1
|
Fang R, Bai L, Li B, Dong K, Paulo JA, Zhou M, Chu YC, Song Y, Sherman MY, Gygi S, Field CM, Mitchison TJ, Lu Y. Episodic Transport of Protein Aggregates Achieves a Positive Size Selectivity in Aggresome Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606767. [PMID: 39211171 PMCID: PMC11361152 DOI: 10.1101/2024.08.06.606767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Eukaryotic cells direct toxic misfolded proteins to various protein quality control pathways based on their chemical features and aggregation status. Aggregated proteins are targeted to selective autophagy or specifically sequestered into the "aggresome," a perinuclear inclusion at the microtubule-organizing center (MTOC). However, the mechanism for selectively sequestering protein aggregates into the aggresome remains unclear. To investigate aggresome formation, we reconstituted MTOC-directed aggregate transport in Xenopus laevis egg extract using AgDD, a chemically inducible aggregation system. High-resolution single-particle tracking revealed that dynein-mediated transport of aggregates was highly episodic, with average velocity positively correlated with aggregate size. Our mechanistic model suggests that the recurrent formation of the dynein transport complex biases larger aggregates towards the active transport state, compensating for the slowdown due to viscosity. Both episodic transport and positive size selectivity are specifically associated with aggresome-dynein adaptors. Coupling conventional dynein-activating adaptors to the aggregates perturbs aggresome formation and reverses size selectivity.
Collapse
|
2
|
Rosfelter A, de Labbey G, Chenevert J, Dumollard R, Schaub S, Machaty Z, Besnardeau L, Gonzalez Suarez D, Hebras C, Turlier H, Burgess DR, McDougall A. Reduction of cortical pulling at mitotic entry facilitates aster centration. J Cell Sci 2024; 137:jcs262037. [PMID: 38469748 DOI: 10.1242/jcs.262037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Equal cell division relies upon astral microtubule-based centering mechanisms, yet how the interplay between mitotic entry, cortical force generation and long astral microtubules leads to symmetric cell division is not resolved. We report that a cortically located sperm aster displaying long astral microtubules that penetrate the whole zygote does not undergo centration until mitotic entry. At mitotic entry, we find that microtubule-based cortical pulling is lost. Quantitative measurements of cortical pulling and cytoplasmic pulling together with physical simulations suggested that a wavelike loss of cortical pulling at mitotic entry leads to aster centration based on cytoplasmic pulling. Cortical actin is lost from the cortex at mitotic entry coincident with a fall in cortical tension from ∼300pN/µm to ∼100pN/µm. Following the loss of cortical force generators at mitotic entry, long microtubule-based cytoplasmic pulling is sufficient to displace the aster towards the cell center. These data reveal how mitotic aster centration is coordinated with mitotic entry in chordate zygotes.
Collapse
Affiliation(s)
- Anne Rosfelter
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Ghislain de Labbey
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241 / INSERM U1050, Université PSL, 75002 Paris, France
| | - Janet Chenevert
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Rémi Dumollard
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Sebastien Schaub
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Zoltan Machaty
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Lydia Besnardeau
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Daniel Gonzalez Suarez
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Céline Hebras
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241 / INSERM U1050, Université PSL, 75002 Paris, France
| | - David R Burgess
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Alex McDougall
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| |
Collapse
|
3
|
Liu J, Zhang C. Xenopus cell-free extracts and their applications in cell biology study. BIOPHYSICS REPORTS 2023; 9:195-205. [PMID: 38516620 PMCID: PMC10951473 DOI: 10.52601/bpr.2023.230016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/05/2023] [Indexed: 03/23/2024] Open
Abstract
Xenopus has proven to be a remarkably versatile model organism in the realm of biological research for numerous years, owing to its straightforward maintenance in laboratory settings and its abundant provision of ample-sized oocytes, eggs, and embryos. The cell cycle of these oocytes, eggs, and early embryos exhibits synchrony, and extracts derived from these cells serve various research purposes. Many fundamental concepts in biochemistry, cell biology, and development have been elucidated through the use of cell-free extracts derived from Xenopus cells. Over the past few decades, a wide array of cell-free extracts has been prepared from oocytes, eggs, and early embryos of different Xenopus species at varying cell cycle stages. Each of these extracts possesses distinct characteristics. This review provides a concise overview of the Xenopus species employed in laboratory research, the diverse types of cell-free extracts available, and their respective properties. Furthermore, this review delves into the extensive investigation of spindle assembly in Xenopus egg extracts, underscoring the versatility and potency of these cell-free systems in the realm of cell biology.
Collapse
Affiliation(s)
- Junjun Liu
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 91768, USA
| | - Chuanmao Zhang
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Abstract
Understanding the mechanisms of embryonic cell cycles is a central goal of developmental biology, as the regulation of the cell cycle must be closely coordinated with other events during early embryogenesis. Quantitative imaging approaches have recently begun to reveal how the cell cycle oscillator is controlled in space and time, and how it is integrated with mechanical signals to drive morphogenesis. Here, we discuss how the Drosophila embryo has served as an excellent model for addressing the molecular and physical mechanisms of embryonic cell cycles, with comparisons to other model systems to highlight conserved and species-specific mechanisms. We describe how the rapid cleavage divisions characteristic of most metazoan embryos require chemical waves and cytoplasmic flows to coordinate morphogenesis across the large expanse of the embryo. We also outline how, in the late cleavage divisions, the cell cycle is inter-regulated with the activation of gene expression to ensure a reliable maternal-to-zygotic transition. Finally, we discuss how precise transcriptional regulation of the timing of mitosis ensures that tissue morphogenesis and cell proliferation are tightly controlled during gastrulation.
Collapse
Affiliation(s)
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
5
|
Rossio V, Paulo JA, Chick J, Brasher B, Gygi SP, King RW. Proteomics of broad deubiquitylase inhibition unmasks redundant enzyme function to reveal substrates and assess enzyme specificity. Cell Chem Biol 2021; 28:487-502.e5. [PMID: 33417828 PMCID: PMC8052291 DOI: 10.1016/j.chembiol.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/30/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
Deubiquitylating enzymes (DUBs) counteract ubiquitylation to control stability or activity of substrates. Identification of DUB substrates is challenging because multiple DUBs can act on the same substrate, thwarting genetic approaches. Here, we circumvent redundancy by chemically inhibiting multiple DUBs simultaneously in Xenopus egg extract. We used quantitative mass spectrometry to identify proteins whose ubiquitylation or stability is altered by broad DUB inhibition, and confirmed their DUB-dependent regulation with human orthologs, demonstrating evolutionary conservation. We next extended this method to profile DUB specificity. By adding recombinant DUBs to extract where DUB activity was broadly inhibited, but ubiquitylation and degradation were active at physiological rates, we profiled the ability of DUBs to rescue degradation of these substrates. We found that USP7 has a unique ability to broadly antagonize degradation. Together, we present an approach to identify DUB substrates and characterize DUB specificity that overcomes challenges posed by DUB redundancy.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Joel Chick
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Bradley Brasher
- Boston Biochem, a Bio-Techne Brand, Cambridge, MA 02139, USA
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Randall W King
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Ishihara K, Decker F, Caldas P, Pelletier JF, Loose M, Brugués J, Mitchison TJ. Spatial variation of microtubule depolymerization in large asters. Mol Biol Cell 2021; 32:869-879. [PMID: 33439671 PMCID: PMC8108532 DOI: 10.1091/mbc.e20-11-0723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microtubule plus-end depolymerization rate is a potentially important target of physiological regulation, but it has been challenging to measure, so its role in spatial organization is poorly understood. Here we apply a method for tracking plus ends based on time difference imaging to measure depolymerization rates in large interphase asters growing in Xenopus egg extract. We observed strong spatial regulation of depolymerization rates, which were higher in the aster interior compared with the periphery, and much less regulation of polymerization or catastrophe rates. We interpret these data in terms of a limiting component model, where aster growth results in lower levels of soluble tubulin and microtubule-associated proteins (MAPs) in the interior cytosol compared with that at the periphery. The steady-state polymer fraction of tubulin was ∼30%, so tubulin is not strongly depleted in the aster interior. We propose that the limiting component for microtubule assembly is a MAP that inhibits depolymerization, and that egg asters are tuned to low microtubule density.
Collapse
Affiliation(s)
- Keisuke Ishihara
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
| | - Franziska Decker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
| | - Paulo Caldas
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - James F Pelletier
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115.,Cell Division Group, Marine Biological Laboratory, Woods Hole, MA 02543.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Martin Loose
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115.,Cell Division Group, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
7
|
Meaders JL, Burgess DR. Microtubule-Based Mechanisms of Pronuclear Positioning. Cells 2020; 9:E505. [PMID: 32102180 PMCID: PMC7072840 DOI: 10.3390/cells9020505] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
The zygote is defined as a diploid cell resulting from the fusion of two haploid gametes. Union of haploid male and female pronuclei in many animals occurs through rearrangements of the microtubule cytoskeleton into a radial array of microtubules known as the sperm aster. The sperm aster nucleates from paternally-derived centrioles attached to the male pronucleus after fertilization. Nematode, echinoderm, and amphibian eggs have proven as invaluable models to investigate the biophysical principles for how the sperm aster unites male and female pronuclei with precise spatial and temporal regulation. In this review, we compare these model organisms, discussing the dynamics of sperm aster formation and the different force generating mechanism for sperm aster and pronuclear migration. Finally, we provide new mechanistic insights for how sperm aster growth may influence sperm aster positioning.
Collapse
Affiliation(s)
| | - David R Burgess
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
8
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
9
|
Gibeaux R, Heald R. The Use of Cell-Free Xenopus Extracts to Investigate Cytoplasmic Events. Cold Spring Harb Protoc 2019; 2019:pdb.top097048. [PMID: 29980587 DOI: 10.1101/pdb.top097048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Experiments using cytoplasmic extracts prepared from Xenopus eggs have made important contributions to our understanding of the cell cycle, the cytoskeleton, and cytoplasmic membrane systems. Here we introduce the extract system and describe methods for visualizing and manipulating diverse cytoplasmic processes, and for assaying the functions, dynamics, and stability of individual factors. These in vitro approaches uniquely enable investigation of events at specific cell cycle states, including the assembly of actin- and microtubule-based structures, and the formation of the endoplasmic reticulum. Maternal stockpiles in extracts recapitulate diverse processes in the near absence of gene expression, and this biochemical system combined with microscopy empowers a wide range of mechanistic investigations.
Collapse
Affiliation(s)
- Romain Gibeaux
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200
| |
Collapse
|
10
|
Hazel JW, Gatlin JC. Isolation and Demembranation of Xenopus Sperm Nuclei. Cold Spring Harb Protoc 2018; 2018:pdb.prot099044. [PMID: 29438000 DOI: 10.1101/pdb.prot099044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The inherent experimental advantages of intact amphibian eggs have been exploited for several decades to advance our understanding of fundamental developmental processes and the cell cycle. Characterization of these processes at the molecular level has been greatly advanced by the use of cell-free extracts, which permit the development of biochemically tractable approaches. Demembranated Xenopus laevis sperm nuclei have been used with cell-free extracts to recapitulate cell cycle progression and to control the cell cycle state of the egg extract. This system has become an invaluable and widely used tool for studies of cell cycle regulation and many downstream events. Here, we describe a protocol, derived in part from other published protocols and modified over time, for the preparation of Xenopus sperm nuclei that can be used in a variety of in vitro assays.
Collapse
Affiliation(s)
- James W Hazel
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|