1
|
Ostruszka R, Zoppellaro G, Tomanec O, Pinkas D, Filimonenko V, Šišková K. Evidence of Au(II) and Au(0) States in Bovine Serum Albumin-Au Nanoclusters Revealed by CW-EPR/LEPR and Peculiarities in HR-TEM/STEM Imaging. NANOMATERIALS 2022; 12:nano12091425. [PMID: 35564133 PMCID: PMC9105226 DOI: 10.3390/nano12091425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023]
Abstract
Bovine serum albumin-embedded Au nanoclusters (BSA-AuNCs) are thoroughly probed by continuous wave electron paramagnetic resonance (CW-EPR), light-induced EPR (LEPR), and sequences of microscopic investigations performed via high-resolution transmission electron microscopy (HR-TEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray analysis (EDS). To the best of our knowledge, this is the first report analyzing the BSA-AuNCs by CW-EPR/LEPR technique. Besides the presence of Au(0) and Au(I) oxidation states in BSA-AuNCs, the authors observe a significant amount of Au(II), which may result from a disproportionation event occurring within NCs: 2Au(I) → Au(II) + Au(0). Based on the LEPR experiments, and by comparing the behavior of BSA versus BSA-AuNCs under UV light irradiation (at 325 nm) during light off-on-off cycles, any energy and/or charge transfer event occurring between BSA and AuNCs during photoexcitation can be excluded. According to CW-EPR results, the Au nano assemblies within BSA-AuNCs are estimated to contain 6–8 Au units per fluorescent cluster. Direct observation of BSA-AuNCs by STEM and HR-TEM techniques confirms the presence of such diameters of gold nanoclusters in BSA-AuNCs. Moreover, in situ formation and migration of Au nanostructures are observed and evidenced after application of either a focused electron beam from HR-TEM, or an X-ray from EDS experiments.
Collapse
Affiliation(s)
- Radek Ostruszka
- Department of Experimental Physics, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
- Correspondence: (G.Z.); (K.Š.)
| | - Ondřej Tomanec
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
| | - Dominik Pinkas
- Institute of Molecular Genetics of the Czech Academy of Sciences, Microscopy Centre, Electron Microscopy Core Facility, Vídeňská 1083, 14220 Prague, Czech Republic; (D.P.); (V.F.)
| | - Vlada Filimonenko
- Institute of Molecular Genetics of the Czech Academy of Sciences, Microscopy Centre, Electron Microscopy Core Facility, Vídeňská 1083, 14220 Prague, Czech Republic; (D.P.); (V.F.)
| | - Karolína Šišková
- Department of Experimental Physics, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
- Correspondence: (G.Z.); (K.Š.)
| |
Collapse
|
2
|
Lyons SK, Plenker D, Trotman LC. Advances in preclinical evaluation of experimental antibody-drug conjugates. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:745-754. [PMID: 34532655 PMCID: PMC8443155 DOI: 10.20517/cdr.2021.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022]
Abstract
The ability to chemically modify monoclonal antibodies with the attachment of specific functional groups has opened up an enormous range of possibilities for the targeted treatment and diagnosis of cancer in the clinic. As the number of such antibody-based drug candidates has increased, so too has the need for more stringent and robust preclinical evaluation of their in vivo performance to maximize the likelihood that time, research effort, and money are only spent developing the most effective and promising candidate molecules for translation to the clinic. Concurrent with the development of antibody-drug conjugate (ADC) technology, several recent advances in preclinical research stand to greatly increase the experimental rigor by which promising candidate molecules can be evaluated. These include advances in preclinical tumor modeling with the development of patient-derived tumor organoid models that far better recapitulate many aspects of the human disease than conventional subcutaneous xenograft models. Such models are amenable to genetic manipulation, which will greatly improve our understanding of the relationship between ADC and antigen and stringently evaluate mechanisms of therapeutic response. Finally, tumor development is often not visible in these in vivo models. We discuss how the application of several preclinical molecular imaging techniques will greatly enhance the quality of experimental data, enabling quantitative pre- and post-treatment tumor measurements or the precise assessment of ADCs as effective diagnostics. In our opinion, when taken together, these advances in preclinical cancer research will greatly improve the identification of effective candidate ADC molecules with the best chance of clinical translation and cancer patient benefit.
Collapse
Affiliation(s)
- Scott K. Lyons
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Lloyd C. Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
3
|
Intravital mesoscopic fluorescence molecular tomography allows non-invasive in vivo monitoring and quantification of breast cancer growth dynamics. Commun Biol 2021; 4:556. [PMID: 33976362 PMCID: PMC8113483 DOI: 10.1038/s42003-021-02063-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Preclinical breast tumor models are an invaluable tool to systematically study tumor progression and treatment response, yet methods to non-invasively monitor the involved molecular and mechanistic properties under physiologically relevant conditions are limited. Here we present an intravital mesoscopic fluorescence molecular tomography (henceforth IFT) approach that is capable of tracking fluorescently labeled tumor cells in a quantitative manner inside the mammary gland of living mice. Our mesoscopic approach is entirely non-invasive and thus permits prolonged observational periods of several months. The relatively high sensitivity and spatial resolution further enable inferring the overall number of oncogene-expressing tumor cells as well as their tumor volume over the entire cycle from early tumor growth to residual disease following the treatment phase. Our IFT approach is a promising method for studying tumor growth dynamics in a quantitative and longitudinal fashion in-vivo.
Collapse
|
4
|
Alsawaftah N, Farooq A, Dhou S, Majdalawieh AF. Bioluminescence Imaging Applications in Cancer: A Comprehensive Review. IEEE Rev Biomed Eng 2021; 14:307-326. [PMID: 32746363 DOI: 10.1109/rbme.2020.2995124] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bioluminescence imaging (BLI), an optical preclinical imaging modality, is an invaluable imaging modality due to its low-cost, high throughput, fast acquisition times, and functional imaging capabilities. BLI is being extensively used in the field of cancer imaging, especially with the recent developments in genetic-engineering, stem cell, and gene therapy treatments. The purpose of this paper is to provide a comprehensive review of the principles, developments, and current status of BLI in cancer research. This paper covers the fundamental BLI concepts including BLI reporters and enzyme-substrate systems, data acquisition, and image characteristics. It reviews the studies discussing the use of BLI in cancer research such as imaging tumor-characteristic phenomena including tumorigenesis, metastasis, cancer metabolism, apoptosis, hypoxia, and angiogenesis, and response to cancer therapy treatments including chemotherapy, radiotherapy, immunotherapy, gene therapy, and stem cell therapy. The key advantages and disadvantages of BLI compared to other common imaging modalities are also discussed.
Collapse
|
5
|
Baek SE, Ul-Haq A, Kim DH, Choi HW, Kim MJ, Choi HJ, Kim H. Human Organic Anion Transporting Polypeptide 1B3 Applied as an MRI-Based Reporter Gene. Korean J Radiol 2020; 21:726-735. [PMID: 32410411 PMCID: PMC7231618 DOI: 10.3348/kjr.2019.0903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/22/2022] Open
Abstract
Objective Recent innovations in biology are boosting gene and cell therapy, but monitoring the response to these treatments is difficult. The purpose of this study was to find an MRI-reporter gene that can be used to monitor gene or cell therapy and that can be delivered without a viral vector, as viral vector delivery methods can result in long-term complications. Materials and Methods CMV promoter-human organic anion transporting polypeptide 1B3 (CMV-hOATP1B3) cDNA or CMV-blank DNA (control) was transfected into HEK293 cells using Lipofectamine. OATP1B3 expression was confirmed by western blotting and confocal microscopy. In vitro cell phantoms were made using transfected HEK293 cells cultured in various concentrations of gadoxetic acid for 24 hours, and images of the phantoms were made with a 9.4T micro-MRI. In vivo xenograft tumors were made by implanting HEK293 cells transfected with CMV-hOATP1B3 (n = 4) or CMV-blank (n = 4) in 8-week-old male nude mice, and MRI was performed before and after intravenous injection of gadoxetic acid (1.2 µL/g). Results Western blot and confocal microscopy after immunofluorescence staining revealed that only CMV-hOATP1B3-transfected HEK293 cells produced abundant OATP1B3, which localized at the cell membrane. OATP1B3 expression levels remained high through the 25th subculture cycle, but decreased substantially by the 50th subculture cycle. MRI of cell phantoms showed that only the CMV-hOATP1B3-transfected cells produced a significant contrast enhancement effect. In vivo MRI of xenograft tumors revealed that only CMV-hOATP1B3-transfected HEK293 tumors demonstrated a T1 contrast effect, which lasted for at least 5 hours. Conclusion The human endogenous OATP1B3 gene can be non-virally delivered into cells to induce transient OATP1B3 expression, leading to gadoxetic acid-mediated enhancement on MRI. These results indicate that hOATP1B3 can serve as an MRI-reporter gene while minimizing the risk of long-term complications.
Collapse
Affiliation(s)
- Song Ee Baek
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Asad Ul-Haq
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dae Hee Kim
- Yonsei University College of Medicine, Seoul, Korea
| | | | - Myeong Jin Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Jin Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Honsoul Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Using iRFP Genetic Labeling Technology to Track Tumorogenesis of Transplanted CRISPR/Cas9-Edited iPSC in Skeletal Muscle. Methods Mol Biol 2020; 2126:73-83. [PMID: 32112380 DOI: 10.1007/978-1-0716-0364-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumorigenesis and attendant safety risks are significant concerns of induced pluripotent stem cell (iPSC)-based therapies. Thus, it is crucial to evaluate iPSC proliferation, differentiation, and tumor formation after transplantation. Several approaches have been employed for tracking the donor cells, including fluorescent protein and luciferase, but both have limitations. Here, we introduce a protocol using iRFP genetic labeling technology to track tumor formation of iPSCs in skeletal muscle after CRISPR/Cas9 gene editing.
Collapse
|
7
|
Scarfe L, Taylor A, Sharkey J, Harwood R, Barrow M, Comenge J, Beeken L, Astley C, Santeramo I, Hutchinson C, Ressel L, Smythe J, Austin E, Levy R, Rosseinsky MJ, Adams DJ, Poptani H, Park BK, Murray P, Wilm B. Non-invasive imaging reveals conditions that impact distribution and persistence of cells after in vivo administration. Stem Cell Res Ther 2018; 9:332. [PMID: 30486897 PMCID: PMC6264053 DOI: 10.1186/s13287-018-1076-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Background Cell-based regenerative medicine therapies are now frequently tested in clinical trials. In many conditions, cell therapies are administered systemically, but there is little understanding of their fate, and adverse events are often under-reported. Currently, it is only possible to assess safety and fate of cell therapies in preclinical studies, specifically by monitoring animals longitudinally using multi-modal imaging approaches. Here, using a suite of in vivo imaging modalities to explore the fate of a range of human and murine cells, we investigate how route of administration, cell type and host immune status affect the fate of administered cells. Methods We applied a unique imaging platform combining bioluminescence, optoacoustic and magnetic resonance imaging modalities to assess the safety of different human and murine cell types by following their biodistribution and persistence in mice following administration into the venous or arterial system. Results Longitudinal imaging analyses (i) suggested that the intra-arterial route may be more hazardous than intravenous administration for certain cell types, (ii) revealed that the potential of a mouse mesenchymal stem/stromal cell (MSC) line to form tumours depended on administration route and mouse strain and (iii) indicated that clinically tested human umbilical cord (hUC)-derived MSCs can transiently and unexpectedly proliferate when administered intravenously to mice. Conclusions In order to perform an adequate safety assessment of potential cell-based therapies, a thorough understanding of cell biodistribution and fate post administration is required. The non-invasive imaging platform used here can expose not only the general organ distribution of these therapies, but also a detailed view of their presence within different organs and, importantly, tumourigenic potential. Our observation that the hUC-MSCs but not the human bone marrow (hBM)-derived MSCs persisted for a period in some animals suggests that therapies with these cells should proceed with caution. Electronic supplementary material The online version of this article (10.1186/s13287-018-1076-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren Scarfe
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK.,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Arthur Taylor
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK.,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Jack Sharkey
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK.,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Rachel Harwood
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK.,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Michael Barrow
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Joan Comenge
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lydia Beeken
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Cai Astley
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Ilaria Santeramo
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK.,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Claire Hutchinson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Lorenzo Ressel
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | | | | | - Raphael Levy
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Dave J Adams
- School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Harish Poptani
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK.,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Brian K Park
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK. .,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK. .,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK.
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK. .,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK. .,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK.
| |
Collapse
|
8
|
Roose BW, Zemerov SD, Wang Y, Kasimova MA, Carnevale V, Dmochowski IJ. A Structural Basis for 129 Xe Hyper-CEST Signal in TEM-1 β-Lactamase. Chemphyschem 2018; 20:260-267. [PMID: 30151973 DOI: 10.1002/cphc.201800624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Indexed: 11/10/2022]
Abstract
Genetically encoded (GE) contrast agents detectable by magnetic resonance imaging (MRI) enable non-invasive visualization of gene expression and cell proliferation at virtually unlimited penetration depths. Using hyperpolarized 129 Xe in combination with chemical exchange saturation transfer, an MR contrast approach known as hyper-CEST, enables ultrasensitive protein detection and biomolecular imaging. GE MRI contrast agents developed to date include nanoscale proteinaceous gas vesicles as well as the monomeric bacterial proteins TEM-1 β-lactamase (bla) and maltose binding protein (MBP). To improve understanding of hyper-CEST NMR with proteins, structural and computational studies were performed to further characterize the Xe-bla interaction. X-ray crystallography validated the location of a high-occupancy Xe binding site predicted by MD simulations, and mutagenesis experiments confirmed this Xe site as the origin of the observed CEST contrast. Structural studies and MD simulations with representative bla mutants offered additional insight regarding the relationship between local protein structure and CEST contrast.
Collapse
Affiliation(s)
- Benjamin W Roose
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104
| | - Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104
| | - Yanfei Wang
- Harvard Medical School, 300 Longwood Ave, Boston, MA 02115
| | - Marina A Kasimova
- Science for Life Laboratory Department of Theoretical Physics, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science College of Science and Technology, Temple University, 1925 N 12th St, Philadelphia, PA 19122
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104
| |
Collapse
|
9
|
Scarfe L, Brillant N, Kumar JD, Ali N, Alrumayh A, Amali M, Barbellion S, Jones V, Niemeijer M, Potdevin S, Roussignol G, Vaganov A, Barbaric I, Barrow M, Burton NC, Connell J, Dazzi F, Edsbagge J, French NS, Holder J, Hutchinson C, Jones DR, Kalber T, Lovatt C, Lythgoe MF, Patel S, Patrick PS, Piner J, Reinhardt J, Ricci E, Sidaway J, Stacey GN, Starkey Lewis PJ, Sullivan G, Taylor A, Wilm B, Poptani H, Murray P, Goldring CEP, Park BK. Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. NPJ Regen Med 2017; 2:28. [PMID: 29302362 PMCID: PMC5677988 DOI: 10.1038/s41536-017-0029-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/30/2017] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies. To facilitate clinical translation, non-invasive in vivo imaging technologies that enable careful evaluation and characterisation of the administered cells and their effects on host tissues are critically required to evaluate their safety and efficacy in relevant preclinical models. This article reviews the most common imaging technologies available and how they can be applied to regenerative medicine research. We cover details of how each technology works, which cell labels are most appropriate for different applications, and the value of multi-modal imaging approaches to gain a comprehensive understanding of the responses to cell therapy in vivo.
Collapse
Affiliation(s)
- Lauren Scarfe
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Nathalie Brillant
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - J. Dinesh Kumar
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Noura Ali
- College of Health Science, University of Duhok, Duhok, Iraq
| | - Ahmed Alrumayh
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Mohammed Amali
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Stephane Barbellion
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Vendula Jones
- GlaxoSmithKline, David Jack Centre for Research and Development, Ware, UK
| | - Marije Niemeijer
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Sophie Potdevin
- SANOFI Research and Development, Disposition, Safety and Animal Research, Alfortville, France
| | - Gautier Roussignol
- SANOFI Research and Development, Disposition, Safety and Animal Research, Alfortville, France
| | - Anatoly Vaganov
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ivana Barbaric
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Michael Barrow
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | | | - John Connell
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Francesco Dazzi
- Department of Haemato-Oncology, King’s College London, London, UK
| | | | - Neil S. French
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Julie Holder
- Roslin Cells, University of Cambridge, Cambridge, UK
| | - Claire Hutchinson
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - David R. Jones
- Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Tammy Kalber
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Cerys Lovatt
- GlaxoSmithKline, David Jack Centre for Research and Development, Ware, UK
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Sara Patel
- ReNeuron Ltd, Pencoed Business Park, Pencoed, Bridgend, UK
| | - P. Stephen Patrick
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Jacqueline Piner
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, UK
| | | | - Emanuelle Ricci
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | | | - Glyn N. Stacey
- UK Stem Cell Bank, Division of Advanced Therapies, National Institute for Biological Standards Control, Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Philip J. Starkey Lewis
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Gareth Sullivan
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Blindern, Oslo, Norway
- Institute of Immunology, Oslo University Hospital-Rikshospitalet, Nydalen, Oslo, Norway
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Arthur Taylor
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Harish Poptani
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Baklaushev VP, Kilpeläinen A, Petkov S, Abakumov MA, Grinenko NF, Yusubalieva GM, Latanova AA, Gubskiy IL, Zabozlaev FG, Starodubova ES, Abakumova TO, Isaguliants MG, Chekhonin VP. Luciferase Expression Allows Bioluminescence Imaging But Imposes Limitations on the Orthotopic Mouse (4T1) Model of Breast Cancer. Sci Rep 2017; 7:7715. [PMID: 28798322 PMCID: PMC5552689 DOI: 10.1038/s41598-017-07851-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/04/2017] [Indexed: 01/08/2023] Open
Abstract
Implantation of reporter-labeled tumor cells in an immunocompetent host involves a risk of their immune elimination. We have studied this effect in a mouse model of breast cancer after the orthotopic implantation of mammary gland adenocarcinoma 4T1 cells genetically labelled with luciferase (Luc). Mice were implanted with 4T1 cells and two derivative Luc-expressing clones 4T1luc2 and 4T1luc2D6 exhibiting equal in vitro growth rates. In vivo, the daughter 4T1luc2 clone exhibited nearly the same, and 4T1luc2D6, a lower growth rate than the parental cells. The metastatic potential of 4T1 variants was assessed by magnetic resonance, bioluminescent imaging, micro-computed tomography, and densitometry which detected 100-μm metastases in multiple organs and bones at the early stage of their development. After 3-4 weeks, 4T1 generated 11.4 ± 2.1, 4T1luc2D6, 4.5 ± 0.6; and 4T1luc2, <1 metastases per mouse, locations restricted to lungs and regional lymph nodes. Mice bearing Luc-expressing tumors developed IFN-γ response to the dominant CTL epitope of Luc. Induced by intradermal DNA-immunization, such response protected mice from the establishment of 4T1luc2-tumors. Our data show that natural or induced cellular response against the reporter restricts growth and metastatic activity of the reporter-labelled tumor cells. Such cells represent a powerful instrument for improving immunization technique for cancer vaccine applications.
Collapse
Affiliation(s)
- V P Baklaushev
- Research and Education Center for Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Biomedical Agency of the Russian Federation, Moscow, Russia.
| | - A Kilpeläinen
- Research and Education Center for Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - S Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - M A Abakumov
- Research and Education Center for Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N F Grinenko
- Research and Education Center for Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G M Yusubalieva
- Department of Fundamental and Applied Neurobiology, Serbsky National Research Center for Social and Forensic Psychiatry, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Latanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Preparations, Moscow, Russia
| | - I L Gubskiy
- Research and Education Center for Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - F G Zabozlaev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Biomedical Agency of the Russian Federation, Moscow, Russia
| | - E S Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Preparations, Moscow, Russia
| | - T O Abakumova
- Department of Fundamental and Applied Neurobiology, Serbsky National Research Center for Social and Forensic Psychiatry, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M G Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Preparations, Moscow, Russia.
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia.
- Riga Stradins University, Riga, Latvia.
| | - V P Chekhonin
- Research and Education Center for Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, Serbsky National Research Center for Social and Forensic Psychiatry, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
11
|
Dzien P, Tee S, Kettunen MI, Lyons SK, Larkin TJ, Timm KN, Hu D, Wright A, Rodrigues TB, Serrao EM, Marco‐Rius I, Mannion E, D'Santos P, Kennedy BWC, Brindle KM. (13) C magnetic resonance spectroscopy measurements with hyperpolarized [1-(13) C] pyruvate can be used to detect the expression of transgenic pyruvate decarboxylase activity in vivo. Magn Reson Med 2016; 76:391-401. [PMID: 26388418 PMCID: PMC5025726 DOI: 10.1002/mrm.25879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/03/2022]
Abstract
PURPOSE Dissolution dynamic nuclear polarization can increase the sensitivity of the (13) C magnetic resonance spectroscopy experiment by at least four orders of magnitude and offers a novel approach to the development of MRI gene reporters based on enzymes that metabolize (13) C-labeled tracers. We describe here a gene reporter based on the enzyme pyruvate decarboxylase (EC 4.1.1.1), which catalyzes the decarboxylation of pyruvate to produce acetaldehyde and carbon dioxide. METHODS Pyruvate decarboxylase from Zymomonas mobilis (zmPDC) and a mutant that lacked enzyme activity were expressed using an inducible promoter in human embryonic kidney (HEK293T) cells. Enzyme activity was measured in the cells and in xenografts derived from the cells using (13) C MRS measurements of the conversion of hyperpolarized [1-(13) C] pyruvate to H(13) CO3-. RESULTS Induction of zmPDC expression in the cells and in the xenografts derived from them resulted in an approximately two-fold increase in the H(13) CO3-/[1-(13) C] pyruvate signal ratio following intravenous injection of hyperpolarized [1-(13) C] pyruvate. CONCLUSION We have demonstrated the feasibility of using zmPDC as an in vivo reporter gene for use with hyperpolarized (13) C MRS. Magn Reson Med 76:391-401, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Piotr Dzien
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Sui‐Seng Tee
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Mikko I. Kettunen
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
- Present address: A. I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandNeulaniementieKuopioFinland.
| | - Scott K. Lyons
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | | | - Kerstin N. Timm
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - De‐En Hu
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Alan Wright
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Tiago B. Rodrigues
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Eva M. Serrao
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | | | - Elizabeth Mannion
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Paula D'Santos
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | | | - Kevin M. Brindle
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| |
Collapse
|
12
|
Abstract
As cancer has become increasingly prevalent, cancer prevention research has evolved towards placing a greater emphasis on reducing cancer deaths and minimizing the adverse consequences of having cancer. 'Precision cancer prevention' takes into account the collaboration of intrinsic and extrinsic factors in influencing cancer incidence and aggressiveness in the context of the individual, as well as recognizing that such knowledge can improve early detection and enable more accurate discrimination of cancerous lesions. However, mouse models, and particularly genetically engineered mouse (GEM) models, have yet to be fully integrated into prevention research. In this Opinion article, we discuss opportunities and challenges for precision mouse modelling, including the essential criteria of mouse models for prevention research, representative success stories and opportunities for more refined analyses in future studies.
Collapse
Affiliation(s)
| | - Aditya Dutta
- Department of Urology, Columbia University Medical Center, New York, NY 10032
| | - Cory Abate-Shen
- Department of Urology, Columbia University Medical Center, New York, NY 10032
- Department of Medicine, Columbia University Medical Center, New York, NY 10032
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY 10032
- Department of Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
- Corresponding author: Cory Abate-Shen, Columbia University Medical Center, 1130 St. Nicholas Ave., New York, NY 10032, (CAS) Phone: (212) 851-4731; fax: (212) 851-4787;
| |
Collapse
|
13
|
|
14
|
Wang Y, Tseng JC, Sun Y, Beck AH, Kung AL. Noninvasive imaging of tumor burden and molecular pathways in mouse models of cancer. Cold Spring Harb Protoc 2015; 2015:135-44. [PMID: 25646505 DOI: 10.1101/pdb.top069930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Imaging plays a central role in the diagnosis of cancer and the evaluation of therapeutic efficacy in patients with cancer. Because macroscopic imaging is noninvasive and quantitative, the development of specialized instruments for small animals has spurred increasing utilization in preclinical cancer studies. Some small-animal imaging devices are miniaturized derivatives of clinical imaging modalities, including computed tomography, magnetic resonance imaging, positron-emission tomography, single-photon emission computed tomography, and ultrasonography. Optical imaging, including bioluminescence imaging and fluorescence imaging, has evolved from microscopic cellular imaging technologies. Here, we review how current imaging modalities are enabling high-resolution structural imaging with micrometer-scale spatial resolution, thus allowing for the quantification of tumor burden in genetically engineered and orthotopic models of cancer, where tumors develop within organs not typically accessible to measurements with calipers. Beyond measuring tumor size, imaging is increasingly being used to assess the activity of molecular pathways within tumors and to reveal the pharmacodynamic efficacy of targeted therapies. Each imaging technology has particular strengths and limitations, and we discuss how studies should be carefully designed to match the imaging approach to the primary experimental question.
Collapse
Affiliation(s)
- Yuchuan Wang
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Jen-Chieh Tseng
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Yanping Sun
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Andrew H Beck
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215
| | - Andrew L Kung
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
15
|
Patrick PS, Lyons SK, Rodrigues TB, Brindle KM. Oatp1 enhances bioluminescence by acting as a plasma membrane transporter for D-luciferin. Mol Imaging Biol 2014; 16:626-34. [PMID: 24798747 PMCID: PMC4161938 DOI: 10.1007/s11307-014-0741-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Bioluminescence imaging is a powerful tool for studying gene expression and cell migration in intact living organisms. However, production of bioluminescence by cells transfected to express luciferase can be limited by the rate of plasma membrane transport of its substrate D-luciferin. We sought to identify a plasma membrane transporter for D-luciferin that could be expressed alongside luciferase to increase transmembrane flux of its substrate and thereby increase light output. PROCEDURES Luciferase-expressing cells were transfected with a lentivirus encoding the rat reno-hepatic organic anion transporter protein, Oatp1, which was identified as a potential transporter for D-luciferin. Light output was compared between cells expressing luciferase and those also expressing Oatp1. RESULTS In two cell lines and in mouse xenografts, co-expression of Oatp1 with luciferase increased light output by several fold, following addition of luciferin. CONCLUSIONS The increase in light output thus obtained will allow more sensitive detection of luciferase-expressing cells in vivo.
Collapse
Affiliation(s)
- P. Stephen Patrick
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QW
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK CB2 0RE
| | - Scott K. Lyons
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK CB2 0RE
| | - Tiago B. Rodrigues
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK CB2 0RE
| | - Kevin M. Brindle
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QW
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK CB2 0RE
| |
Collapse
|
16
|
Rappaport A, Johnson L. Genetically engineered knock-in and conditional knock-in mouse models of cancer. Cold Spring Harb Protoc 2014; 2014:897-911. [PMID: 25183823 DOI: 10.1101/pdb.top069799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Classical transgenic models are useful for quickly gauging the impact of transgene overexpression, but they are limited by the absence of the innate, subtle regulatory elements encoded in introns and other untranslated regions. Moreover, the widespread, high-level expression of oncogenes often leads to tumors that lack the histopathological and acquired genetic features of human cancers. Targeted mutation of endogenous loci, or knock-in (KI) alleles, facilitates more accurate modeling of human tumors by allowing for the expression of mutant alleles under normal physiological regulation. Advanced strategies enable the stochastic activation of such alleles in somatic cells, such that genotypically wild-type cells surround individual mutant cells. More recent technologies, such as site-specific engineered nucleases, have also accelerated the design and implementation of KI strategies. Together, these tools aid in the development of advanced mouse models that better recapitulate the features of human disease.
Collapse
Affiliation(s)
- Amy Rappaport
- Genentech, Inc., South San Francisco, California 94080
| | - Leisa Johnson
- Genentech, Inc., South San Francisco, California 94080
| |
Collapse
|
17
|
Dilworth JT, Krueger SA, Wilson GD, Marples B. Preclinical models for translational research should maintain pace with modern clinical practice. Int J Radiat Oncol Biol Phys 2014; 88:540-4. [PMID: 24521673 DOI: 10.1016/j.ijrobp.2013.11.209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Joshua T Dilworth
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Sarah A Krueger
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - George D Wilson
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Brian Marples
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan.
| |
Collapse
|
18
|
Patrick PS, Hammersley J, Loizou L, Kettunen MI, Rodrigues TB, Hu DE, Tee SS, Hesketh R, Lyons SK, Soloviev D, Lewis DY, Aime S, Fulton SM, Brindle KM. Dual-modality gene reporter for in vivo imaging. Proc Natl Acad Sci U S A 2014; 111:415-20. [PMID: 24347640 PMCID: PMC3890795 DOI: 10.1073/pnas.1319000111] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The ability to track cells and their patterns of gene expression in living organisms can increase our understanding of tissue development and disease. Gene reporters for bioluminescence, fluorescence, radionuclide, and magnetic resonance imaging (MRI) have been described but these suffer variously from limited depth penetration, spatial resolution, and sensitivity. We describe here a gene reporter, based on the organic anion transporting protein Oatp1a1, which mediates uptake of a clinically approved, Gd(3+)-based, hepatotrophic contrast agent (gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid). Cells expressing the reporter showed readily reversible, intense, and positive contrast (up to 7.8-fold signal enhancement) in T1-weighted magnetic resonance images acquired in vivo. The maximum signal enhancement obtained so far is more than double that produced by MRI gene reporters described previously. Exchanging the Gd(3+) ion for the radionuclide, (111)In, also allowed detection by single-photon emission computed tomography, thus combining the spatial resolution of MRI with the sensitivity of radionuclide imaging.
Collapse
Affiliation(s)
- P. Stephen Patrick
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| | - Jayne Hammersley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Louiza Loizou
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Mikko I. Kettunen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| | - Tiago B. Rodrigues
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| | - De-En Hu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| | - Sui-Seng Tee
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Robin Hesketh
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Scott K. Lyons
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| | - Dmitry Soloviev
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| | - David Y. Lewis
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| | - Silvio Aime
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, 10126 Turin, Italy
| | - Sandra M. Fulton
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Kevin M. Brindle
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; and
| |
Collapse
|
19
|
Hock AK, Lee P, Maddocks ODK, Mason SM, Blyth K, Vousden KH. iRFP is a sensitive marker for cell number and tumor growth in high-throughput systems. Cell Cycle 2013; 13:220-6. [PMID: 24200967 PMCID: PMC3906239 DOI: 10.4161/cc.26985] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/28/2013] [Indexed: 11/19/2022] Open
Abstract
GFP and luciferase are used extensively as markers both in vitro and in vivo although both have limitations. The utility of GFP fluorescence is restricted by high background signal and poor tissue penetrance. Luciferase throughput is limited in vitro by the requirement for cell lysis, while in vivo, luciferase readout is complicated by the need for substrate injection and the dependence on endogenous ATP. Here we show that near-infrared fluorescent protein in combination with widely available near-infrared scanners overcomes these obstacles and allows for the accurate determination of cell number in vitro and tumor growth in vivo in a high-throughput manner and at negligible per-well costs. This system represents a significant advance in tracking cell proliferation in tissue culture as well as in animals, with widespread applications in cell biology.
Collapse
Affiliation(s)
| | - Pearl Lee
- Cancer Research UK Beatson Institute; Glasgow, UK
| | | | | | - Karen Blyth
- Cancer Research UK Beatson Institute; Glasgow, UK
| | | |
Collapse
|