1
|
Faris A, Alnajjar R, Guo J, AL Mughram MH, Aouidate A, Asmari M, Elhallaoui M. Computational 3D Modeling-Based Identification of Inhibitors Targeting Cysteine Covalent Bond Catalysts for JAK3 and CYP3A4 Enzymes in the Treatment of Rheumatoid Arthritis. Molecules 2023; 29:23. [PMID: 38202604 PMCID: PMC10779482 DOI: 10.3390/molecules29010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
This work aimed to find new inhibitors of the CYP3A4 and JAK3 enzymes, which are significant players in autoimmune diseases such as rheumatoid arthritis. Advanced computer-aided drug design techniques, such as pharmacophore and 3D-QSAR modeling, were used. Two strong 3D-QSAR models were created, and their predictive power was validated by the strong correlation (R2 values > 80%) between the predicted and experimental activity. With an ROC value of 0.9, a pharmacophore model grounded in the DHRRR hypothesis likewise demonstrated strong predictive ability. Eight possible inhibitors were found, and six new inhibitors were designed in silico using these computational models. The pharmacokinetic and safety characteristics of these candidates were thoroughly assessed. The possible interactions between the inhibitors and the target enzymes were made clear via molecular docking. Furthermore, MM/GBSA computations and molecular dynamics simulations offered insightful information about the stability of the binding between inhibitors and CYP3A4 or JAK3. Through the integration of various computational approaches, this study successfully identified potential inhibitor candidates for additional investigation and efficiently screened compounds. The findings contribute to our knowledge of enzyme-inhibitor interactions and may help us create more effective treatments for autoimmune conditions like rheumatoid arthritis.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco;
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi 16063, Libya;
- PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi 16063, Libya
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Jingjing Guo
- Centre in Artificial Intelligence-Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China;
| | - Mohammed H. AL Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.H.A.M.); (M.A.)
| | - Adnane Aouidate
- Laboratory of Organic Chemistry and Physical Chemistry, Team of Molecular Modeling, Materials and Environment, Faculty of Sciences, University Ibn Zohr, Agadir 80060, Morocco;
| | - Mufarreh Asmari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.H.A.M.); (M.A.)
| | - Menana Elhallaoui
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco;
| |
Collapse
|
2
|
Gadek M, Sherr EH, Floor SN. The variant landscape and function of DDX3X in cancer and neurodevelopmental disorders. Trends Mol Med 2023; 29:726-739. [PMID: 37422363 DOI: 10.1016/j.molmed.2023.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
RNA molecules rely on proteins across their life cycle. DDX3X encodes an X-linked DEAD-box RNA helicase with a Y-linked paralog, DDX3Y. DDX3X is central to the RNA life cycle and is implicated in many conditions, including cancer and the neurodevelopmental disorder DDX3X syndrome. DDX3X-linked conditions often exhibit sex differences, possibly due to differences between expression or function of the X- and Y-linked paralogs DDX3X and DDX3Y. DDX3X-related diseases have different mutational landscapes, indicating different roles of DDX3X. Understanding the role of DDX3X in normal and disease states will inform the understanding of DDX3X in disease. We review the function of DDX3X and DDX3Y, discuss how mutation type and sex bias contribute to human diseases involving DDX3X, and review possible DDX3X-targeting treatments.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
3
|
Popov A, Tsaur G, Permikin Z, Henze G, Verzhbitskaya T, Plekhanova O, Nokhrina E, Valochnik A, Sibiryakov P, Zerkalenkova E, Olshanskaya Y, Gindina T, Movchan L, Shorikov E, Streneva O, Khlebnikova O, Makarova O, Arakaev O, Boichenko E, Kondratchik K, Ponomareva N, Lapotentova E, Aleinikova O, Miakova N, Novichkova G, Karachunskiy A, Fechina L. Genetic characteristics and treatment outcome in infants with KMT2A germline B-cell precursor acute lymphoblastic leukemia: Results of MLL-Baby protocol. Pediatr Blood Cancer 2023; 70:e30204. [PMID: 36715125 DOI: 10.1002/pbc.30204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/31/2023]
Abstract
The aim of this study was to present the diagnostic and outcome characteristics of infants with germline status of KMT2A gene (KMT2A-g) B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treated consistently according to the MLL-Baby protocol, a moderate-intensity protocol. Of the 139 patients enrolled in the MLL-Baby study, 100 (71.9%) carried different types of rearranged KMT2A (KMT2A-r), while the remaining 39 infants (28.1%) had KMT2A-g. KMT2A-g patients were generally older (77% older than 6 months), less likely to have a very high white blood cell count (greater than 100 × 109 /L), less likely to be central nervous system (CNS)-positive, and more likely to be CD10-positive. The 6-year event-free survival and overall survival rates for all 39 patients were 0.74 (standard error [SE] 0.07) and 0.80 (SE 0.07), respectively. Relapse was the most common adverse event (n = 5), with a cumulative incidence of relapse (CIR) of 0.13 (SE 0.06), while the incidence of a second malignancy (n = 1) and death in remission (n = 3) was 0.03 (SE 0.04) and 0.08 (SE 0.04), respectively. None of the initial parameters, including genetics and the presence of recently described fusions of NUTM1 and PAX5 genes, was able to distinguish patients with different outcomes. Only rapidity of response, measured as minimal residual disease (MRD) by flow cytometry, showed a statistically significant impact. Moderate-intensity therapy, as used in the MLL-Baby protocol in infants with KMT2A-g BCP-ALL, yields results comparable to other infant studies. Patients with a slow multicolor flow cytometry (MFC)-MRD response should be subjected to advanced therapies, such as targeted or immunotherapies.
Collapse
Affiliation(s)
- Alexander Popov
- National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Grigory Tsaur
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Ural State Medical University, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Zhan Permikin
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Ural State Medical University, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Guenter Henze
- Department of Pediatric Oncology Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tatiana Verzhbitskaya
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Olga Plekhanova
- Regional Children's Hospital, Ekaterinburg, Russian Federation
| | | | - Alena Valochnik
- Belarussian Research Centre for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Petr Sibiryakov
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Elena Zerkalenkova
- National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Yulia Olshanskaya
- National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Tatiana Gindina
- R.M. Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University of Saint Petersburg, Saint Petersburg, Russian Federation
| | - Liudmila Movchan
- Belarussian Research Centre for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Egor Shorikov
- PET-Technology Centre of Nuclear Medicine, Ekaterinburg, Russian Federation
| | - Olga Streneva
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | | | - Olga Makarova
- Regional Children's Hospital, Ekaterinburg, Russian Federation
| | - Oleg Arakaev
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Elmira Boichenko
- City Children's Hospital No. 1, Saint Petersburg, Russian Federation
| | | | | | - Elena Lapotentova
- Belarussian Research Centre for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Olga Aleinikova
- National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation.,Belarussian Research Centre for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Natalia Miakova
- National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Galina Novichkova
- National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexander Karachunskiy
- National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Larisa Fechina
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| |
Collapse
|
5
|
Li B, Wan Q, Li Z, Chng WJ. Janus Kinase Signaling: Oncogenic Criminal of Lymphoid Cancers. Cancers (Basel) 2021; 13:cancers13205147. [PMID: 34680295 PMCID: PMC8533975 DOI: 10.3390/cancers13205147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Janus kinases (JAKs) are transmembrane receptors that pass signals from extracellular ligands to downstream. Increasing evidence has suggested that JAK family aberrations promote lymphoid cancer pathogenesis and progression through mediating gene expression via the JAK/STAT pathway or noncanonical JAK signaling. We are here to review how canonical JAK/STAT and noncanonical JAK signalings are represented and deregulated in lymphoid malignancies and how to target JAK for therapeutic purposes. Abstract The Janus kinase (JAK) family are known to respond to extracellular cytokine stimuli and to phosphorylate and activate signal transducers and activators of transcription (STAT), thereby modulating gene expression profiles. Recent studies have highlighted JAK abnormality in inducing over-activation of the JAK/STAT pathway, and that the cytoplasmic JAK tyrosine kinases may also have a nuclear role. A couple of anti-JAK therapeutics have been developed, which effectively harness lymphoid cancer cells. Here we discuss mutations and fusions leading to JAK deregulations, how upstream nodes drive JAK expression, how classical JAK/STAT pathways are represented in lymphoid malignancies and the noncanonical and nuclear role of JAKs. We also summarize JAK inhibition therapeutics applied alone or synergized with other drugs in treating lymphoid malignancies.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
| | - Qin Wan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
- Correspondence: or (Z.L.); (W.-J.C.)
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore 119074, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: or (Z.L.); (W.-J.C.)
| |
Collapse
|
6
|
Untwining Anti-Tumor and Immunosuppressive Effects of JAK Inhibitors-A Strategy for Hematological Malignancies? Cancers (Basel) 2021; 13:cancers13112611. [PMID: 34073410 PMCID: PMC8197909 DOI: 10.3390/cancers13112611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is aberrantly activated in many malignancies. Inhibition of this pathway via JAK inhibitors (JAKinibs) is therefore an attractive therapeutic strategy underlined by Ruxolitinib (JAK1/2 inhibitor) being approved for the treatment of myeloproliferative neoplasms. As a consequence of the crucial role of the JAK-STAT pathway in the regulation of immune responses, inhibition of JAKs suppresses the immune system. This review article provides a thorough overview of the current knowledge on JAKinibs’ effects on immune cells in the context of hematological malignancies. We also discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of the malignancy. Abstract The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway propagates signals from a variety of cytokines, contributing to cellular responses in health and disease. Gain of function mutations in JAKs or STATs are associated with malignancies, with JAK2V617F being the main driver mutation in myeloproliferative neoplasms (MPN). Therefore, inhibition of this pathway is an attractive therapeutic strategy for different types of cancer. Numerous JAK inhibitors (JAKinibs) have entered clinical trials, including the JAK1/2 inhibitor Ruxolitinib approved for the treatment of MPN. Importantly, loss of function mutations in JAK-STAT members are a cause of immune suppression or deficiencies. MPN patients undergoing Ruxolitinib treatment are more susceptible to infections and secondary malignancies. This highlights the suppressive effects of JAKinibs on immune responses, which renders them successful in the treatment of autoimmune diseases but potentially detrimental for cancer patients. Here, we review the current knowledge on the effects of JAKinibs on immune cells in the context of hematological malignancies. Furthermore, we discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of malignancies. In summary, this review underlines the necessity of a robust immune profiling to provide the best benefit for JAKinib-treated patients.
Collapse
|