1
|
Wang P, Jiang W, Lai T, Liu Q, Shen Y, Ye B, Wu D. Germline variants in acquired aplastic anemia: current knowledge and future perspectives. Haematologica 2024; 109:2778-2789. [PMID: 38988263 PMCID: PMC11367197 DOI: 10.3324/haematol.2023.284312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/09/2024] [Indexed: 07/12/2024] Open
Abstract
Aplastic anemia (AA) is a disease characterized by failure of hematopoiesis, bone marrow aplasia, and pancytopenia. It can be inherited or acquired. Although acquired AA is believed to be immune-mediated and random, new evidence suggests an underlying genetic predisposition. Besides confirmed genomic mutations that contribute to inherited AA (such as pathogenic mutations of TERT and TERC), germline variants, often in heterozygous states, also play a not negligible role in the onset and progression of acquired AA. These variants, associated with inherited bone marrow failure syndromes and inborn errors of immunity, contribute to the disease, possibly through mechanisms including gene homeostasis, DNA repair, and immune injury. This article explores the nuanced association between acquired AA and germline variants, detailing the clinical significance of germline variants in diagnosing and managing this condition. More work is encouraged to better understand the role of immunogenic pathogenic variants and whether somatic mutations participate as secondary "hits" in the development of bone marrow failure.
Collapse
Affiliation(s)
- Peicheng Wang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang
| | - Wanzhi Jiang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang
| | - Tianyi Lai
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang
| | - Qi Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang
| | - Yingying Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang.
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, China; Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine affiliated to Zhejiang Chinese Medicine University, Wenzhou, Zhejiang.
| |
Collapse
|
2
|
Guarina A, Farruggia P, Mariani E, Saracco P, Barone A, Onofrillo D, Cesaro S, Angarano R, Barberi W, Bonanomi S, Corti P, Crescenzi B, Dell'Orso G, De Matteo A, Giagnuolo G, Iori AP, Ladogana S, Lucarelli A, Lupia M, Martire B, Mastrodicasa E, Massaccesi E, Arcuri L, Giarratana MC, Menna G, Miano M, Notarangelo LD, Palazzi G, Palmisani E, Pestarino S, Pierri F, Pillon M, Ramenghi U, Russo G, Saettini F, Timeus F, Verzegnassi F, Zecca M, Fioredda F, Dufour C. Diagnosis and management of acquired aplastic anemia in childhood. Guidelines from the Marrow Failure Study Group of the Pediatric Haemato-Oncology Italian Association (AIEOP). Blood Cells Mol Dis 2024; 108:102860. [PMID: 38889660 DOI: 10.1016/j.bcmd.2024.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Acquired aplastic anemia (AA) is a rare heterogeneous disorder characterized by pancytopenia and hypoplastic bone marrow. The incidence is 2-3 per million population per year in the Western world, but 3 times higher in East Asia. Survival in severe aplastic anemia (SAA) has improved significantly due to advances in hematopoietic stem cell transplantation (HSCT), immunosuppressive therapy, biologic agents, and supportive care. In SAA, HSCT from a matched sibling donor (MSD) is the first-line treatment. If a MSD is not available, options include immunosuppressive therapy (IST), matched unrelated donor, or haploidentical HSCT. The purpose of this guideline is to provide health care professionals with clear guidance on the diagnosis and management of pediatric patients with AA. A preliminary evidence-based document prepared by a group of pediatric hematologists of the Bone Marrow Failure Study Group of the Italian Association of Pediatric Hemato-Oncology (AIEOP) was discussed, modified and approved during a series of consensus conferences that started online during COVID 19 and continued in the following years, according to procedures previously validated by the AIEOP Board of Directors.
Collapse
Affiliation(s)
- A Guarina
- Pediatric Onco-Hematology Unit, A.R.N.A.S. Civico Hospital, Palermo, Italy
| | - P Farruggia
- Pediatric Onco-Hematology Unit, A.R.N.A.S. Civico Hospital, Palermo, Italy
| | - E Mariani
- Scuola di Specializzazione in Pediatria, University of Milano-Bicocca, Milan, Italy; Pediatric Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - P Saracco
- Hematology Unit, "Regina Margherita" Children's Hospital, Turin, Italy
| | - A Barone
- Pediatric Onco-Hematology Unit, University Hospital, Parma, Italy
| | - D Onofrillo
- Hematology Unit, Hospital of Pescara, Pescara, Italy
| | - S Cesaro
- Pediatric Hematology Oncology Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - R Angarano
- Pediatric Oncology-Hematology Unit, AOU Policlinico, Bari, Italy
| | - W Barberi
- Hematology, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - S Bonanomi
- Pediatric Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - P Corti
- Pediatric Hematology and Bone Marrow Transplant Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - B Crescenzi
- Hematology and Bone Marrow Transplantation Unit, Hospital of Perugia, Perugia, Italy
| | - G Dell'Orso
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - A De Matteo
- Oncology Hematology and Cell Therapies Department, AORN Santobono-Pausilipon, Naples, Italy
| | - G Giagnuolo
- Oncology Hematology and Cell Therapies Department, AORN Santobono-Pausilipon, Naples, Italy
| | - A P Iori
- Hematology and HSCT Unit, University La Sapienza, Rome, Italy
| | - S Ladogana
- Pediatric Onco-Hematology Unit, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - A Lucarelli
- Pediatric Emergency Department, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - M Lupia
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - B Martire
- Pediatrics and Neonatology Unit, Maternal-Infant Department, "Monsignor A.R. Dimiccoli" Hospital, Barletta, Italy
| | - E Mastrodicasa
- Hematology and Bone Marrow Transplantation Unit, Hospital of Perugia, Perugia, Italy
| | - E Massaccesi
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - L Arcuri
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - M C Giarratana
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - G Menna
- Oncology Hematology and Cell Therapies Department, AORN Santobono-Pausilipon, Naples, Italy
| | - M Miano
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - L D Notarangelo
- Medical Direction, Children's Hospital, ASST-Spedali Civili, Brescia, Italy
| | - G Palazzi
- Department of Mother and Child, University Hospital of Modena, Modena, Italy
| | - E Palmisani
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - S Pestarino
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - F Pierri
- HSCT Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - M Pillon
- Maternal and Child Health Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
| | - U Ramenghi
- Hematology Unit, "Regina Margherita" Children's Hospital, Turin, Italy
| | - G Russo
- Division of Pediatric Hematology/Oncology, University of Catania, Catania, Italy
| | - F Saettini
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - F Timeus
- Pediatrics Department, Chivasso Hospital, Turin, Italy
| | - F Verzegnassi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - M Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - F Fioredda
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy
| | - C Dufour
- Hematology Unit, IRCCS Giannina Gaslini Children Hospital, Genoa, Italy.
| |
Collapse
|
3
|
Babushok DV, DeZern AE, de Castro CM, Rogers ZR, Beenhouwer D, Broder MS, Fanning SR, Gibbs SN, Hanna R, Maciejewski JP, Scott BL, Tantravahi SK, Wlodarski MW, Yermilov I, Patel BJ. Modified Delphi panel consensus recommendations for management of severe aplastic anemia. Blood Adv 2024; 8:3946-3960. [PMID: 38669341 PMCID: PMC11331724 DOI: 10.1182/bloodadvances.2023011642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/28/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
ABSTRACT Severe aplastic anemia (SAA) is a rare hematologic condition for which there is no clear management algorithm. A panel of 11 experts on adult and pediatric aplastic anemia was assembled and, using the RAND/University of California, Los Angeles modified Delphi panel method, evaluated >600 varying patient care scenarios to develop clinical recommendations for the initial and subsequent management of patients of all ages with SAA. Here, we present the panel's recommendations to rule out inherited bone marrow failure syndromes, on supportive care before and during first-line therapy, and on first-line (initial management) and second-line (subsequent management) therapy of acquired SAA, focusing on when transplant vs medical therapy is most appropriate. These recommendations represent the consensus of 11 experts informed by published literature and experience. They are intended only as general guidance for experienced clinicians who treat patients with SAA and are in no way intended to supersede individual physician and patient decision making. Current and future research should validate this consensus using clinical data. Once validated, we hope these expert panel recommendations will improve outcomes for patients with SAA.
Collapse
Affiliation(s)
- Daria V. Babushok
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Amy E. DeZern
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Carlos M. de Castro
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke Cancer Institute, Durham, NC
| | - Zora R. Rogers
- Division of Pediatric Hematology-Oncology, University of Texas, Southwestern Medical Center, Dallas, TX
| | | | | | - Suzanne R. Fanning
- Prisma Health Cancer Institute, University of South Carolina, Greenville, SC
| | - Sarah N. Gibbs
- Partnership for Health Analytic Research, Beverly Hills, CA
| | - Rabi Hanna
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Cleveland Clinic, Cleveland, OH
| | | | - Bart L. Scott
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Srinivas K. Tantravahi
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Irina Yermilov
- Partnership for Health Analytic Research, Beverly Hills, CA
| | - Bhumika J. Patel
- Prisma Health Cancer Institute, University of South Carolina, Greenville, SC
| |
Collapse
|
4
|
Fathi N, Nirouei M, Salimian Rizi Z, Fekrvand S, Abolhassani H, Salami F, Ketabforoush AHME, Azizi G, Saghazadeh A, Esmaeili M, Almasi-Hashiani A, Rezaei N. Clinical, Immunological, and Genetic Features in Patients with NFKB1 and NFKB2 Mutations: a Systematic Review. J Clin Immunol 2024; 44:160. [PMID: 38990428 DOI: 10.1007/s10875-024-01763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Inborn errors of immunity (IEIs) encompass various diseases with diverse clinical and immunological symptoms. Determining the genotype-phenotype of different variants in IEI entity precisely is challenging, as manifestations can be heterogeneous even in patients with the same mutated gene. OBJECTIVE In the present study, we conducted a systematic review of patients recorded with NFKB1 and NFKB2 mutations, two of the most frequent monogenic IEIs. METHODS The search for relevant literature was conducted in databases including Web of Science, PubMed, and Scopus. Information encompassing demographic, clinical, immunological, and genetic data was extracted from cases reported with mutations in NFKB1 and NFKB2. The comprehensive features of manifestations in patients were described, and a comparative analysis of primary characteristics was conducted between individuals with NFKB1 loss of function (LOF) and NFKB2 (p52-LOF/IκBδ-gain of function (GOF)) variants. RESULTS A total of 397 patients were included in this study, 257 had NFKB1 mutations and 140 had NFKB2 mutations. There were 175 LOF cases in NFKB1 and 122 p52LOF/IκBδGOF cases in NFKB2 pivotal groups with confirmed functional implications. NFKB1LOF and p52LOF/IκBδGOF predominant cases (81.8% and 62.5% respectively) initially presented with a CVID-like phenotype. Patients with NFKB1LOF variants often experienced hematologic autoimmune disorders, whereas p52LOF/IκBδGOF patients were more susceptible to other autoimmune diseases. Viral infections were markedly higher in p52LOF/IκBδGOF cases compared to NFKB1LOF (P-value < 0.001). NFKB2 (p52LOF/IκBδGOF) patients exhibited a greater prevalence of ectodermal dysplasia and pituitary gland involvement than NFKB1LOF patients. Most NFKB1LOF and p52LOF/IκBδGOF cases showed low CD19 + B cells, with p52LOF/IκBδGOF having more cases of this type. Low memory B cells were more common in p52LOF/IκBδGOF patients. CONCLUSIONS Patients with NFKB2 mutations, particularly p52LOF/IκBδGOF, are at higher risk of viral infections, pituitary gland involvement, and ectodermal dysplasia compared to patients with NFKB1LOF mutations. Genetic testing is essential to resolve the initial complexity and confusion surrounding clinical and immunological features. Emphasizing the significance of functional assays in determining the probability of correlations between mutations and immunological and clinical characteristics of patients is crucial.
Collapse
Affiliation(s)
- Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Zahra Salimian Rizi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzie Esmaeili
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Autoimmune Neutropenia and Immune-Dysregulation in a Patient Carrying a TINF2 Variant. Int J Mol Sci 2022; 23:ijms232314535. [PMID: 36498862 PMCID: PMC9738458 DOI: 10.3390/ijms232314535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, the knowledge about the immune-mediated impairment of bone marrow precursors in immune-dysregulation and autoimmune disorders has increased. In addition, immune-dysregulation, secondary to marrow failure, has been reported as being, in some cases, the most evident and early sign of the disease and making the diagnosis of both groups of disorders challenging. Dyskeratosis congenita is a disorder characterized by premature telomere erosion, typically showing marrow failure, nail dystrophy and leukoplakia, although incomplete genetic penetrance and phenotypes with immune-dysregulation features have been described. We report on a previously healthy 17-year-old girl, with a cousin successfully treated for acute lymphoblastic leukemia, who presented with leukopenia and neutropenia. The diagnostic work-up showed positive anti-neutrophil antibodies, leading to the diagnosis of autoimmune neutropenia, a slightly low NK count and high TCR-αβ+-double-negative T-cells. A next-generation sequencing (NGS) analysis showed the 734C>A variant on exon 6 of the TINF2 gene, leading to the p.Ser245Tyr. The telomere length was short on the lymphocytes and granulocytes, suggesting the diagnosis of an atypical telomeropathy showing with immune-dysregulation. This case underlines the importance of an accurate diagnostic work-up of patients with immune-dysregulation, who should undergo NGS or whole exome sequencing to identify specific disorders that deserve targeted follow-up and treatment.
Collapse
|
6
|
Miano M, Grossi A, Dell'Orso G, Lanciotti M, Fioredda F, Palmisani E, Lanza T, Guardo D, Beccaria A, Ravera S, Cossu V, Terranova P, Giona F, Santopietro M, Cappelli E, Ceccherini I, Dufour C. Genetic screening of children with marrow failure. The role of primary Immunodeficiencies. Am J Hematol 2021; 96:1077-1086. [PMID: 34000087 DOI: 10.1002/ajh.26242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
The differential diagnosis of marrow failure (MF) is crucial in the diagnostic work-up, since genetic forms require specific care. We retrospectively studied all patients with single/multi-lineage MF evaluated in a single-center to identify the type and incidence of underlying molecular defects. The diepoxybutane test was used to screen Fanconi Anemia. Other congenital MFs have been searched using Sanger and/or Next Generation Sequencing analysis, depending on the available tools over the years. Between 2009-2019, 97 patients (aged 0-32 years-median 5) with single-lineage (29%) or multilineage (68%) MF were evaluated. Fifty-three (54%) and 28 (29%) were diagnosed with acquired and congenital MF, respectively. The remaining 16 (17%), with trilinear (n=9) and monolinear (n=7) MF, were found to have an underlying primary immunodeficiency (PID) and showed clinical and biochemical signs of immune-dysregulation in 10/16 (62%) and in 14/16 (87%) of cases, respectively. Clinical signs were also found in 22/53 (41%) and 8/28 (28%) patients with idiopathic and classical cMF, respectively. Eight out of 16 PIDs patients were successfully transplanted, four received immunosuppression, two did not require treatment, and the remaining two died. We show that patients with single/multi-lineage MF may have underlying PIDs in a considerable number of cases and that MF may represent a relevant clinical sign in patients with PIDs, thus widening their clinical phenotype. An accurate immunological work-up should be performed in all patients with MF, and PID-related genes should be considered when screening MF in order to identify disorders that may receive targeted treatments and/or appropriate conditioning regimens before transplant.
Collapse
Affiliation(s)
- Maurizio Miano
- Hematology Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Alice Grossi
- UOSD Genetics and Genomics of Rare Diseases IRCCS Istituto Giannina Gaslini Genoa Italy
| | | | | | | | | | - Tiziana Lanza
- Hematology Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Daniela Guardo
- Hematology Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | | | - Silvia Ravera
- Department of Experimental Medicine University of Genoa Genoa Italy
| | - Vanessa Cossu
- Department of Health Sciences University of Genoa Genoa Italy
| | | | - Fiorina Giona
- Department of Translational and Precision Medicine Sapienza University Rome Italy
| | - Michelina Santopietro
- Hematology and Hematopoietic Stem Cells Transplant Unit AO San Camillo‐Forlanini Rome Italy
| | | | - Isabella Ceccherini
- UOSD Genetics and Genomics of Rare Diseases IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Carlo Dufour
- Hematology Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| |
Collapse
|