1
|
Comprehensive network analysis of genes expressed in human oropharyngeal cancer. Am J Otolaryngol 2015; 36:235-41. [PMID: 25484365 DOI: 10.1016/j.amjoto.2014.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/13/2014] [Indexed: 01/02/2023]
Abstract
PURPOSE Oropharyngeal cancer (OPC) is the eighth most common cancer worldwide, however the genes involved in the development of OPC have been reported few. We constructed a co-expression network to extend knowledge of the molecular biomarkers in OPC development. MATERIALS AND METHODS Microarray data of HPV-active, -inactive, -negative OPC and normal benign tissue (uvula, tonsil) (Series GSE55550) were retrieved from NCBI GEO DataSets. We performed co-expression analysis of OPC transcriptome data by the Pearson correlation coefficient (PCC) method with the mutual rank (MR)-based cut-off using 13 guide genes. RESULTS The OPC subnetwork contained three clusters: cell cycle (62 node genes and 125 edge genes), immune system (44 node genes and 70 edge genes) and organ morphogenesis (128 node gene and 215 edge genes) process separately. CONCLUSION Our co-expression analysis includes separated transcriptomes of OPC, which is a useful resource for OPC researchers to elucidate important and complex biological events, to prevent and to predict cancer.
Collapse
|
2
|
Potvin É, Beuret L, Cadrin-Girard JF, Carter M, Roy S, Tremblay M, Charron J. Cooperative action of multiple cis-acting elements is required for N-myc expression in branchial arches: specific contribution of GATA3. Mol Cell Biol 2010; 30:5348-63. [PMID: 20855530 PMCID: PMC2976382 DOI: 10.1128/mcb.00353-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/02/2009] [Accepted: 08/07/2010] [Indexed: 01/05/2023] Open
Abstract
The precise expression of the N-myc proto-oncogene is essential for normal mammalian development, whereas altered N-myc gene regulation is known to be a determinant factor in tumor formation. Using transgenic mouse embryos, we show that N-myc sequences from kb -8.7 to kb +7.2 are sufficient to reproduce the N-myc embryonic expression profile in developing branchial arches and limb buds. These sequences encompass several regulatory elements dispersed throughout the N-myc locus, including an upstream limb bud enhancer, a downstream somite enhancer, a branchial arch enhancer in the second intron, and a negative regulatory element in the first intron. N-myc expression in the limb buds is under the dominant control of the limb bud enhancer. The expression in the branchial arches necessitates the interplay of three regulatory domains. The branchial arch enhancer cooperates with the somite enhancer region to prevent an inhibitory activity contained in the first intron. The characterization of the branchial arch enhancer has revealed a specific role of the transcription factor GATA3 in the regulation of N-myc expression. Together, these data demonstrate that correct N-myc developmental expression is achieved via cooperation of multiple positive and negative regulatory elements.
Collapse
Affiliation(s)
- Éric Potvin
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Laurent Beuret
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Jean-François Cadrin-Girard
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Marcelle Carter
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Sophie Roy
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Michel Tremblay
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | - Jean Charron
- Centre de Recherche en Cancérologie de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| |
Collapse
|
3
|
Adams JM, Harris AW, Langdon WY, Klinken SP, Kongsuwan K, Alexander WS, Hariharan I, Vaux D, Rosenbaum H, Crawford M. Lymphoid neoplasia and the control of haemopoietic differentiation. CIBA FOUNDATION SYMPOSIUM 2007; 142:54-64; discussion 65-70. [PMID: 2568245 DOI: 10.1002/9780470513750.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Our broad aims are to delineate oncogenic events in lymphoid neoplasia and to search for genes that control haemopoietic differentiation. To explore lymphoid neoplasia, we have constructed transgenic mice bearing different oncogenes coupled to the immunoglobulin heavy chain enhancer (E mu), to force expression within lymphocytes. The prototype E mu-myc mice are highly prone to lymphomagenesis, generating pre-B and B cell lymphomas. In their pre-neoplastic phase, E mu-myc expression perturbs B cell development, accelerating the accumulation of pre-B cells. Lymphomagenesis requires additional oncogenic events, such as ras activation, and can be reconstructed in vitro. Transgenic mice bearing the N-myc, N-ras, v-abl and bcr-v-abl oncogenes are also prone to tumours. A striking demonstration that oncogenes can perturb lineage commitment has emerged. Introduction of the v-raf gene into cloned E mu-myc transgenic B cells frequently led to a switch in haemopoietic lineage: the cells became macrophages. Two clues to this remarkable metamorphosis are that the macrophage lines produce a myeloid growth factor and most bear marked karyotypic alterations, perhaps indicating that the balance between a few critical lineage control genes has been disturbed. To explore the hypothesis that genes encoding the DNA-binding homeo box domain participate in haemopoiesis, cDNA libraries from haemopoietic sources were screened, and several distinct homeo box cDNAs were isolated. They revealed a complex pattern of expression among haemopoietic cell lines. These genes are attractive candidates for regulators of haemopoietic differentiation.
Collapse
Affiliation(s)
- J M Adams
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Our knowledge on the regulation of the N-myc proto-oncogene expression comes mostly from in vitro studies. Very few in vivo analyses have been performed to identify the regulatory elements involved in N-myc developmental expression. In the present study, we defined DNA regions required for the regulated expression of N-myc during early embryogenesis. We showed that the expression of N-myc driven by the human N-myc sequences previously described to control N-myc expression in appropriate cell types in vitro cannot rescue the mouse N-myc mutant phenotype, suggesting that regulatory elements necessary for N-myc embryonic expression were missing. To identify the regulatory DNA regions involved in N-myc expression, transgenic mouse lines carrying N-myc/lacZ reporter constructs were generated. Beta-galactosidase staining analysis at different stages of gestation revealed that >16 kb of mouse N-myc genomic sequences are required to recapitulate the entire spatiotemporal expression pattern of the endogenous N-myc gene between embryonic d 8.5 and 11.5. This observation supported the notion that the sequences previously identified by in vitro assays were not sufficient to reproduce the N-myc embryonic expression pattern. However, regulatory elements that can direct specific expression in the visceral arches, the limb buds, the CNS, and the dorsal root ganglia are included into the mouse N-myc genomic sequences tested. Altogether, these findings indicated that the regulation of the spatiotemporal expression pattern of N-myc during development necessitates multiple regulatory DNA elements.
Collapse
Affiliation(s)
- Jean Charron
- Center of Research on Cancer, University Laval, CHUQ, L'Hôtel-Dieu de Québec, Québec, Québec G1R 2J6, Canada.
| | | | | |
Collapse
|
5
|
Douglas NC, Jacobs H, Bothwell AL, Hayday AC. Defining the specific physiological requirements for c-Myc in T cell development. Nat Immunol 2001; 2:307-15. [PMID: 11276201 DOI: 10.1038/86308] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
c-Myc is associated with cell growth and cycling in many tissues and its deregulated expression is causally implicated in cancer, particularly lymphomagenesis. However, the contribution of c-Myc to lymphocyte development is unresolved. We show here that the formation of normal lymphocytes by c-Myc-/- cells is selectively defective. c-Myc-/- cells are inefficient, in an age-dependent manner, at populating the thymus, and subsequent thymocyte maturation is ineffective: they fail to grow and proliferate normally at the late double-negative (DN) CD4-CD8- stage. Because N-Myc expression in thymocytes usually declines at the late DN stage, these results confirm that the nonredundant contributions of Myc family members to development are related to their distinct patterns of developmental gene expression.
Collapse
Affiliation(s)
- N C Douglas
- Department of Molecular Cell and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
6
|
Abstract
N-Myc is a member of the myc family of proto-oncogenes involved in initiation and progression of tumors. While c-MYC, the most characterized member of the family, is well known for its role in cellular proliferation and apoptosis, the function of N-MYC in differentiation and proliferation remains unclear. N-Myc mutant mice present a phenotype more consistent with a role of N-MYC protein in proliferation of precursor populations than in differentiation per se. Recent studies have also shown that N-MYC can enhance apoptosis and shorten the G1 phase of the cell cycle. However, the role of N-MYC in instigating cell-cycle progression has not been clearly demonstrated. Here, we demonstrate that overexpression of N-myc or activation of inducible N-MYC proteins is sufficient to induce apoptosis in serum-starved fibroblast cells, an effect that can be counteracted by overexpression of Bcl-2. Moreover, N-MYC can induce the reentry of quiescent cells into the cell cycle even in the absence of external stimuli. These results indicate that N-MYC and c-MYC share many properties, supporting the model that MYC-specific roles during embryonic development are mediated, at least in part, via their specific profile of expression rather than by their different protein functions.
Collapse
Affiliation(s)
- S Aubry
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Canada
| | | |
Collapse
|
7
|
Serebriiskii I, Khazak V, Golemis EA. A two-hybrid dual bait system to discriminate specificity of protein interactions. J Biol Chem 1999; 274:17080-7. [PMID: 10358061 DOI: 10.1074/jbc.274.24.17080] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biological regulatory systems require the specific organization of proteins into multicomponent complexes. Two hybrid systems have been used to identify novel components of signaling networks based on interactions with defined partner proteins. An important issue in the use of two-hybrid systems has been the degree to which interacting proteins distinguish their biological partner from evolutionarily conserved related proteins and the degree to which observed interactions are specific. We adapted the basic two-hybrid strategy to create a novel dual bait system designed to allow single-step screening of libraries for proteins that interact with protein 1 of interest, fused to DNA binding domain A (LexA), but do not interact with protein 2, fused to DNA binding domain B (lambda cI). Using the selective interactions of Ras and Krev-1(Rap1A) with Raf, RalGDS, and Krit1 as a model, we systematically compared LexA- and cI-fused baits and reporters. The LexA and cI baitr reporter systems are well matched for level of bait expression and sensitivity range for interaction detection and allow effective isolation of specifically interacting protein pairs against a nonspecific background. These reagents should prove useful to refine the selectivity of library screens, to reduce the isolation of false positives in such screens, and to perform directed analyses of sequence elements governing the interaction of a single protein with multiple partners.
Collapse
Affiliation(s)
- I Serebriiskii
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
8
|
Sivak LE, Pont-Kingdon G, Le K, Mayr G, Tai KF, Stevens BT, Carroll WL. A novel intron element operates posttranscriptionally To regulate human N-myc expression. Mol Cell Biol 1999; 19:155-63. [PMID: 9858540 PMCID: PMC83874 DOI: 10.1128/mcb.19.1.155] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1998] [Accepted: 09/23/1998] [Indexed: 11/20/2022] Open
Abstract
Precisely regulated expression of oncogenes and tumor suppressor genes is essential for normal development, and deregulated expression can lead to cancer. The human N-myc gene normally is expressed in only a subset of fetal epithelial tissues, and its expression is extinguished in all adult tissues except transiently in pre-B lymphocytes. The N-myc gene is overexpressed due to genomic amplification in the childhood tumor neuroblastoma. In previous work to investigate mechanisms of regulation of human N-myc gene expression, we observed that N-myc promoter-chloramphemicol acelyltransferase reporter constructs containing sequences 5' to exon 1 were active in all cell types examined, regardless of whether endogenous N-myc RNA was detected. In contrast, inclusion of the first exon and a portion of the first intron allowed expression only in those cell types with detectable endogenous N-myc transcripts. We investigated further the mechanisms by which this tissue-specific control of N-myc expression is achieved. Using nuclear run-on analyses, we determined that the N-myc gene is actively transcribed in all cell types examined, indicating a posttranscriptional mode of regulation. Using a series of N-myc intron 1 deletion constructs, we localized a 116-bp element (tissue-specific element [TSE]) within the first intron that directs tissue-specific N-myc expression. The TSE can function independently to regulate expression of a heterologous promoter-reporter minigene in a cell-specific pattern that mirrors the expression pattern of the endogenous N-myc gene. Surprisingly, the TSE can function in both sense and antisense orientations to regulate gene expression. Our data indicate that the human N-myc TSE functions through a posttranscriptional mechanism to regulate N-myc expression.
Collapse
Affiliation(s)
- L E Sivak
- Department of Experimental Pathology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Cultured cell lines that maintain specific differentiated phenotypes have been indispensable tools in cell biology. Progress in understanding the function of differentiated cells in vivo can be facilitated by creating cell lines via immortalizing gene transduction, if they retain the essential differentiated features of the same cells in vivo. Rodent cells immortalize spontaneously with a frequency of 10(-5) to 10(-6). Thus, it is easy to isolate immortal cells from rodent cell populations even without the transfer of immortalizing genes. Immortalizing genes can be used to increase this frequency to approximately 100%. In contrast, the spontaneous immortalization of human cells is a very rare event; the frequency is thought to be < 10(-12). Immortalizing genes can also be used to increase this frequency. Several genes that promise efficient immortalization of cultured cells have been identified. Immortalizing genes include simian virus 40 large T antigen, papillomaviruses E6 and E7, adenovirus E1A, Epstein-Barr virus, human T-cell leukemia virus, herpesvirus saimiri, oncogenes, and mutant p53 gene. Equally important, innovative means of gene delivery have been developed as well. These immortalizing genes, together with gene transfer methodologies, have provided the means to generate cell lines from cell types that are not abundant or are difficult to obtain in pure form in primary culture, are in short supply as human cells, and/or have brief lifetimes in culture. This chapter focuses primarily on the immortalization method by gene transfection. The chapter is not meant to be comprehensive, but rather to provide an account of the power and usefulness of immortalization methodology.
Collapse
Affiliation(s)
- Y Katakura
- Laboratory of Cellular Regulation Technology, Graduate School of Genetic Resources Technology, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
10
|
Bruggers CS, Tai KF, Murdock T, Sivak L, Le K, Perkins SL, Coffin CM, Carroll WL. Expression of the c-Myc protein in childhood medulloblastoma. J Pediatr Hematol Oncol 1998; 20:18-25. [PMID: 9482408 DOI: 10.1097/00043426-199801000-00003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The purpose of this study was to determine the incidence of c-Myc protein expression in medulloblastoma/primitive neuroectodermal tumor (MB/PNET) and to identify mechanisms in addition to c-myc gene amplification that lead to increased protein expression. METHODS We analyzed c-myc gene copy number, mRNA level and protein expression in a panel of MB/PNET cell lines. C-Myc protein levels were assessed in tumor specimens and cell lines using immunohistochemical staining with a c-Myc-specific monoclonal antibody. RESULTS Southern analysis confirmed c-myc gene amplification in the D425 MED cell line and re-arrangement of one allele in D283 MED, which was analyzed further and appeared to represent a small deletion 3' of exon 3. C-myc transcript levels were dramatically elevated in both lines. Using a c-myc probe, fluorescence in situ hybridization (FISH) showed c-myc present in 3 tandem copies at 8q24 in D283 MED and multiple copies as double minutes in D425 MED. Immunohistochemistry showed c-Myc protein expression in 9 of 10 tumors and all cell lines, regardless of gene amplification status or level of mRNA expression. CONCLUSIONS c-Myc protein expression is common in MB/PNET tumor specimens and cell lines. Elevated protein levels are observed in the absence of amplification, suggesting that multiple mechanisms of c-myc dysregulation may be involved in MB/PNET. These studies support a role for c-Myc in the development of this common childhood tumor.
Collapse
Affiliation(s)
- C S Bruggers
- Department of Pediatrics, Center for Children at the Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
MacDonald KP, Mackay-Sim A, Bushell GR, Bartlett PF. Olfactory neuronal cell lines generated by retroviral insertion of the n-myc oncogene display different developmental phenotypes. J Neurosci Res 1996; 45:237-47. [PMID: 8841984 DOI: 10.1002/(sici)1097-4547(19960801)45:3<237::aid-jnr5>3.0.co;2-e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Being genetically homogeneous, clonal cell lines are potentially important for investigating many aspects of cellular differentiation. We describe here the creation of clonal cell lines by immortalization of neuronal precursor cells from the adult mouse olfactory epithelium. Unlike neurons elsewhere in the vertebrate nervous system, the olfactory sensory neuron can be replaced throughout the lifespan of the animal. However, little is known about the molecular aspects of olfactory neurogenesis. Continuous cell lines were generated by retroviral transduction of the n-myc proto-oncogene into the mitotically active basal cells of the olfactory epithelium which give rise to the sensory neuron. Twenty-one clonal cell lines were produced which could be divided into three distinct morphological classes: one with flat, epithelial-like cells only; another with round, flat, and bipolar cells; and a third with large flat and large bipolar cells. These morphological classes had different patterns of intermediate filament expression, as shown by immunocytochemistry and immunoblot analysis. All cells in all cell lines expressed the intermediate filament protein vimentin. Most bipolar cells, but not other cell types, expressed neurofilament protein and in one morphological class the bipolar cells co-expressed neurofilament and glial fibrillary acidic protein. Several cell lines expressed mRNA for OMP, a marker of mature olfactory sensory neurons, and GOLF, a guanine nucleotide binding protein involved in olfactory sensory transduction. It is concluded that these cell lines were immortalized from sensory neuron precursors late in the lineage pathway. Other cell lines appear to have been immortalized at earlier stages in the lineage pathway. These cell lines therefore provide useful tools for the investigation of neuronal differentiation and sensory transduction in the olfactory epithelium.
Collapse
Affiliation(s)
- K P MacDonald
- Faculty of Science and Technology, Griffith University, Nathan, Queensland, Australia
| | | | | | | |
Collapse
|
12
|
Estojak J, Brent R, Golemis EA. Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 1995; 15:5820-9. [PMID: 7565735 PMCID: PMC230834 DOI: 10.1128/mcb.15.10.5820] [Citation(s) in RCA: 422] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Since their introduction, the interaction trap and other two-hybrid systems have been used to study protein-protein interactions. Despite their general use, little is known about the extent to which the degree of protein interaction determined by two-hybrid approaches parallels the degree of interaction determined by biochemical techniques. In this study, we used a set of lexAop-LEU2 and lexAop-lacZ reporters to calibrate the interaction trap. For the calibration, we used two sets of proteins, the Myc-Max-Mxi1 helix-loop-helix proteins, and wild-type and dimerization-defective versions of the lambda cI repressor. Our results indicate that the strength of interaction as predicted by the two-hybrid approach generally correlates with that determined in vitro, permitting discrimination of high-, intermediate-, and low-affinity interactions, but there was no single reporter for which the amount of gene expression linearly reflected affinity measured in vitro. However, some reporters showed thresholds and only responded to stronger interactions. Finally, some interactions were subject to directionality, and their apparent strength depended on the reporter used. Taken together, our results provide a cautionary framework for interpreting affinities from two-hybrid experiments.
Collapse
Affiliation(s)
- J Estojak
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
13
|
Griffioen M, Peltenburg LT, van Oorschot DA, Schrier PI. C-myc represses transiently transfected HLA class I promoter sequences not locus-specifically. Immunobiology 1995; 193:238-47. [PMID: 8530149 DOI: 10.1016/s0171-2985(11)80549-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Overexpression of the c-myc oncogene is frequently accompanied by downregulation of Major Histocompatibility Complex (MHC, HLA in humans) class I antigens. In human melanoma c-myc overexpression downmodulates HLA-B expression, whereas HLA-A is hardly affected. Repression of HLA-B is mediated through the core promoter, containing a CAAT-box and a non-conventional TATA-box. We show evidence that in transient transfection assays the HLA-A2 and HLA-B7 promoters are repressed by c-myc to the same extent. Therefore, other sequences of the HLA-A and HLA-B genes, possibly intron/exon sequences, should contribute to the locus B-specificity of the downregulation. Furthermore, c-myc does not seem to alter binding of protein complexes to the CAAT- or TATA-box of HLA-B7 or HLA-A2 in gel retardation assays. Comparison of promoters repressed by c-myc reveals a weak consensus sequence of the initiator (Inr) element: TCA(+1)YYYNY. The presence of a TCA sequence in the initiator region of the MHC class I promoter makes downregulation by c-myc through the Inr likely. We speculate that the Inr contributes to MHC class I promoter activity by stimulating recruitment of TFIID to the weak, non-conventional TATA-box, thereby making it susceptible to repression by c-myc through the Inr.
Collapse
Affiliation(s)
- M Griffioen
- Department of Clinical Oncology, University Hospital, Leiden, The Netherlands
| | | | | | | |
Collapse
|
14
|
Chen J, Willingham T, Margraf LR, Schreiber-Agus N, DePinho RA, Nisen PD. Effects of the MYC oncogene antagonist, MAD, on proliferation, cell cycling and the malignant phenotype of human brain tumour cells. Nat Med 1995; 1:638-43. [PMID: 7585143 DOI: 10.1038/nm0795-638] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To investigate how overexpression of MAD, an antagonist of MYC oncogenes influences the malignant phenotype of human cancer cells, an adenovirus vector system was used to transfer the human MAD gene (AdMAD) into human astrocytoma cells. Decreased growth potential of AdMAD-infected cells was evidenced by a decrease in [3H]thymidine incorporation, an increase in cell doubling time and alteration of cell-cycle distribution. Diminished malignant potential of AdMAD-infected cells was manifested by their loss of anchorage-independent growth in soft agar and by their inability, in general, to induce tumorigenesis in a xenograft animal model. These studies indicate that adenovirus constructs encoding MAD dramatically inhibit the proliferation and tumorigenicity of human astrocytoma cells and support the use of MAD for gene therapy of human tumours.
Collapse
Affiliation(s)
- J Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas 75235-9063, USA
| | | | | | | | | | | |
Collapse
|
15
|
Neuroectodermal tumors expressing c-, L-, and N-myc in transgenic mice that carry the E1A/E1B gene of human adenovirus type 12. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47416-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Hirvonen H, Hukkanen V, Salmi TT, Pelliniemi TT, Alitalo R. L-myc and N-myc in hematopoietic malignancies. Leuk Lymphoma 1993; 11:197-205. [PMID: 8260894 DOI: 10.3109/10428199309086996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The myc proto-oncogenes encode nuclear DNA-binding phosphoproteins which regulate cell proliferation and differentiation. The c-myc gene is implicated in hematopoietic malignancies on the basis of its frequent deregulation in naturally occurring leukemias and lymphomas. Recent evidence suggests that also the N-myc and L-myc genes may have a role in normal and malignant hematopoiesis. N-myc and to a certain degree L-myc can substitute for c-myc in transformation assays in vitro, and their overexpression can block the differentiation of leukemia cell lines. Immunoglobulin heavy chain enhancer (IgH) -driven overexpression of N-myc or L-myc genes cause lymphatic and myeloid tumors, respectively, in transgenic mice. Furthermore, the L-myc and N-myc genes are expressed in several human leukemias and leukemia cell lines, L-myc predominantly in myeloid and N-myc both in myeloid and in some lymphoid leukemias. All N/L-myc positive leukemias and leukemia cell lines coexpress the c-myc gene, thus exemplifying a lack of negative cross-regulation between the different myc genes in leukemia cells. Taken together, these data suggest that L-myc and N-myc may participate in the growth regulation of hematopoietic cells.
Collapse
Affiliation(s)
- H Hirvonen
- Department of Medical Biochemistry, University of Turku, Finland
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Neckers L, Rosolen A, Fahmy B, Whitesell L. Specific inhibition of oncogene expression in vitro and in vivo by antisense oligonucleotides. Ann N Y Acad Sci 1992; 660:37-44. [PMID: 1340154 DOI: 10.1111/j.1749-6632.1992.tb21055.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- L Neckers
- Clinical Pharmacology Branch, National Institutes of Health, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
19
|
Bar-Ner M, Messing LT, Segal S. Inhibition of murine erythroleukemia cell differentiation by normal and partially deleted c-myc genes. Immunobiology 1992; 185:150-8. [PMID: 1452198 DOI: 10.1016/s0171-2985(11)80637-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In our study of normal and partially deleted myc genes we found that N-myc, similarly to L-myc, can substitute for c-myc and inhibit MEL cell differentiation. All of the known putative functional domains of c-myc seem to be required for this inhibition. It is conceivable that c-myc inhibits differentiation by a mechanism that is related to its normal role in the cell, possibly by regulating transcription of genes involved in growth promotion. As was previously found for all of the other known activities of c-Myc, the HLH and LZ dimerization motifs are absolutely necessary for inhibition of MEL cell differentiation. Heterodimerization of Myc with Max or Max-like proteins could be a prerequisite for such inhibition. It is, therefore, of interest to study the regulation of max in MEL cells expressing normal and deregulated myc genes.
Collapse
Affiliation(s)
- M Bar-Ner
- NCI-Navy Medical Oncology Branch, National Cancer Institute, Bethesda, MD
| | | | | |
Collapse
|
20
|
Harris LL, Talian JC, Zelenka PS. Contrasting patterns of c-myc and N-myc expression in proliferating, quiescent, and differentiating cells of the embryonic chicken lens. Development 1992; 115:813-20. [PMID: 1339339 DOI: 10.1242/dev.115.3.813] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study uses the polymerase chain reaction and in situ hybridization to examine c-myc and N-myc mRNA in the embryonic chicken lens at 6, 10, 14 and 19 days of development and compares the pattern of expression obtained with the developmental pattern of cell proliferation and differentiation. In the central epithelium, c-myc mRNA levels were proportional to the percentage of proliferating cells throughout development. N-myc mRNA expression in this region was relatively low and showed no correlation with cell proliferation. The ratio of N-myc to c-myc mRNA increased markedly with the onset of epithelial cell elongation and terminal fiber cell differentiation, although both c-myc and N-myc mRNAs continued to be expressed in postmitotic, elongating cells of the equatorial epithelium and in terminally differentiating lens fiber cells. Thus, increased expression of N-myc, a gene whose protein product may compete with c-myc protein for dimerization partners, accompanies the dissociation of c-myc expression and cell proliferation during terminal differentiation of lens fiber cells.
Collapse
Affiliation(s)
- L L Harris
- Howard Hughes Medical Institute, N.I.H. Research Scholars Program, Bethesda, Maryland 20814
| | | | | |
Collapse
|
21
|
Gibson JS, Croker BP. Chromatin structure changes suggest a compensatory response to c-myc gene amplification in malignant fibrous histiocytoma. J Cell Biochem 1992; 49:148-56. [PMID: 1328258 DOI: 10.1002/jcb.240490207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Changes in chromatin structure as determined from DNAse I hypersensitive site analysis are associated with c-myc amplification and increased transcript/protein levels in malignant fibrous histiocytoma (MFH) cell lines. A DNAse I hypersensitive site near the PO promoter region was observed in one MFH cell line (UR HCL 1), and in normal fibroblasts (HFF), but not in an MFH cell line with an amplified c-myc gene (P3C). A DNAse I hypersensitive site exclusive to P3C amplified c-myc was identified slightly 3' of exon one. No alterations in c-myc DNAse I hypersensitive site patterns were observed in HFF fibroblasts following serum release, when peak levels of c-myc transcript were induced. DNAse I hypersensitive site patterns associated with gene amplification may reflect a compensatory response by P3C cells to an abundance of c-myc transcript. Furthermore, elevated levels of protein in P3C cells provide additional evidence that amplified c-myc is an oncogene in MFHs.
Collapse
Affiliation(s)
- J S Gibson
- Department of Pathology, College of Medicine, University of Florida, Gainesville 32610
| | | |
Collapse
|
22
|
Alex R, Sözeri O, Meyer S, Dildrop R. Determination of the DNA sequence recognized by the bHLH-zip domain of the N-Myc protein. Nucleic Acids Res 1992; 20:2257-63. [PMID: 1594445 PMCID: PMC312339 DOI: 10.1093/nar/20.9.2257] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The DNA-binding domain of the murine N-Myc protein, comprising the basic helix-loop-helix-zipper (bHLH-zip) region was expressed as a fusion protein in E. coli. The affinity purified glutathione-S-transferase-N-Myc fusion protein (GST-N-MYC) was used to select the N-Myc specific DNA-recognition motif from a pool of random-sequence oligonucleotides. After seven rounds of binding-site selection, specifically enriched oligonucleotides were cloned and sequenced. Of 31 individual oligonucleotides whose sequences were determined, 30 contained a common DNA-motif, defining the hexameric consensus sequence CACGTG. We confirm by mutational analysis that binding of the N-Myc derived bHLH-zip domain to this motif is sequence-specific.
Collapse
Affiliation(s)
- R Alex
- Institute for Genetics, University of Cologne, Germany
| | | | | | | |
Collapse
|
23
|
Möröy T, Fisher PE, Lee G, Achacoso P, Wiener F, Alt FW. High frequency of myelomonocytic tumors in aging E mu L-myc transgenic mice. J Exp Med 1992; 175:313-22. [PMID: 1310099 PMCID: PMC2119130 DOI: 10.1084/jem.175.2.313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transgenic mice that contain constructs of the L-myc gene under the transcriptional control of the immunoglobulin heavy chain enhancer (E mu) develop thymic hyperplasia and are predisposed to T cell lymphomas. Here we describe a second form of malignancy that occurs in aging E mu L-myc transgenic mice. The mean latency period for the development of this malignancy is longer compared with the E mu L-myc T cell lymphomas but the overall incidence is increased threefold. The histopathological morphology is that of a highly malignant mesenchymal neoplasm that closely resembles human fibrous histiocytoma. The tumor cells were classified as myelomonocytic on the basis of several lineage-specific markers and the lack of rearrangements of the immunoglobulin heavy chain and the T cell receptor beta loci. Cultured tumor cells produce macrophage colony-stimulating factor (M-CSF) protein and express the M-CSF receptor, suggesting the involvement of an autocrine loop in this malignancy. Similar to the E mu L-myc T cell lymphomas, these tumors show high-level transgene expression but no detectable levels of endogenous c-myc mRNA, directly implicating the deregulated expression of L-myc in the generation of this malignancy. E mu L-myc myelomonocytic tumors show consistent trisomy of chromosome 16, implicating this as a secondary event in the development of this tumor. In the light of recent findings that L-myc is expressed in human myeloid leukemias and in several human myeloid tumor cell lines, the results described here might implicate L-myc in the development of naturally occurring myeloid neoplasias.
Collapse
MESH Headings
- Aging
- Animals
- Blotting, Northern
- Enhancer Elements, Genetic/genetics
- Gene Expression
- Genes, myc/genetics
- Histiocytoma, Benign Fibrous/genetics
- Histiocytoma, Benign Fibrous/pathology
- Immunoglobulin Heavy Chains/genetics
- Lymphoma, T-Cell/pathology
- Macrophage Colony-Stimulating Factor/biosynthesis
- Mesenchymoma/genetics
- Mesenchymoma/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- T Möröy
- Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | | | | | | | |
Collapse
|
24
|
Schrier PI, Peltenburg LT. Relationship between myc oncogene activation and MHC class I expression. Adv Cancer Res 1992; 60:181-246. [PMID: 8417500 DOI: 10.1016/s0065-230x(08)60826-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- P I Schrier
- Department of Clinical Oncology, University Hospital, Leiden, The Netherlands
| | | |
Collapse
|
25
|
Kretzner L, Blackwood EM, Eisenman RN. Transcriptional activities of the Myc and Max proteins in mammalian cells. Curr Top Microbiol Immunol 1992; 182:435-43. [PMID: 1490382 DOI: 10.1007/978-3-642-77633-5_55] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The myc family of oncogenes exhibit deregulated expression in a host of neoplasias. Though the molecular function of the Myc protein in both normal and tumorigenic cells has remained uncertain, it has been postulated to play a role in gene transcription on the basis of amino acid homologies with known transcription factors such as MyoD (Lüscher & Eisenman, 1990). We report here the direct testing of full-length Myc and its dimerization partner, Max, on the transcriptional activity of reporter genes bearing Myc/Max binding sites. Such reporter constructs display an endogenous level of activity in transient transfections which is dependent on the presence of the CACGTG sequence. Exogenous expression of myc results in modest activation of reporter gene transcription. Similar overexpression of max results in a repression of reporter gene activity, an effect which is reversed by co-expression with c-myc. Max repression is dependent on an intact DNA binding region, while Myc activation depends on both the N-terminal activation and the C-terminal dimerization domains. These results suggest a model in which Max homodimers can act as as repressors, and Myc-Max heterodimers as activators, of potential target genes.
Collapse
Affiliation(s)
- L Kretzner
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | | | |
Collapse
|
26
|
|
27
|
Abstract
The growth of hard keratin fibers such as wool and hair is dependent on the proliferation of cells in the follicle bulb. If the cells leaving the bulb could be induced to undergo an extra division, then fiber growth should increase. The cellular division within the follicle is complex and probably involves one or more growth factors, which act by altering the expression of transcription factors and other nuclear proteins. We propose that the expression of the myc protooncogenes is a central part of this mechanism. In support of this hypothesis we have detected the mRNAs for TGF-beta 1, basic FGF, TGF-alpha, and c-myc in plucked wool follicles using PCR amplification. We have also shown that the TGF-beta 1, TGF-beta 2, TGF-beta 3, EGF, TGF-alpha, basic FGF, N-myc, and c-myc genes are expressed in mouse skin, and we looked for changes during the hair cycle. The PCR data suggest that in whole skin the levels of mRNA for TGF-beta 1, TGF-beta 2, TGF-alpha, and c-myc do not change. In Quackenbush mice the levels for N-myc, TGF-beta 3, and basic FGF mRNA appear to be lower at the end of the hair cycle. We have confirmed in CBA/C57 black mice that lower levels of N-myc mRNA are detected when hair growth ceases in catagen and telogen. To test our hypothesis further and to assess its practical application, we are making transgenic mice in which the N-myc gene is overexpressed in the hair follicle by way of a wool keratin promoter. The transgene consists of 3.3 kb of 5' sequence from an ovine type 1 IF gene, the murine N-myc genomic coding sequence, and an SV40 polyadenylation signal. The native keratin type 1 IF gene is expressed exclusively in the wool follicle, as shown by in situ hybridization. However, in mice the injection of the transgene has resulted in high embryonic mortality and some embryos with large body size and head malformations. Since these mice were not transgenic, this is likely to be an effect of transient expression of the transgene during embryogenesis. The two transgenic mice produced so far have a normal phenotype.
Collapse
Affiliation(s)
- R Sutton
- Division of Animal Production, Commonwealth Scientific and Industrial Research Organization, Blacktown, New South Wales, Australia
| | | | | | | | | |
Collapse
|
28
|
Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol 1991. [PMID: 1922066 DOI: 10.1128/mcb.11.11.5603] [Citation(s) in RCA: 383] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The DNA binding activities of some basic region and putative helix-loop-helix (bHLH)-containing transcriptional factors can be inhibited by the Id protein. Because Id contains the HLH motif for dimerization but not the basic amino acid region for DNA binding, heterodimers of Id with bHLH transcriptional factors may not bind to DNA. We have isolated and characterized the gene and cDNA clones for a new Id protein, designated Id2. The Id2 protein contains a helix-loop-helix motif similar to that of the previously described Id protein (referred to here as Id1), but the two proteins are different elsewhere. Id1 and Id2 are encoded by two unlinked genes, as shown by chromosome mapping. The two Id proteins have similar inhibitory activities. They selectively bind to and inhibit the function of one set of bHLH proteins, typified by E2A.E47 and E2B.m3, but not that of the other set, including TFE3, USF, and AP4. The Id proteins also homodimerize poorly. Expression of both Id genes is down-regulated during differentiation in a variety of cell types.
Collapse
|
29
|
Sun XH, Copeland NG, Jenkins NA, Baltimore D. Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol 1991; 11:5603-11. [PMID: 1922066 PMCID: PMC361931 DOI: 10.1128/mcb.11.11.5603-5611.1991] [Citation(s) in RCA: 202] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The DNA binding activities of some basic region and putative helix-loop-helix (bHLH)-containing transcriptional factors can be inhibited by the Id protein. Because Id contains the HLH motif for dimerization but not the basic amino acid region for DNA binding, heterodimers of Id with bHLH transcriptional factors may not bind to DNA. We have isolated and characterized the gene and cDNA clones for a new Id protein, designated Id2. The Id2 protein contains a helix-loop-helix motif similar to that of the previously described Id protein (referred to here as Id1), but the two proteins are different elsewhere. Id1 and Id2 are encoded by two unlinked genes, as shown by chromosome mapping. The two Id proteins have similar inhibitory activities. They selectively bind to and inhibit the function of one set of bHLH proteins, typified by E2A.E47 and E2B.m3, but not that of the other set, including TFE3, USF, and AP4. The Id proteins also homodimerize poorly. Expression of both Id genes is down-regulated during differentiation in a variety of cell types.
Collapse
Affiliation(s)
- X H Sun
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | | | | | | |
Collapse
|
30
|
Abstract
We found that the canary N-myc gene is highly related to mammalian N-myc genes in both the protein-coding region and the long 3' untranslated region. Examined coding regions of the canary c-myc gene were also highly related to their mammalian counterparts, but in contrast to N-myc, the canary and mammalian c-myc genes were quite divergent in their 3' untranslated regions. We readily detected N-myc and c-myc expression in the adult canary brain and found N-myc expression both at sites of proliferating neuronal precursors and in mature neurons.
Collapse
|
31
|
Abstract
We found that the canary N-myc gene is highly related to mammalian N-myc genes in both the protein-coding region and the long 3' untranslated region. Examined coding regions of the canary c-myc gene were also highly related to their mammalian counterparts, but in contrast to N-myc, the canary and mammalian c-myc genes were quite divergent in their 3' untranslated regions. We readily detected N-myc and c-myc expression in the adult canary brain and found N-myc expression both at sites of proliferating neuronal precursors and in mature neurons.
Collapse
|
32
|
Abstract
Transgenic mouse lines carrying the N-myc oncogene deregulated by the immunoglobulin heavy-chain enhancer spontaneously develop B-lymphoid tumors (R. Dildrop, A. Ma, K. Zimmerman, E. Hsu, A. Tesfaye, R. DePinho, and F. W. Alt, EMBO J. 8:1121-1128, 1989; H. Rosenbaum, E. Webb, J. M. Adams, S. Cory, and A. W. Harris, EMBO J. 8:749-755). Permanent cell lines derived from these tumors (E mu-N-myc cell lines) express extremely high levels of the N-myc transgene but little or no detectable endogenous N-myc or c-myc. We have employed nuclear run-on assays to show that down-regulation of endogenous N- and c-myc expression occurs at the transcriptional level. To determine whether the lack of endogenous myc gene transcription is a direct effect of high-level N-myc transgene expression, we have generated Abelson murine leukemia virus (A-MuLV)-transformed cell lines from prelymphomatous E mu-N-myc mice (A-MuLV/E mu-N-myc cell lines). Although these A-MuLV/E mu-N-myc lines express very high levels of the N-myc transgene, they continue to transcribe the endogenous c-myc gene. These findings demonstrate that high-level N-myc gene expression alone does not necessarily lead to down-regulation of endogenous myc gene expression and suggest that events associated with transformation by N-myc may be critical to this process.
Collapse
|
33
|
The Xenopus B1 factor is closely related to the mammalian activator USF and is implicated in the developmental regulation of TFIIIA gene expression. Mol Cell Biol 1991. [PMID: 1986236 DOI: 10.1128/mcb.11.1.412] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Xenopus laevis TFIIIA promoter contains a motif that has been implicated in promoter activation in late-stage oocytes and contains the sequence (-269) CACGTG (-264). A cDNA encoding a protein (B1) that binds to this element has been cloned from X. laevis and Xenopus borealis ovarian cDNA libraries. We show that this protein is a member of the helix-loop-helix family of regulatory proteins and contains 80% sequence identity with the human adenovirus major late transcription factor (MLTF or USF). A survey of B1 protein expression during oogenesis and embryogenesis revealed both oocyte-specific and somatic cell-specific B1 protein-DNA complexes. Immunological data, RNA blot analysis, and proteolytic clipping band shift assays indicated that these complexes most likely represent altered forms of a single B1 polypeptide. Implications for TFIIIA gene regulation during development are discussed.
Collapse
|
34
|
Kato K, Kanamori A, Wakamatsu Y, Sawai S, Kondoh H. Tissue Distribution of N-myc Expression in the Early Organogenesis Period of the Mouse Embryo. (N-myc/mouse embryo/in situ hybridization/neural/crest/sclerotome). Dev Growth Differ 1991. [DOI: 10.1111/j.1440-169x.1991.00029.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
The Xenopus B1 factor is closely related to the mammalian activator USF and is implicated in the developmental regulation of TFIIIA gene expression. Mol Cell Biol 1991; 11:412-24. [PMID: 1986236 PMCID: PMC359642 DOI: 10.1128/mcb.11.1.412-424.1991] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Xenopus laevis TFIIIA promoter contains a motif that has been implicated in promoter activation in late-stage oocytes and contains the sequence (-269) CACGTG (-264). A cDNA encoding a protein (B1) that binds to this element has been cloned from X. laevis and Xenopus borealis ovarian cDNA libraries. We show that this protein is a member of the helix-loop-helix family of regulatory proteins and contains 80% sequence identity with the human adenovirus major late transcription factor (MLTF or USF). A survey of B1 protein expression during oogenesis and embryogenesis revealed both oocyte-specific and somatic cell-specific B1 protein-DNA complexes. Immunological data, RNA blot analysis, and proteolytic clipping band shift assays indicated that these complexes most likely represent altered forms of a single B1 polypeptide. Implications for TFIIIA gene regulation during development are discussed.
Collapse
|
36
|
Abstract
Transgenic mouse lines carrying the N-myc oncogene deregulated by the immunoglobulin heavy-chain enhancer spontaneously develop B-lymphoid tumors (R. Dildrop, A. Ma, K. Zimmerman, E. Hsu, A. Tesfaye, R. DePinho, and F. W. Alt, EMBO J. 8:1121-1128, 1989; H. Rosenbaum, E. Webb, J. M. Adams, S. Cory, and A. W. Harris, EMBO J. 8:749-755). Permanent cell lines derived from these tumors (E mu-N-myc cell lines) express extremely high levels of the N-myc transgene but little or no detectable endogenous N-myc or c-myc. We have employed nuclear run-on assays to show that down-regulation of endogenous N- and c-myc expression occurs at the transcriptional level. To determine whether the lack of endogenous myc gene transcription is a direct effect of high-level N-myc transgene expression, we have generated Abelson murine leukemia virus (A-MuLV)-transformed cell lines from prelymphomatous E mu-N-myc mice (A-MuLV/E mu-N-myc cell lines). Although these A-MuLV/E mu-N-myc lines express very high levels of the N-myc transgene, they continue to transcribe the endogenous c-myc gene. These findings demonstrate that high-level N-myc gene expression alone does not necessarily lead to down-regulation of endogenous myc gene expression and suggest that events associated with transformation by N-myc may be critical to this process.
Collapse
|
37
|
Mugrauer G, Ekblom P. Contrasting expression patterns of three members of the myc family of protooncogenes in the developing and adult mouse kidney. J Biophys Biochem Cytol 1991; 112:13-25. [PMID: 1986001 PMCID: PMC2288803 DOI: 10.1083/jcb.112.1.13] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The myc family of protooncogenes encode similar but distinct nuclear proteins. Since N-myc, c-myc, and L-myc have been found to be expressed in the newborn kidney, we studied their expression during murine kidney development. By organ culture studies and in situ hybridization of tissue sections, we found that each of the three members of the myc gene family shows a remarkably distinct expression pattern during kidney development. It is known that mesenchymal stem cells of the embryonic kidney convert into epithelium if properly induced. We demonstrate the N-myc expression increases during the first 24 h of in vitro culture as an early response to induction. Moreover, the upregulation was transient and expression levels were already low during the first stages of overt epithelial cell polarization. In contrast, neither c-myc nor L-myc were upregulated by induction of epithelial differentiation. c-myc was expressed in the uninduced mesenchyme but subsequently became restricted to the newly formed epithelium and was not expressed in the surrounding loose mesenchyme. At onset of terminal differentiation c-myc expression was turned off also from the epithelial tubules. We conclude that N-myc is a marker for induction and early epithelial differentiation states. That the undifferentiated mesenchyme, unlike stromal cells of later developmental stages, express c-myc demonstrates that the undifferentiated mesenchymal stem cells are distinct from the stromal cells. The most astonishing finding, however, was the high level of L-myc mRNA in the ureter, ureter-derived renal pelvis, papilla, and collecting ducts. In the ureter, expression increased, rather than decreased, with advancing maturation and was highest in adult tissue. Our results suggest that each of the three members of the myc gene family are involved in quite disparate differentiation processes, even within one tissue.
Collapse
Affiliation(s)
- G Mugrauer
- Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, Tübingen,Federal Republic of Germany
| | | |
Collapse
|
38
|
DePinho RA, Schreiber-Agus N, Alt FW. myc family oncogenes in the development of normal and neoplastic cells. Adv Cancer Res 1991; 57:1-46. [PMID: 1950701 DOI: 10.1016/s0065-230x(08)60994-x] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R A DePinho
- Department of Microbiology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
39
|
Bergh JC. Gene amplification in human lung cancer. The myc family genes and other proto-oncogenes and growth factor genes. THE AMERICAN REVIEW OF RESPIRATORY DISEASE 1990; 142:S20-6. [PMID: 2174659 DOI: 10.1164/ajrccm/142.6_pt_2.s20] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The development of human lung cancer may require multiple genetic deletions affecting a number of chromosomes, e.g., 1, 3, 11, 13, and 17. These genetic aberrations may induce the activation of proto-oncogenes (c-jun, ras, c-raf1) and the loss of tumor suppressor genes (p53). Some of the activated proto-oncogenes and tumor suppressor genes are more selectively expressed or absent in small-cell lung cancer (L-myc, c-myb, c-scr, Rb gene) or non-small-cell lung cancer (c-erbB-2, c-sis, c-fes). These genes may thus be of importance for selection of differentiation pathway. The c-myc oncogene is frequently amplified in small-cell lung cancer cell lines in a much higher frequency than in vivo. This indicates that c-myc seems to be related to tumor progression and a relatively late event in the lung cancer development. The uncontrolled production of multiple growth factors has been identified in human lung cancer cell lines. These factors can promote and inhibit the proliferation via paracrine and autocrine loops via specific receptors. The products from some of the activated proto-oncogenes (c-sis, c-erbB-2) are sequences homologous to a certain growth factor (PDGF) and a receptor (EGF) identified in lung cancer. The production and action of these growth factors may be of major importance for further activation of proto-oncogenes via intracellular signal transduction and specific oncogenic activation leading to further tumor progression.
Collapse
Affiliation(s)
- J C Bergh
- Department of Oncology, University of Uppsala, Sweden
| |
Collapse
|
40
|
Baker DL, Reddy UR, Pleasure S, Hardy M, Williams M, Tartaglione M, Biegel JA, Emanuel BS, Lo Presti P, Kreider B. Human central nervous system primitive neuroectodermal tumor expressing nerve growth factor receptors: CHP707m. Ann Neurol 1990; 28:136-45. [PMID: 2171417 DOI: 10.1002/ana.410280205] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A primitive neuroectodermal tumor (PNET) presented as a cerebral hemispheric mass in a 33-year-old man. Bone marrow metastases were discovered 11 months later. A cell line (CHP707m) was derived from these metastases. In culture, the cells showed features of neuronal differentiation, forming short neurites and synthesizing low-molecular-weight neurofilament protein. Northern blotting showed the tumor cells express nerve growth factor (NGF) receptor messenger RNA, and fluorescence-activated cell-sorting demonstrated NGF receptors on the cell surface. Western blotting showed CHP707m NGF receptors are truncated. The receptors are functional; they bind iodine 125-labeled mouse NGF with an affinity of 1.6 x 10(-9) M, and short-term treatment with NGF induces expression by the tumor cells of the proto-oncogene, c-fos. Although CHP707m is the first central nervous system PNET cell line proven to express NGF receptors, immunohistological survey of tissue sections prepared from human central nervous system PNETs showed that 13 of 35 contained NGF receptor-positive tumor cells. Thus, more than one-third of such tumors might be responsive to the effects of NGF.
Collapse
Affiliation(s)
- D L Baker
- Children's Hospital of Philadelphia, PA 19104
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tefre T, Børresen AL, Aamdal S, Brøgger A. Studies of the L-myc DNA polymorphism and relation to metastasis in Norwegian lung cancer patients. Br J Cancer 1990; 61:809-12. [PMID: 1973618 PMCID: PMC1971690 DOI: 10.1038/bjc.1990.182] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We studied 83 lung cancer patients and 129 controls for the EcoRI polymorphism of the L-myc gene. No association was found between the L-myc RFLP and increased risk of metastasis, either to lymph nodes or metastasis to other organs. There was no difference in survival time between the three different genotypes. The S-allele of the L-myc RFLP has been correlated to increased metastasis in lung cancer. We found no tendency towards a higher frequency of this allele in the cohort of patients with positive family history compared to the patients with no known first degree relatives with cancer. A higher frequency of the S-allele in the adenocarcinomas compared to other histological groups was found, although this difference was not statistically significant. No difference in the gene frequency of the L-myc RFLP was found between the lung cancer patients and the normal controls. These results are in contrast with a previous report. Possible explanations for the discrepancies are discussed.
Collapse
Affiliation(s)
- T Tefre
- Department of Genetics, Norwegian Radium Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
42
|
Abstract
The N-myc gene is expressed specifically in the early developmental stages of numerous cell lineages. To assay for sequences that could potentially regulate N-myc expression, we transfected constructs that contained murine N-myc genomic sequences linked to a reporter gene and genomic clones that contained the complete human or murine N-myc genes into cell lines that either express or do not express the endogenous N-myc gene. Following either transient or stable transfection, the introduced N-myc sequences were expressed regardless of the expression status of the endogenous gene. In contrast, when the clones containing the complete human N-myc gene were introduced into the germline of transgenic mice, expression in some transgenic lines paralleled the tissue- and stage-specific expression of the endogenous murine gene. These findings demonstrate differences in the regulation of N-myc genes in recipient cells following in vitro versus in vivo introduction, suggesting that early developmental events may play a role in the regulation of N-myc expression.
Collapse
|
43
|
High-frequency disruption of the N-myc gene in embryonic stem and pre-B cell lines by homologous recombination. Mol Cell Biol 1990. [PMID: 2181287 DOI: 10.1128/mcb.10.4.1799] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification of gene function has often relied on isolation of mutant cells in which expression of the gene was inactivated. Gene targeting by homologous recombination in tissue culture now may provide a technology to rapidly and directly produce such mutant mammalian cells. We demonstrate that selection of embryonic stem and pre-B cell lines for expression of a promoterless construct containing murine N-myc genomic sequences fused to a gene encoding neomycin resistance allows highly efficient recovery of variants in which the endogenous N-myc gene is disrupted. The high frequency of N-myc gene disruption by this method should permit targeted disruption of both allelic N-myc copies in various cell lines to study N-myc function.
Collapse
|
44
|
Zimmerman K, Legouy E, Stewart V, Depinho R, Alt FW. Differential regulation of the N-myc gene in transfected cells and transgenic mice. Mol Cell Biol 1990; 10:2096-103. [PMID: 2183019 PMCID: PMC360557 DOI: 10.1128/mcb.10.5.2096-2103.1990] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The N-myc gene is expressed specifically in the early developmental stages of numerous cell lineages. To assay for sequences that could potentially regulate N-myc expression, we transfected constructs that contained murine N-myc genomic sequences linked to a reporter gene and genomic clones that contained the complete human or murine N-myc genes into cell lines that either express or do not express the endogenous N-myc gene. Following either transient or stable transfection, the introduced N-myc sequences were expressed regardless of the expression status of the endogenous gene. In contrast, when the clones containing the complete human N-myc gene were introduced into the germline of transgenic mice, expression in some transgenic lines paralleled the tissue- and stage-specific expression of the endogenous murine gene. These findings demonstrate differences in the regulation of N-myc genes in recipient cells following in vitro versus in vivo introduction, suggesting that early developmental events may play a role in the regulation of N-myc expression.
Collapse
Affiliation(s)
- K Zimmerman
- Howard Hughes Medical Institute, New York, New York
| | | | | | | | | |
Collapse
|
45
|
Charron J, Malynn BA, Robertson EJ, Goff SP, Alt FW. High-frequency disruption of the N-myc gene in embryonic stem and pre-B cell lines by homologous recombination. Mol Cell Biol 1990; 10:1799-804. [PMID: 2181287 PMCID: PMC362289 DOI: 10.1128/mcb.10.4.1799-1804.1990] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Identification of gene function has often relied on isolation of mutant cells in which expression of the gene was inactivated. Gene targeting by homologous recombination in tissue culture now may provide a technology to rapidly and directly produce such mutant mammalian cells. We demonstrate that selection of embryonic stem and pre-B cell lines for expression of a promoterless construct containing murine N-myc genomic sequences fused to a gene encoding neomycin resistance allows highly efficient recovery of variants in which the endogenous N-myc gene is disrupted. The high frequency of N-myc gene disruption by this method should permit targeted disruption of both allelic N-myc copies in various cell lines to study N-myc function.
Collapse
Affiliation(s)
- J Charron
- Howard Hughes Medical Institute, New York, New York
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- K Saksela
- Department of Virology, University of Helsinki, Finland
| |
Collapse
|
47
|
Rapid and transient decrease of N-myc expression in retinoic acid-induced differentiation of OTF9 teratocarcinoma stem cells. Mol Cell Biol 1990. [PMID: 2405249 DOI: 10.1128/mcb.10.2.486] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The level of expression of N-myc in mouse teratocarcinoma stem cells is very high. Previous studies have shown that N-myc expression significantly decreases when the stem cells are subjected to long-term induction for differentiation by retinoic acid (RA). We found that in a stem cell line, OTF9, a steep yet transient decrease of N-myc expression takes place much earlier, immediately after induction by RA. To examine whether this decrease is responsible for differentiation, we constructed a gene, miwNmyc, to express N-myc cDNA constitutively and transformed OTF9 cells with this gene construct. Transformants under the constitutive expression of miwNmyc differentiated normally, as judged by morphological changes and by modulation of c-myc, Hox1.1, and laminin B1 expression. Therefore, transient decrease of N-myc expression may be the consequence of RA-induced differentiation, even though it occurs very early in the process. Alternatively, in addition to N-myc decrease, there may be redundant mechanisms which lead to OTF9 differentiation after induction by RA, so that suppression of N-myc decrease is bypassed by at least one other mechanism.
Collapse
|
48
|
Rapid and transient decrease of N-myc expression in retinoic acid-induced differentiation of OTF9 teratocarcinoma stem cells. Mol Cell Biol 1990; 10:486-91. [PMID: 2405249 PMCID: PMC360820 DOI: 10.1128/mcb.10.2.486-491.1990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The level of expression of N-myc in mouse teratocarcinoma stem cells is very high. Previous studies have shown that N-myc expression significantly decreases when the stem cells are subjected to long-term induction for differentiation by retinoic acid (RA). We found that in a stem cell line, OTF9, a steep yet transient decrease of N-myc expression takes place much earlier, immediately after induction by RA. To examine whether this decrease is responsible for differentiation, we constructed a gene, miwNmyc, to express N-myc cDNA constitutively and transformed OTF9 cells with this gene construct. Transformants under the constitutive expression of miwNmyc differentiated normally, as judged by morphological changes and by modulation of c-myc, Hox1.1, and laminin B1 expression. Therefore, transient decrease of N-myc expression may be the consequence of RA-induced differentiation, even though it occurs very early in the process. Alternatively, in addition to N-myc decrease, there may be redundant mechanisms which lead to OTF9 differentiation after induction by RA, so that suppression of N-myc decrease is bypassed by at least one other mechanism.
Collapse
|
49
|
Kiefer PE, Wegmann B, Bacher M, Erbil C, Heidtmann H, Havemann K. Different pattern of expression of cellular oncogenes in human non-small-cell lung cancer cell lines. J Cancer Res Clin Oncol 1990; 116:29-37. [PMID: 1690210 DOI: 10.1007/bf01612637] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Altered and deregulated cellular oncogenes were found in many human solid tumors. Except for a few types of tumors that consistently exhibited specific altered proto-oncogenes, the majority of tumors are associated with a number of transcriptionally activated cellular oncogenes. In the heterologous group of non-small-cell lung cancer (NSCLC), nothing about a specific pattern of proto-oncogene expression is known. Therefore, we investigated the expression of a panel of cellular oncogenes in NSCLC cell lines. DNA and RNA from 11 established NSCLC cell lines (4 adenocarcinoma cell lines, 3 squamous cell carcinoma cell lines, 3 large-cell carcinoma cell lines and 1 mesothelioma cell line) were isolated and analysed using the Southern, dot blot and Northern hybridization technique. c-myc RNA expression was found in all NSCLC cell line, L-myc expression only in 1 adenocarcinoma cell line, N-myc and c-myb expression in none of the 11 cell lines examined. No c-myc amplification could be detected in the DNAs. v-sis-related mRNA was observed in 5/11 cell lines without association to a specific NSCLC subtype. v-src-related mRNA, found in all tested cells, exhibited increased levels in 1 adenocarcinoma cell line (A-549) compared to the other cell lines. Binding sites for epidermal growth factor (EGF) had been described previously in NSCL, therefore we found erbB homologue transcripts coding for the EGF receptor in all NSCLC cell lines. Also, c-raf1-, N-ras-, Ki-ras-, and H-ras-related RNA expression was observed in all lines. We conclude that L-myc, N-myc, and c-myb expression does occur less frequently in NSCLC than in SCLC. Also amplification does not appear to be an important mechanism by which the c-myc proto-oncogene is activated in NSCLC. A specific pattern of oncogene expression could not be detected in NSCLC cells; each cell line examined showed its own pattern. However, transcriptional activation of a proto-oncogene like erbB, ras, raf, src, and c-myc, which are all involved in the progression pathway of EGF, may be a common feature of NSCLC.
Collapse
Affiliation(s)
- P E Kiefer
- Philipps-University Marburg/Department of Internal Medicine, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- C J Thiele
- Molecular Genetics Section, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|