1
|
Jia X, Zhu J, Bian X, Liu S, Yu S, Liang W, Jiang L, Mao R, Zhang W, Rao Y. Importance of glutamine in synaptic vesicles revealed by functional studies of SLC6A17 and its mutations pathogenic for intellectual disability. eLife 2023; 12:RP86972. [PMID: 37440432 PMCID: PMC10393021 DOI: 10.7554/elife.86972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Human mutations in the gene encoding the solute carrier (SLC) 6A17 caused intellectual disability (ID). The physiological role of SLC6A17 and pathogenesis of SLC6A17-based-ID were both unclear. Here, we report learning deficits in Slc6a17 knockout and point mutant mice. Biochemistry, proteomic, and electron microscopy (EM) support SLC6A17 protein localization in synaptic vesicles (SVs). Chemical analysis of SVs by liquid chromatography coupled to mass spectrometry (LC-MS) revealed glutamine (Gln) in SVs containing SLC6A17. Virally mediated overexpression of SLC6A17 increased Gln in SVs. Either genetic or virally mediated targeting of Slc6a17 reduced Gln in SVs. One ID mutation caused SLC6A17 mislocalization while the other caused defective Gln transport. Multidisciplinary approaches with seven types of genetically modified mice have shown Gln as an endogenous substrate of SLC6A17, uncovered Gln as a new molecule in SVs, established the necessary and sufficient roles of SLC6A17 in Gln transport into SVs, and suggested SV Gln decrease as the key pathogenetic mechanism in human ID.
Collapse
Affiliation(s)
- Xiaobo Jia
- Chinese Institute for Brain ResearchBeijingChina
- Changping LaboratoryBeijingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Jiemin Zhu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | - Xiling Bian
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | | | - Sihan Yu
- Chinese Institute for Brain ResearchBeijingChina
| | | | - Lifen Jiang
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Renbo Mao
- Chinese Institute for Brain ResearchBeijingChina
| | - Wenxia Zhang
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | - Yi Rao
- Chinese Institute for Brain ResearchBeijingChina
- Changping LaboratoryBeijingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
- Capital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Spatiotemporal processing of neural cell adhesion molecules 1 and 2 by BACE1 in vivo. J Biol Chem 2021; 296:100372. [PMID: 33548223 PMCID: PMC7949136 DOI: 10.1016/j.jbc.2021.100372] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Neural cell adhesion molecules 1 (NCAM1) and 2 (NCAM2) belong to the cell adhesion molecules of the immunoglobulin superfamily and have been shown to regulate formation, maturation, and maintenance of synapses. NCAM1 and NCAM2 undergo proteolysis, but the identity of all the proteases involved and how proteolysis is used to regulate their functions are not known. We report here that NCAM1 and NCAM2 are BACE1 substrates in vivo. NCAM1 and NCAM2 overexpressed in HEK cells were both cleaved by metalloproteinases or BACE1, and NCAM2 was also processed by γ-secretase. We identified the BACE1 cleavage site of NCAM1 (at Glu 671) and NCAM2 (at Glu 663) using mass spectrometry and site-directed mutagenesis. Next, we assessed BACE1-mediated processing of NCAM1 and NCAM2 in the mouse brain during aging. NCAM1 and NCAM2 were cleaved in the olfactory bulb of BACE1+/+ but not BACE1−/− mice at postnatal day 10 (P10), 4 and 12 months of age. In the hippocampus, a BACE1-specific soluble fragment of NCAM1 (sNCAM1β) was only detected at P10. However, we observed an accumulation of full-length NCAM1 in hippocampal synaptosomes in 4-month-old BACE1−/− mice. We also found that polysialylated NCAM1 (PSA-NCAM1) levels were increased in BACE1−/− mice at P10 and demonstrated that BACE1 cleaves both NCAM1 and PSA-NCAM1 in vitro. In contrast, we did not find evidence for BACE1-dependent NCAM2 processing in the hippocampus at any age analyzed. In summary, our data demonstrate that BACE1 differentially processes NCAM1 and NCAM2 depending on the region of brain, subcellular localization, and age in vivo.
Collapse
|
3
|
Proteomic Characterization of Synaptosomes from Human Substantia Nigra Indicates Altered Mitochondrial Translation in Parkinson's Disease. Cells 2020; 9:cells9122580. [PMID: 33276480 PMCID: PMC7761546 DOI: 10.3390/cells9122580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
The pathological hallmark of Parkinson's disease (PD) is the loss of neuromelanin-containing dopaminergic neurons within the substantia nigra pars compacta (SNpc). Additionally, numerous studies indicate an altered synaptic function during disease progression. To gain new insights into the molecular processes underlying the alteration of synaptic function in PD, a proteomic study was performed. Therefore, synaptosomes were isolated by density gradient centrifugation from SNpc tissue of individuals at advanced PD stages (N = 5) as well as control subjects free of pathology (N = 5) followed by mass spectrometry-based analysis. In total, 362 proteins were identified and assigned to the synaptosomal core proteome. This core proteome comprised all proteins expressed within the synapses without regard to data analysis software, gender, age, or disease. The differential analysis between control subjects and PD cases revealed that CD9 antigen was overrepresented and fourteen proteins, among them Thymidine kinase 2 (TK2), mitochondrial, 39S ribosomal protein L37, neurolysin, and Methionine-tRNA ligase (MARS2) were underrepresented in PD suggesting an alteration in mitochondrial translation within synaptosomes.
Collapse
|
4
|
Ugbode C, Garnham N, Fort-Aznar L, Evans GJO, Chawla S, Sweeney ST. JNK signalling regulates antioxidant responses in neurons. Redox Biol 2020; 37:101712. [PMID: 32949970 PMCID: PMC7502373 DOI: 10.1016/j.redox.2020.101712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are generated during physiological bouts of synaptic activity and as a consequence of pathological conditions in the central nervous system. How neurons respond to and distinguish between ROS in these different contexts is currently unknown. In Drosophila mutants with enhanced JNK activity, lower levels of ROS are observed and these animals are resistant to both changes in ROS and changes in synapse morphology induced by oxidative stress. In wild type flies, disrupting JNK-AP-1 signalling perturbs redox homeostasis suggesting JNK activity positively regulates neuronal antioxidant defense. We validated this hypothesis in mammalian neurons, finding that JNK activity regulates the expression of the antioxidant gene Srxn-1, in a c-Jun dependent manner. We describe a conserved ‘adaptive’ role for neuronal JNK in the maintenance of redox homeostasis that is relevant to several neurodegenerative diseases.
Collapse
Affiliation(s)
- Chris Ugbode
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Nathan Garnham
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Laura Fort-Aznar
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Gareth J O Evans
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Sangeeta Chawla
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| | - Sean T Sweeney
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| |
Collapse
|
5
|
Ahmad F, Liu P. Synaptosome as a tool in Alzheimer's disease research. Brain Res 2020; 1746:147009. [PMID: 32659233 DOI: 10.1016/j.brainres.2020.147009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 07/04/2020] [Indexed: 12/29/2022]
Abstract
Synapse dysfunction is an integral feature of Alzheimer's disease (AD) pathophysiology. In fact, prodromal manifestation of structural and functional deficits in synapses much prior to appearance of overt pathological hallmarks of the disease indicates that AD might be considered as a degenerative disorder of the synapses. Several research instruments and techniques have allowed us to study synaptic function and plasticity and their alterations in pathological conditions, such as AD. One such tool is the biochemically isolated preparations of detached and resealed synaptic terminals, the "synaptosomes". Because of the preservation of many of the physiological processes such as metabolic and enzymatic activities, synaptosomes have proved to be an indispensable ex vivo model system to study synapse physiology both when isolated from fresh or cryopreserved tissues, and from animal or human post-mortem tissues. This model system has been tremendously successful in the case of post-mortem tissues because of their accessibility relative to acute brain slices or cultures. The current review details the use of synaptosomes in AD research and its potential as a valuable tool in furthering our understanding of the pathogenesis and in devising and testing of therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Pitsch J, Kamalizade D, Braun A, Kuehn JC, Gulakova PE, Rüber T, Lubec G, Dietrich D, von Wrede R, Helmstaedter C, Surges R, Elger CE, Hattingen E, Vatter H, Schoch S, Becker AJ. Drebrin Autoantibodies in Patients with Seizures and Suspected Encephalitis. Ann Neurol 2020; 87:869-884. [PMID: 32196746 DOI: 10.1002/ana.25720] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Assess occurrence of the dendritic spine scaffolding protein Drebrin as a pathophysiologically relevant autoantibody target in patients with recurrent seizures and suspected encephalitis as leading symptoms. METHODS Sera of 4 patients with adult onset epilepsy and suspected encephalitis of unresolved etiology and equivalent results in autoantibody screening were subjected to epitope identification. We combined a wide array of approaches, ranging from immunoblotting, immunoprecipitation, mass spectrometry, subcellular binding pattern analyses in primary neuronal cultures, and immunohistochemistry in brains of wild-type and Drebrin knockout mice to in vitro analyses of impaired synapse formation, morphology, and aberrant neuronal excitability by antibody exposure. RESULTS In the serum of a patient with adult onset epilepsy and suspected encephalitis, a strong signal at ∼70kDa was detected by immunoblotting, for which mass spectrometry revealed Drebrin as the putative antigen. Three other patients whose sera also showed strong immunoreactivity around 70kDa on Western blotting were also anti-Drebrin-positive. Seizures, memory impairment, and increased protein content in cerebrospinal fluid occurred in anti-Drebrin-seropositive patients. Alterations in cerebral magnetic resonance imaging comprised amygdalohippocampal T2-signal increase and hippocampal sclerosis. Diagnostic biopsy revealed T-lymphocytic encephalitis in an anti-Drebrin-seropositive patient. Exposure of primary hippocampal neurons to anti-Drebrin autoantibodies resulted in aberrant synapse composition and Drebrin distribution as well as increased spike rates and the emergence of burst discharges reflecting network hyperexcitability. INTERPRETATION Anti-Drebrin autoantibodies define a chronic syndrome of recurrent seizures and neuropsychiatric impairment as well as inflammation of limbic and occasionally cortical structures. Immunosuppressant therapies should be considered in this disorder. ANN NEUROL 2020;87:869-884.
Collapse
Affiliation(s)
- Julika Pitsch
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Delara Kamalizade
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Anna Braun
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Julia C Kuehn
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Polina E Gulakova
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Center for Rare Diseases Bonn, University Hospital Bonn, Bonn, Germany
| | - Gert Lubec
- Paracelsus Medical University, Salzburg, Austria
| | - Dirk Dietrich
- Clinic for Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Center for Rare Diseases Bonn, University Hospital Bonn, Bonn, Germany
| | - Christoph Helmstaedter
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Center for Rare Diseases Bonn, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Center for Rare Diseases Bonn, University Hospital Bonn, Bonn, Germany
| | - Christian E Elger
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Center for Rare Diseases Bonn, University Hospital Bonn, Bonn, Germany
| | - Elke Hattingen
- Department of Neuroradiology, University Clinic of Frankfurt, Frankfurt, Germany
| | - Hartmut Vatter
- Clinic for Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany.,Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Jin C, Kim S, Kang H, Yun KN, Lee Y, Zhang Y, Kim Y, Kim JY, Han K. Shank3 regulates striatal synaptic abundance of Cyld, a deubiquitinase specific for Lys63-linked polyubiquitin chains. J Neurochem 2019; 150:776-786. [PMID: 31215654 DOI: 10.1111/jnc.14796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022]
Abstract
The SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins are core organizers of the postsynaptic density in neuronal excitatory synapses, and their defects cause various neurodevelopmental and neuropsychiatric disorders. Mechanistically, Shank3 directly and indirectly interacts with hundreds of synaptic proteins with diverse functions and potentially exerts its regulatory roles in synaptic development and function via these interactors. However, Shank3-dependent regulation of synaptic abundance has been validated in vivo for only a few Shank3 interactors. Here, using a quantitative proteomic analysis, we identified 136 proteins with altered synaptic abundance in the striatum of Shank3-overexpressing transgenic (TG) mice. By comparing these proteins with those found in a previous analysis of the postsynaptic density of Shank3 knock-out (KO) striatum, we identified and confirmed that cylindromatosis-associated deubiquitinase (Cyld), a deubiquitinase specific for Lys63-linked polyubiquitin chains, was up- and down-regulated in Shank3 TG and KO striatal synapses, respectively. Consistently, we found that the synaptic levels of Lys63-linked polyubiquitin chains were down- and up-regulated in the Shank3 TG and KO striata, respectively. Furthermore, by isolating and analyzing the synaptic Cyld complex, we generated a Cyld interactome consisting of 103 proteins, which may include Cyld substrates. Bioinformatic analyses suggested associations of the Cyld interactome with a few brain disorders and synaptic functions. Taken together, these results suggest that Shank3 regulates the synaptic abundance of Cyld in the mouse striatum and, thereby, potentially modulates the Lys63-linked polyubiquitination of striatal synaptic proteins.
Collapse
Affiliation(s)
- Chunmei Jin
- Departments of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Shinhyun Kim
- Departments of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, KISTI, Daejeon, South Korea
| | - Ki Na Yun
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Korea
| | - Yeunkum Lee
- Departments of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Yinhua Zhang
- Departments of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Yoonhee Kim
- Departments of Neuroscience, College of Medicine, Korea University, Seoul, South Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Korea
| | - Kihoon Han
- Departments of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
8
|
Peterson AR, Binder DK. Regulation of Synaptosomal GLT-1 and GLAST during Epileptogenesis. Neuroscience 2019; 411:185-201. [PMID: 31158434 DOI: 10.1016/j.neuroscience.2019.05.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
Astrocytes regulate extracellular glutamate homeostasis in the central nervous system through the Na+-dependent glutamate transporters glutamate transporter-1 (GLT-1) and glutamate aspartate transporter (GLAST). Impaired astrocyte glutamate uptake could contribute to the development of epilepsy but the regulation of glutamate transporters in epilepsy is not well understood. In this study, we investigate the expression of GLT-1 and GLAST in the mouse intrahippocampal kainic acid (IHKA) model of temporal lobe epilepsy (TLE). We used immunohistochemistry, synaptosomal fractionation and Western blot analysis at 1, 3, 7 and 30 days post-IHKA induced status epilepticus (SE) to examine changes in GLT-1 and GLAST immunoreactivity and synaptosomal expression during the development of epilepsy. We found a significant upregulation in GLT-1 immunoreactivity at 1 and 3 days post-IHKA in the ipsilateral dorsal hippocampus. However, GLT-1 immunoreactivity and synaptosomal protein levels were significantly downregulated at 7 days post-IHKA in the ipsilateral hippocampus, a time point corresponding to the onset of spontaneous seizures in this model. GLAST immunoreactivity was increased in specific layers at 1 and 3 days post-IHKA in the ipsilateral hippocampus. GLAST synaptosomal protein levels were significantly elevated at 30 days compared to 7 days post-IHKA in the ipsilateral hippocampus. Our findings suggest that astrocytic glutamate transporter dysregulation could contribute to the development of epilepsy.
Collapse
Affiliation(s)
- Allison R Peterson
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
9
|
Hovde MJ, Larson GH, Vaughan RA, Foster JD. Model systems for analysis of dopamine transporter function and regulation. Neurochem Int 2018; 123:13-21. [PMID: 30179648 DOI: 10.1016/j.neuint.2018.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/23/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
The dopamine transporter (DAT) plays a critical role in dopamine (DA) homeostasis by clearing transmitter from the extraneuronal space after vesicular release. DAT serves as a site of action for a variety of addictive and therapeutic reuptake inhibitors, and transport dysfunction is associated with transmitter imbalances in disorders such as schizophrenia, attention deficit hyperactive disorder, bipolar disorder, and Parkinson disease. In this review, we describe some of the model systems that have been used for in vitro analyses of DAT structure, function and regulation, and discuss a potential relationship between transporter kinetic values and membrane cholesterol.
Collapse
Affiliation(s)
- Moriah J Hovde
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Garret H Larson
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA.
| |
Collapse
|
10
|
Alexandrov PN, Zhao Y, Jaber V, Cong L, Lukiw WJ. Deficits in the Proline-Rich Synapse-Associated Shank3 Protein in Multiple Neuropsychiatric Disorders. Front Neurol 2017; 8:670. [PMID: 29321759 PMCID: PMC5732231 DOI: 10.3389/fneur.2017.00670] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Signaling between neurons in the human central nervous system (CNS) is accomplished through a highly interconnected network of presynaptic and postsynaptic elements essential in the conveyance of electrical and neurochemical information. One recently characterized core postsynaptic element essential to the efficient operation of this complex network is a relatively abundant ~184.7 kDa proline-rich synapse-associated cytoskeletal protein known as Shank3 (SH3-ankyrin repeat domain; encoded at human chr 22q13.33). In this “Perspectives” article, we review and comment on current advances in Shank3 research and include some original data that show common Shank3 deficits in a number of seemingly unrelated human neurological disorders that include sporadic Alzheimer’s disease (AD), autism spectrum disorder (ASD), bipolar disorder (BD), Phelan–McDermid syndrome (PMS; 22q13.3 deletion syndrome), and schizophrenia (SZ). Shank3 was also found to be downregulated in the CNS of the transgenic AD (TgAD) 5x familial Alzheimer’s disease murine model engineered to overexpress the 42 amino acid amyloid-beta (Aβ42) peptide. Interestingly, the application of known pro-inflammatory stressors, such as the Aβ42 peptide and the metal-neurotoxin aluminum sulfate, to human neuronal–glial cells in primary culture resulted in a significant decrease in the expression of Shank3. These data indicate that deficits in Shank3-expression may be one common denominator linking a wide-range of human neurological disorders that exhibit a progressive or developmental synaptic disorganization that is temporally associated with cognitive decline.
Collapse
Affiliation(s)
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States.,Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Lin Cong
- LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States.,Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Walter J Lukiw
- Russian Academy of Medical Sciences, Moscow, Russia.,LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States.,Department of Neurology, Shengjing Hospital, China Medical University, Shenyang, China.,Department of Ophthalmology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States.,Department of Neurology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| |
Collapse
|
11
|
Garlet QI, Pires LDC, Milanesi LH, Marafiga JR, Baldisserotto B, Mello CF, Heinzmann BM. (+)-Dehydrofukinone modulates membrane potential and delays seizure onset by GABAa receptor-mediated mechanism in mice. Toxicol Appl Pharmacol 2017; 332:52-63. [PMID: 28733205 DOI: 10.1016/j.taap.2017.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/03/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Abstract
(+)-Dehydrofukinone (DHF), isolated from Nectandra grandiflora (Lauraceae) essential oil, induces sedation and anesthesia by modulation of GABAa receptors. However, no study has addressed whether DHF modulates other cellular events involved in the control of cellular excitability, such as seizure behavior. Therefore, the aim of the present study was to investigate the effect of DHF on cellular excitability and seizure behavior in mice. For this purpose, we used isolated nerve terminals (synaptosomes) to examine the effect of DHF on the plasma membrane potential, the involvement of GABAa receptors and the downstream activation of Ca2+ mobilization. Finally, we performed an in vivo assay in order to verify whether DHF could impact on seizures induced by pentylenetetrazole (PTZ) in mice. The results showed that DHF induced a GABA-dependent sustained hyperpolarization, sensitive to flumazenil and absent in low-[Cl-] medium. Additionally, (1-100μM) DHF decreased KCl-evoked calcium mobilization over time in a concentration-dependent manner and this effect was prevented by flumazenil. DHF increased the latency to myoclonic jerks (10mg/kg), delayed the onset of generalized tonic-clonic seizures (10, 30 and 100mg/kg), and these effects were also blocked by the pretreatment with flumazenil. Our data indicate that DHF has anticonvulsant properties and the molecular target underlying this effect is likely to be the facilitation of GABAergic neuronal inhibition. The present study highlights the therapeutic potential of the natural compound DHF as a suppressor of neuronal excitability.
Collapse
Affiliation(s)
- Quelen Iane Garlet
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Luana da Costa Pires
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Laura Hautrive Milanesi
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Joseane Righes Marafiga
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Carlos Fernando Mello
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Berta Maria Heinzmann
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
Evidence of Presynaptic Localization and Function of the c-Jun N-Terminal Kinase. Neural Plast 2017; 2017:6468356. [PMID: 28367336 PMCID: PMC5359460 DOI: 10.1155/2017/6468356] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/28/2016] [Accepted: 12/15/2016] [Indexed: 12/17/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK) is part of a stress signalling pathway strongly activated by NMDA-stimulation and involved in synaptic plasticity. Many studies have been focused on the post-synaptic mechanism of JNK action, and less is known about JNK presynaptic localization and its physiological role at this site. Here we examined whether JNK is present at the presynaptic site and its activity after presynaptic NMDA receptors stimulation. By using N-SIM Structured Super Resolution Microscopy as well as biochemical approaches, we demonstrated that presynaptic fractions contained significant amount of JNK protein and its activated form. By means of modelling design, we found that JNK, via the JBD domain, acts as a physiological effector on T-SNARE proteins; then using biochemical approaches we demonstrated the interaction between Syntaxin-1-JNK, Syntaxin-2-JNK, and Snap25-JNK. In addition, taking advance of the specific JNK inhibitor peptide, D-JNKI1, we defined JNK action on the SNARE complex formation. Finally, electrophysiological recordings confirmed the role of JNK in the presynaptic modulation of vesicle release. These data suggest that JNK-dependent phosphorylation of T-SNARE proteins may have an important functional role in synaptic plasticity.
Collapse
|
13
|
Abstract
Alongside rodent brain slices and primary neuronal cultures, synaptosomes (isolated nerve terminals) have been an important model system for studying the molecular mechanisms of synaptic function in the brain. Synaptosomes were first prepared in the late 1950s by Whittaker and colleagues and were instrumental in studying synaptic structure and defining the functional components of the synapse, including the identity of the major neurotransmitters and their uptake mechanisms. Synaptosomes can also be stimulated to release neurotransmitters and were used to discover a number of regulatory signaling pathways that fine-tune synaptic transmission. In the past decade, landmark proteomic studies of synaptosomes and synaptic vesicle preparations have further dissected the protein composition of the synapse. This introduction briefly describes the history of the synaptosome preparation and highlights how it continues to be relevant as our focus in the neuroscience community centers on synaptic dysfunction in aging and neurological disease.
Collapse
Affiliation(s)
- Gareth J O Evans
- Department of Biology and Hull York Medical School, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|