | - Migle Gabrielaite
- Centre for Genomic Medicine Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| | - Eva Leinøe
- Department of Haematology Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| | - Rolf Ljung
- Department of Clinical Sciences Paediatrics Lund University Lund Sweden
| | - Annika Mårtensson
- Department of Clinical Sciences Paediatrics Lund University Lund Sweden
- Department for Paediatric Haematology and Oncology Skåne University Hospital Malmö Sweden
| | - Eva Norström
- Department for Clinical Chemistry Skåne University Hospital Malmö Sweden
| | - Eva Zetterberg
- Centre for Thrombosis and Haemostasis Skåne University Hospital Malmö Sweden
- Department of Translational Medicine Lund University Malmö Sweden
| |
Collapse
|
6
|
Sauter RJ, Sauter M, Reis ES, Emschermann FN, Nording H, Ebenhöch S, Kraft P, Münzer P, Mauler M, Rheinlaender J, Madlung J, Edlich F, Schäffer TE, Meuth SG, Duerschmied D, Geisler T, Borst O, Gawaz M, Kleinschnitz C, Lambris JD, Langer HF. Functional Relevance of the Anaphylatoxin Receptor C3aR for Platelet Function and Arterial Thrombus Formation Marks an Intersection Point Between Innate Immunity and Thrombosis. Circulation 2019; 138:1720-1735. [PMID: 29802205 DOI: 10.1161/circulationaha.118.034600] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Platelets have distinct roles in the vascular system in that they are the major mediator of thrombosis, critical for restoration of tissue integrity, and players in vascular inflammatory conditions. In close spatiotemporal proximity, the complement system acts as the first line of defense against invading microorganisms and is a key mediator of inflammation. Whereas the fluid phase cross-talk between the complement and coagulation systems is well appreciated, the understanding of the pathophysiological implications of such interactions is still scant. METHODS We analyzed coexpression of the anaphylatoxin receptor C3aR with activated glycoprotein IIb/IIIa on platelets of 501 patients with coronary artery disease using flow cytometry; detected C3aR expression in human or murine specimen by polymerase chain reaction, immunofluorescence, Western blotting, or flow cytometry; and examined the importance of platelet C3aR by various in vitro platelet function tests, in vivo bleeding time, and intravital microscopy. The pathophysiological relevance of C3aR was scrutinized with the use of disease models of myocardial infarction and stroke. To approach underlying molecular mechanisms, we identified the platelet small GTPase Rap1b using nanoscale liquid chromatography coupled to tandem mass spectrometry. RESULTS We found a strong positive correlation of platelet complement C3aR expression with activated glycoprotein IIb/IIIa in patients with coronary artery disease and coexpression of C3aR with glycoprotein IIb/IIIa in thrombi obtained from patients with myocardial infarction. Our results demonstrate that the C3a/C3aR axis on platelets regulates distinct steps of thrombus formation such as platelet adhesion, spreading, and Ca2+ influx. Using C3aR-/- mice or C3-/- mice with reinjection of C3a, we uncovered that the complement activation fragment C3a regulates bleeding time after tail injury and thrombosis. Notably, C3aR-/- mice were less prone to experimental stroke and myocardial infarction. Furthermore, reconstitution of C3aR-/- mice with C3aR+/+ platelets and platelet depletion experiments demonstrated that the observed effects on thrombosis, myocardial infarction, and stroke were specifically caused by platelet C3aR. Mechanistically, C3aR-mediated signaling regulates the activation of Rap1b and thereby bleeding arrest after injury and in vivo thrombus formation. CONCLUSIONS Overall, our findings uncover a novel function of the anaphylatoxin C3a for platelet function and thrombus formation, highlighting a detrimental role of imbalanced complement activation in cardiovascular diseases.
Collapse
Affiliation(s)
- Reinhard J Sauter
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany.,Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Manuela Sauter
- Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia (E.S.R., J.D.L.)
| | - Frederic N Emschermann
- Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Henry Nording
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany.,Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Sonja Ebenhöch
- Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Peter Kraft
- Department of Neurology, University of Würzburg, Germany (P.K.)
| | - Patrick Münzer
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Maximilian Mauler
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine (M.M., D.D.), University of Freiburg, Germany
| | - Johannes Rheinlaender
- Institute of Applied Physics (J.R., T.E.S.), Eberhard Karls-University Tübingen, Germany
| | - Johannes Madlung
- Proteom Center, Interfaculty Institute for Cell Biology (J.M.), Eberhard Karls-University Tübingen, Germany
| | - Frank Edlich
- Institute of Biochemistry (F.E.), University of Freiburg, Germany.,Institute for Biochemistry and Molecular Biology, University of Freiburg, Germany (F.E.).,BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Germany (F.E.)
| | - Tilman E Schäffer
- Institute of Applied Physics (J.R., T.E.S.), Eberhard Karls-University Tübingen, Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster, Germany (S.G.M.)
| | - Daniel Duerschmied
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine (M.M., D.D.), University of Freiburg, Germany
| | - Tobias Geisler
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | | | - John D Lambris
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia (E.S.R., J.D.L.)
| | - Harald F Langer
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany.,Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| |
Collapse
|
7
|
Leinøe E, Zetterberg E, Kinalis S, Østrup O, Kampmann P, Norström E, Andersson N, Klintman J, Qvortrup K, Nielsen FC, Rossing M. Application of whole-exome sequencing to direct the specific functional testing and diagnosis of rare inherited bleeding disorders in patients from the Öresund Region, Scandinavia. Br J Haematol 2017; 179:308-322. [PMID: 28748566 PMCID: PMC5655919 DOI: 10.1111/bjh.14863] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/20/2017] [Indexed: 01/19/2023]
Abstract
Rare inherited bleeding disorders (IBD) are a common cause of bleeding tendency. To ensure a correct diagnosis, specialized laboratory analyses are necessary. This study reports the results of an upfront diagnostic strategy using targeted whole exome sequencing. In total, 156 patients with a significant bleeding assessment tool score participated in the study, of which a third had thrombocytopenia. Eighty‐seven genes specifically associated with genetic predisposition to bleeding were analysed by whole exome sequencing. Variants were classified according to the five‐tier scheme. We identified 353 germline variants. Eight patients (5%) harboured a known pathogenic variant. Of the 345 previously unknown variants, computational analyses predicted 99 to be significant. Further filtration according to the Mendelian inheritance pattern, resulted in 59 variants being predicted to be clinically significant. Moreover, 34% (20/59) were assigned as novel class 4 or 5 variants upon targeted functional testing. A class 4 or 5 variant was identified in 30% of patients with thrombocytopenia (14/47) versus 11% of patients with a normal platelet count (12/109) (P < 0·01). An IBD diagnosis has a major clinical impact. The genetic investigations detailed here extricated our patients from a diagnostic conundrum, thus demonstrating that continuous optimization of the diagnostic work‐up of IBD is of great benefit.
Collapse
Affiliation(s)
- Eva Leinøe
- Department of Haematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eva Zetterberg
- Department of Haematology, Coagulation Unit, Skaane University Hospital, Lund, Sweden
| | - Savvas Kinalis
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Olga Østrup
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Kampmann
- Department of Haematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eva Norström
- Department of Translational Medicine, Lund University, Skaane University Hospital, Lund, Sweden
| | - Nadine Andersson
- Department of Haematology, Coagulation Unit, Skaane University Hospital, Lund, Sweden
| | - Jenny Klintman
- Department of Haematology, Coagulation Unit, Skaane University Hospital, Lund, Sweden
| | - Klaus Qvortrup
- Department of Biomedical Sciences, Core Facility for Integrated Microscopy (CFIM), University of Copenhagen, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maria Rossing
- Centre for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
8
|
Fager Ferrari M, Leinoe E, Rossing M, Norström E, Strandberg K, Steen Sejersen T, Qvortrup K, Zetterberg E. Germline heterozygous variants in genes associated with familial hemophagocytic lymphohistiocytosis as a cause of increased bleeding. Platelets 2017; 29:56-64. [PMID: 28399723 DOI: 10.1080/09537104.2017.1293808] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Familial hemophagocytic lymphohistiocytosis (FHL) is caused by biallelic variants in genes regulating granule secretion in cytotoxic lymphocytes. In FHL3-5, the affected genes UNC13D, STX11 and STXBP2 have further been shown to regulate the secretion of platelet granules, giving rise to compromised platelet function. Therefore, we aimed to investigate platelet degranulation in patients heterozygous for variants in UNC13D, STX11 and STXBP2. During the work-up of patients referred to the Coagulation Unit, Skåne University Hospital, Malmö, Sweden and the Department of Hematology, Rigshospitalet, Copenhagen, Denmark due to bleeding tendencies, 12 patients harboring heterozygous variants in UNC13D, STX11 or STXBP2 were identified using targeted whole exome sequencing. Transmission electron microscopy (TEM) was used to assess the secretion of platelet dense granules following thrombin stimulation. Platelet degranulation, activation and aggregation were further assessed by flow cytometry (FC) and light transmission aggregometry (LTA) with lumi-aggregometry. In total, eight out of twelve (67%) patients showed impaired degranulation by at least one of the assays (TEM, FC and LTA). In the 12 patients, eight different heterozygous variants were identified. One variant was strongly associated with impaired degranulation, while four of the variants were associated with impaired granule secretion to a slightly lesser extent. One additional variant was found in six out of the twelve patients, and was associated with varying degrees of degranulation impairment. Accordingly, six out of the eight (75%) identified variants were associated with impaired platelet degranulation. Our results suggest that heterozygous variants in UNC13D, STX11 and STXBP2 are sufficient to cause platelet secretion defects resulting in increased bleeding.
Collapse
Affiliation(s)
| | - Eva Leinoe
- b Department of Hematology, Rigshospitalet , Copenhagen University Hospital , Copenhagen , Denmark
| | - Maria Rossing
- c Department of Genomic Medicine, Rigshospitalet , Copenhagen University Hospital , Copenhagen , Denmark
| | - Eva Norström
- a Department of Translational Medicine , Lund University , Malmö , Sweden
| | - Karin Strandberg
- d Department of Laboratory Medicine , Lund University , Malmö , Sweden
| | - Tobias Steen Sejersen
- e Department of Biomedical Sciences, Core Facility for Integrated Microscopy (CFIM) , University of Copenhagen , Denmark
| | - Klaus Qvortrup
- e Department of Biomedical Sciences, Core Facility for Integrated Microscopy (CFIM) , University of Copenhagen , Denmark
| | - Eva Zetterberg
- a Department of Translational Medicine , Lund University , Malmö , Sweden
| |
Collapse
|