1
|
Tafrishi A, Trivedi V, Xing Z, Li M, Mewalal R, Cutler SR, Blaby I, Wheeldon I. Functional genomic screening in Komagataella phaffii enabled by high-activity CRISPR-Cas9 library. Metab Eng 2024; 85:73-83. [PMID: 39019250 DOI: 10.1016/j.ymben.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/06/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
CRISPR-based high-throughput genome-wide loss-of-function screens are a valuable approach to functional genetics and strain engineering. The yeast Komagataella phaffii is a host of particular interest in the biopharmaceutical industry and as a metabolic engineering host for proteins and metabolites. Here, we design and validate a highly active 6-fold coverage genome-wide sgRNA library for this biotechnologically important yeast containing 30,848 active sgRNAs targeting over 99% of its coding sequences. Conducting fitness screens in the absence of functional non-homologous end joining (NHEJ), the dominant DNA repair mechanism in K. phaffii, provides a quantitative means to assess the activity of each sgRNA in the library. This approach allows for the experimental validation of each guide's targeting activity, leading to more precise screening outcomes. We used this approach to conduct growth screens with glucose as the sole carbon source and identify essential genes. Comparative analysis of the called gene sets identified a core set of K. phaffii essential genes, many of which relate to metabolic engineering targets, including protein production, secretion, and glycosylation. The high activity, genome-wide CRISPR library developed here enables functional genomic screening in K. phaffii, applied here to gene essentiality classification, and promises to enable other genetic screens.
Collapse
Affiliation(s)
- Aida Tafrishi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Varun Trivedi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Zenan Xing
- Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA
| | - Mengwan Li
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ritesh Mewalal
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sean R Cutler
- Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ian Blaby
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA; Center for Industrial Biotechnology, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
Ramesh A, Trivedi V, Lee S, Tafrishi A, Schwartz C, Mohseni A, Li M, Lonardi S, Wheeldon I. acCRISPR: an activity-correction method for improving the accuracy of CRISPR screens. Commun Biol 2023; 6:617. [PMID: 37291233 PMCID: PMC10250353 DOI: 10.1038/s42003-023-04996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
High throughput CRISPR screens are revolutionizing the way scientists unravel the genetic underpinnings of engineered and evolved phenotypes. One of the critical challenges in accurately assessing screening outcomes is accounting for the variability in sgRNA cutting efficiency. Poorly active guides targeting genes essential to screening conditions obscure the growth defects that are expected from disrupting them. Here, we develop acCRISPR, an end-to-end pipeline that identifies essential genes in pooled CRISPR screens using sgRNA read counts obtained from next-generation sequencing. acCRISPR uses experimentally determined cutting efficiencies for each guide in the library to provide an activity correction to the screening outcomes via calculation of an optimization metric, thus determining the fitness effect of disrupted genes. CRISPR-Cas9 and -Cas12a screens were carried out in the non-conventional oleaginous yeast Yarrowia lipolytica and acCRISPR was used to determine a high-confidence set of essential genes for growth under glucose, a common carbon source used for the industrial production of oleochemicals. acCRISPR was also used in screens quantifying relative cellular fitness under high salt conditions to identify genes that were related to salt tolerance. Collectively, this work presents an experimental-computational framework for CRISPR-based functional genomics studies that may be expanded to other non-conventional organisms of interest.
Collapse
Affiliation(s)
- Adithya Ramesh
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Varun Trivedi
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Sangcheon Lee
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Aida Tafrishi
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Cory Schwartz
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
- iBio Inc., San Diego, CA, USA
| | - Amirsadra Mohseni
- Department of Computer Science and Engineering, University of California, Riverside, CA, 92521, USA
| | - Mengwan Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, CA, 92521, USA
- Integrative Institute for Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA.
- Integrative Institute for Genome Biology, University of California, Riverside, CA, 92521, USA.
- Center for Industrial Biotechnology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
3
|
Messner CB, Demichev V, Muenzner J, Aulakh SK, Barthel N, Röhl A, Herrera-Domínguez L, Egger AS, Kamrad S, Hou J, Tan G, Lemke O, Calvani E, Szyrwiel L, Mülleder M, Lilley KS, Boone C, Kustatscher G, Ralser M. The proteomic landscape of genome-wide genetic perturbations. Cell 2023; 186:2018-2034.e21. [PMID: 37080200 PMCID: PMC7615649 DOI: 10.1016/j.cell.2023.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/20/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023]
Abstract
Functional genomic strategies have become fundamental for annotating gene function and regulatory networks. Here, we combined functional genomics with proteomics by quantifying protein abundances in a genome-scale knockout library in Saccharomyces cerevisiae, using data-independent acquisition mass spectrometry. We find that global protein expression is driven by a complex interplay of (1) general biological properties, including translation rate, protein turnover, the formation of protein complexes, growth rate, and genome architecture, followed by (2) functional properties, such as the connectivity of a protein in genetic, metabolic, and physical interaction networks. Moreover, we show that functional proteomics complements current gene annotation strategies through the assessment of proteome profile similarity, protein covariation, and reverse proteome profiling. Thus, our study reveals principles that govern protein expression and provides a genome-spanning resource for functional annotation.
Collapse
Affiliation(s)
- Christoph B Messner
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK; Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland
| | - Vadim Demichev
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK; Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany; Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, UK
| | - Julia Muenzner
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Simran K Aulakh
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK
| | - Natalie Barthel
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Annika Röhl
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | | | - Anna-Sophia Egger
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK
| | - Stephan Kamrad
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK
| | - Jing Hou
- The Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Guihong Tan
- The Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Oliver Lemke
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Enrica Calvani
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK
| | - Lukasz Szyrwiel
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK; Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Michael Mülleder
- Charité Universitätsmedizin, Core Facility - High Throughput Mass Spectrometry, 10117 Berlin, Germany
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, UK
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S3E1, Canada; The Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; RIKEN Center for Sustainable Resource Science, Wako, 351-0198 Saitama, Japan
| | - Georg Kustatscher
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| | - Markus Ralser
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London NW1 1AT, UK; Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
4
|
Long Noncoding RNAs in Yeast Cells and Differentiated Subpopulations of Yeast Colonies and Biofilms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4950591. [PMID: 29765496 PMCID: PMC5889882 DOI: 10.1155/2018/4950591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/07/2018] [Indexed: 02/02/2023]
Abstract
We summarize current knowledge regarding regulatory functions of long noncoding RNAs (lncRNAs) in yeast, with emphasis on lncRNAs identified recently in yeast colonies and biofilms. Potential regulatory functions of these lncRNAs in differentiated cells of domesticated colonies adapted to plentiful conditions versus yeast colony biofilms are discussed. We show that specific cell types differ in their complements of lncRNA, that this complement changes over time in differentiating upper cells, and that these lncRNAs target diverse functional categories of genes in different cell subpopulations and specific colony types.
Collapse
|
5
|
Abstract
The Saccharomyces Genome Database (SGD) is a well-established, key resource for researchers studying Saccharomyces cerevisiae. In addition to updating and maintaining the official genomic sequence of this highly studied organism, SGD provides integrated data regarding gene functions and phenotypes, which are extracted from the published literature. The vast amount and variety of data housed in the database can prove challenging to navigate for the first-time user. Therefore, this chapter serves as an introduction describing how to search the database in order to discover new information. We introduce the different types of pages on the website, and describe how to manipulate the tables and diagrams therein to display, download, or analyze the data using various SGD tools.
Collapse
|
6
|
Abstract
The Saccharomyces Genome Database (SGD) is the main community repository of information for the budding yeast, Saccharomyces cerevisiae. The SGD has collected published results on chromosomal features, including genes and their products, and has become an encyclopedia of information on the biology of the yeast cell. This information includes gene and gene product function, phenotype, interactions, regulation, complexes, and pathways. All information has been integrated into a unique web resource, accessible via http://yeastgenome.org. The website also provides custom tools to allow useful searches and visualization of data. The experimentally defined functions of genes, mutant phenotypes, and sequence homologies archived in the SGD provide a platform for understanding many fields of biological research. The mission of SGD is to provide public access to all published experimental results on yeast to aid life science students, educators, and researchers. As such, the SGD has become an essential tool for the design of experiments and for the analysis of experimental results.
Collapse
Affiliation(s)
- J. Michael Cherry
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120
| |
Collapse
|