1
|
He C, He G, Feng Y. Structural basis of phage transcriptional regulation. Structure 2024; 32:1031-1039. [PMID: 39067444 DOI: 10.1016/j.str.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Phages are the most prevalent and diverse entities in the biosphere and represent the simplest systems that are capable of self-replication. Many fundamental concepts of transcriptional regulation were revealed through phage studies. The replication of phages within bacteria entails the hijacking of the host transcription machinery. Typically, this is accomplished through proteins and RNAs encoded by the phage genome that bind to the host RNA polymerase and modify its characteristics. Understanding these processes offers valuable insights into the mechanisms of bacterial transcription itself. Historically, X-ray crystallography has been the major tool for elucidating the structural basis of phage transcriptional regulation. In recent years, the application of cryoelectron microscopy has not only allowed the exploration of protein-protein and protein-nucleic acid interactions at near-atomic resolution but also captured transient intermediate states, further expanding our mechanistic understanding of phage transcriptional regulation.
Collapse
Affiliation(s)
- Chuchu He
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guanchen He
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory for Diagnosis and Treatment of Physic-Chemical and Aging Injury Diseases of Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
2
|
Tran NT, Le TBK. Control of a gene transfer agent cluster in Caulobacter crescentus by transcriptional activation and anti-termination. Nat Commun 2024; 15:4749. [PMID: 38834569 PMCID: PMC11150451 DOI: 10.1038/s41467-024-49114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/19/2023] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
Gene Transfer Agents (GTAs) are phage-like particles that cannot self-multiply and be infectious. Caulobacter crescentus, a bacterium best known as a model organism to study bacterial cell biology and cell cycle regulation, has recently been demonstrated to produce bona fide GTA particles (CcGTA). Since C. crescentus ultimately die to release GTA particles, the production of GTA particles must be tightly regulated and integrated with the host physiology to prevent a collapse in cell population. Two direct activators of the CcGTA biosynthetic gene cluster, GafY and GafZ, have been identified, however, it is unknown how GafYZ controls transcription or how they coordinate gene expression of the CcGTA gene cluster with other accessory genes elsewhere on the genome for complete CcGTA production. Here, we show that the CcGTA gene cluster is transcriptionally co-activated by GafY, integration host factor (IHF), and by GafZ-mediated transcription anti-termination. We present evidence that GafZ is a transcription anti-terminator that likely forms an anti-termination complex with RNA polymerase, NusA, NusG, and NusE to bypass transcription terminators within the 14 kb CcGTA cluster. Overall, we reveal a two-tier regulation that coordinates the synthesis of GTA particles in C. crescentus.
Collapse
Affiliation(s)
- Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| |
Collapse
|
3
|
Miguel-Arribas A, Martín-María A, Alaerds ECW, Val-Calvo J, Yuste L, Rojo F, Abia D, Wu L, Meijer WJJ. Extraordinary long-stem confers resistance of intrinsic terminators to processive antitermination. Nucleic Acids Res 2023; 51:6073-6086. [PMID: 37125647 PMCID: PMC10325885 DOI: 10.1093/nar/gkad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2022] [Revised: 03/14/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
Many prokaryotic operons encode a processive antitermination (P-AT) system. Transcription complexes associated with an antitermination factor can bypass multiple transcription termination signals regardless of their sequences. However, to avoid compromising transcriptional regulation of downstream regions, the terminator at the end of the operon needs to be resistant to antitermination. So far, no studies on the mechanism of resistance to antitermination have been reported. The recently discovered conAn P-AT system is composed of two components that are encoded at the start of many conjugation operons on plasmids of Gram-positive bacteria. Here we report the identification of a conAn-resistant terminator, named TerR, in the conjugation operon of the Bacillus subtilis plasmid pLS20, re-defining the end of the conjugation operon. We investigated the various characteristics of TerR and show that its extraordinary long stem is the determining feature for resistance to antitermination. This is the first P-AT resistance mechanism to be reported.
Collapse
Affiliation(s)
- Andrés Miguel-Arribas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Martín-María
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Eef C W Alaerds
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jorge Val-Calvo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Luis Yuste
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, C. Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, C. Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular “Severo Ochoa”, (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Wilfried J J Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
4
|
Characteristics and Comparative Genomic Analysis of a Novel Virus, VarioGold, the First Bacteriophage of Variovorax. Int J Mol Sci 2022; 23:ijms232113539. [DOI: 10.3390/ijms232113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Variovorax represents a widespread and ecologically significant genus of soil bacteria. Despite the ecological importance of these bacteria, our knowledge about the viruses infecting Variovorax spp. is quite poor. This study describes the isolation and characterization of the mitomycin-induced phage, named VarioGold. To the best of our knowledge, VarioGold represents the first characterized virus for this genus. Comparative genomic analyses suggested that VarioGold is distinct from currently known bacteriophages at both the nucleotide and protein levels; thus, it could be considered a new virus genus. In addition, another 37 prophages were distinguished in silico within the complete genomic sequences of Variovorax spp. that are available in public databases. The similarity networking analysis highlighted their general high diversity, which, despite clustering with previously described phages, shows their unique genetic load. Therefore, the novelty of Variovorax phages warrants the great enrichment of databases, which could, in turn, improve bioinformatic strategies for finding (pro)phages.
Collapse
|
5
|
Yin Z, Bird JG, Kaelber JT, Nickels BE, Ebright RH. In transcription antitermination by Qλ, NusA induces refolding of Qλ to form a nozzle that extends the RNA polymerase RNA-exit channel. Proc Natl Acad Sci U S A 2022; 119:e2205278119. [PMID: 35951650 PMCID: PMC9388147 DOI: 10.1073/pnas.2205278119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2022] [Accepted: 07/08/2022] [Indexed: 01/24/2023] Open
Abstract
Lambdoid bacteriophage Q proteins are transcription antipausing and antitermination factors that enable RNA polymerase (RNAP) to read through pause and termination sites. Q proteins load onto RNAP engaged in promoter-proximal pausing at a Q binding element (QBE) and adjacent sigma-dependent pause element to yield a Q-loading complex, and they translocate with RNAP as a pausing-deficient, termination-deficient Q-loaded complex. In previous work, we showed that the Q protein of bacteriophage 21 (Q21) functions by forming a nozzle that narrows and extends the RNAP RNA-exit channel, preventing formation of pause and termination RNA hairpins. Here, we report atomic structures of four states on the pathway of antitermination by the Q protein of bacteriophage λ (Qλ), a Q protein that shows no sequence similarity to Q21 and that, unlike Q21, requires the transcription elongation factor NusA for efficient antipausing and antitermination. We report structures of Qλ, the Qλ-QBE complex, the NusA-free pre-engaged Qλ-loading complex, and the NusA-containing engaged Qλ-loading complex. The results show that Qλ, like Q21, forms a nozzle that narrows and extends the RNAP RNA-exit channel, preventing formation of RNA hairpins. However, the results show that Qλ has no three-dimensional structural similarity to Q21, employs a different mechanism of QBE recognition than Q21, and employs a more complex process for loading onto RNAP than Q21, involving recruitment of Qλ to form a pre-engaged loading complex, followed by NusA-facilitated refolding of Qλ to form an engaged loading complex. The results establish that Qλ and Q21 are not structural homologs and are solely functional analogs.
Collapse
Affiliation(s)
- Zhou Yin
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Jeremy G. Bird
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
- Department of Genetics, Rutgers University, Piscataway, NJ 08854
| | - Jason T. Kaelber
- Rutgers Cryo-EM and Nanoimaging Facility, Rutgers University, Piscataway, NJ 08854
| | - Bryce E. Nickels
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
- Department of Genetics, Rutgers University, Piscataway, NJ 08854
| | - Richard H. Ebright
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
6
|
Wen A, Zhao M, Jin S, Lu YQ, Feng Y. Structural basis of AlpA-dependent transcription antitermination. Nucleic Acids Res 2022; 50:8321-8330. [PMID: 35871295 PMCID: PMC9371919 DOI: 10.1093/nar/gkac608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2021] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
AlpA positively regulates a programmed cell death pathway linked to the virulence of Pseudomonas aeruginosa by recognizing an AlpA binding element within the promoter, then binding RNA polymerase directly and allowing it to bypass an intrinsic terminator positioned downstream. Here, we report the single-particle cryo-electron microscopy structures of both an AlpA-loading complex and an AlpA-loaded complex. These structures indicate that the C-terminal helix-turn-helix motif of AlpA binds to the AlpA binding element and that the N-terminal segment of AlpA forms a narrow ring inside the RNA exit channel. AlpA was also revealed to render RNAP resistant to termination signals by prohibiting RNA hairpin formation in the RNA exit channel. Structural analysis predicted that AlpA, 21Q, λQ and 82Q share the same mechanism of transcription antitermination.
Collapse
Affiliation(s)
- Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
| | - Minxing Zhao
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310003, China
| | - Sha Jin
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310003, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases , Hangzhou 310058, China
| |
Collapse
|
7
|
Pukhrambam C, Molodtsov V, Kooshkbaghi M, Tareen A, Vu H, Skalenko KS, Su M, Yin Z, Winkelman JT, Kinney JB, Ebright RH, Nickels BE. Structural and mechanistic basis of σ-dependent transcriptional pausing. Proc Natl Acad Sci U S A 2022; 119:e2201301119. [PMID: 35653571 PMCID: PMC9191641 DOI: 10.1073/pnas.2201301119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022] Open
Abstract
In σ-dependent transcriptional pausing, the transcription initiation factor σ, translocating with RNA polymerase (RNAP), makes sequence-specific protein–DNA interactions with a promoter-like sequence element in the transcribed region, inducing pausing. It has been proposed that, in σ-dependent pausing, the RNAP active center can access off-pathway “backtracked” states that are substrates for the transcript-cleavage factors of the Gre family and on-pathway “scrunched” states that mediate pause escape. Here, using site-specific protein–DNA photocrosslinking to define positions of the RNAP trailing and leading edges and of σ relative to DNA at the λPR′ promoter, we show directly that σ-dependent pausing in the absence of GreB in vitro predominantly involves a state backtracked by 2–4 bp, and σ-dependent pausing in the presence of GreB in vitro and in vivo predominantly involves a state scrunched by 2–3 bp. Analogous experiments with a library of 47 (∼16,000) transcribed-region sequences show that the state scrunched by 2–3 bp—and only that state—is associated with the consensus sequence, T−3N−2Y−1G+1, (where −1 corresponds to the position of the RNA 3′ end), which is identical to the consensus for pausing in initial transcription and which is related to the consensus for pausing in transcription elongation. Experiments with heteroduplex templates show that sequence information at position T−3 resides in the DNA nontemplate strand. A cryoelectron microscopy structure of a complex engaged in σ-dependent pausing reveals positions of DNA scrunching on the DNA nontemplate and template strands and suggests that position T−3 of the consensus sequence exerts its effects by facilitating scrunching.
Collapse
Affiliation(s)
- Chirangini Pukhrambam
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854
- Department of Genetics, Rutgers University, Piscataway, NJ 08854
| | - Vadim Molodtsov
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Mahdi Kooshkbaghi
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ammar Tareen
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Hoa Vu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854
- Department of Genetics, Rutgers University, Piscataway, NJ 08854
| | - Kyle S. Skalenko
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854
- Department of Genetics, Rutgers University, Piscataway, NJ 08854
| | - Min Su
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Zhou Yin
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Jared T. Winkelman
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854
- Department of Genetics, Rutgers University, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Justin B. Kinney
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Richard H. Ebright
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Bryce E. Nickels
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854
- Department of Genetics, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
8
|
Abstract
To exert their functions, RNAs adopt diverse structures, ranging from simple secondary to complex tertiary and quaternary folds. In vivo, RNA folding starts with RNA transcription, and a wide variety of processes are coupled to co-transcriptional RNA folding events, including the regulation of fundamental transcription dynamics, gene regulation by mechanisms like attenuation, RNA processing or ribonucleoprotein particle formation. While co-transcriptional RNA folding and associated co-transcriptional processes are by now well accepted as pervasive regulatory principles in all organisms, investigations into the role of the transcription machinery in co-transcriptional folding processes have so far largely focused on effects of the order in which RNA regions are produced and of transcription kinetics. Recent structural and structure-guided functional analyses of bacterial transcription complexes increasingly point to an additional role of RNA polymerase and associated transcription factors in supporting co-transcriptional RNA folding by fostering or preventing strategic contacts to the nascent transcripts. In general, the results support the view that transcription complexes can act as RNA chaperones, a function that has been suggested over 30 years ago. Here, we discuss transcription complexes as RNA chaperones based on recent examples from bacterial transcription.
Collapse
Affiliation(s)
- Nelly Said
- Freie Universität Berlin, Department Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Department Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin Für Materialien Und Energie, Macromolecular Crystallography, Berlin, Germany
| |
Collapse
|
9
|
Peña JM, Prezioso SM, McFarland KA, Kambara TK, Ramsey KM, Deighan P, Dove SL. Control of a programmed cell death pathway in Pseudomonas aeruginosa by an antiterminator. Nat Commun 2021; 12:1702. [PMID: 33731715 PMCID: PMC7969949 DOI: 10.1038/s41467-021-21941-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2020] [Accepted: 02/19/2021] [Indexed: 01/29/2023] Open
Abstract
In Pseudomonas aeruginosa the alp system encodes a programmed cell death pathway that is switched on in a subset of cells in response to DNA damage and is linked to the virulence of the organism. Here we show that the central regulator of this pathway, AlpA, exerts its effects by acting as an antiterminator rather than a transcription activator. In particular, we present evidence that AlpA positively regulates the alpBCDE cell lysis genes, as well as genes in a second newly identified target locus, by recognizing specific DNA sites within the promoter, then binding RNA polymerase directly and allowing it to bypass intrinsic terminators positioned downstream. AlpA thus functions in a mechanistically unusual manner to control the expression of virulence genes in this opportunistic pathogen.
Collapse
Affiliation(s)
- Jennifer M Peña
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samantha M Prezioso
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kirsty A McFarland
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracy K Kambara
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn M Ramsey
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Departments of Cell and Molecular Biology and Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | | | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Zhang Y, Liao YT, Salvador A, Wu VCH. Genomic Characterization of Two Shiga Toxin-Converting Bacteriophages Induced From Environmental Shiga Toxin-Producing Escherichia coli. Front Microbiol 2021; 12:587696. [PMID: 33716997 PMCID: PMC7946995 DOI: 10.3389/fmicb.2021.587696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin (Stx), encoded by stx genes located in prophage sequences, is the major agent responsible for the pathogenicity of Shiga toxin-producing Escherichia coli (STEC) and is closely associated with the development of hemolytic uremic syndrome (HUS). Although numerous Stx prophage sequences have been reported as part of STEC bacterial genomes, the information about the genomic characterization of Stx-converting bacteriophages induced from STEC strains is relatively scarce. The objectives of this study were to genomically characterize two Stx-converting phages induced from environmental STEC strains and to evaluate their correlations with published Stx-converting phages and STEC strains of different origins. The Stx1-converting phage Lys8385Vzw and the Stx2-converting phage Lys19259Vzw were induced from E. coli O103:H11 (RM8385) and E. coli O157:H7 (RM19259), respectively. Whole-genome sequencing of these phages was conducted on a MiSeq sequencer for genomic characterization. Phylogenetic analysis and comparative genomics were performed to determine the correlations between these two Stx-converting phages, 13 reference Stx-converting phages, and 10 reference STEC genomes carrying closely related Stx prophages. Both Stx-converting phages Lys8385Vzw and Lys19259Vzw had double-stranded DNA, with genome sizes of 50,953 and 61,072 bp, respectively. Approximately 40% of the annotated coding DNA sequences with the predicted functions were likely associated with the fitness for both phages and their bacterial hosts. The whole-genome–based phylogenetic analysis of these two Stx-converting phages and 13 reference Stx-converting phages revealed that the 15 Stx-converting phages were divided into three distinct clusters, and those from E. coli O157:H7, in particular, were distributed in each cluster, demonstrating the high genomic diversity of these Stx-converting phages. The genomes of Stx-converting phage Lys8385Vzw and Lys19259Vzw shared a high-nucleotide similarity with the prophage sequences of the selected STEC isolates from the clinical and environmental origin. The findings demonstrate the genomic diversity of Stx-converting phages induced from different STEC strains and provide valuable insights into the dissemination of stx genes among E. coli population via the lysogenization of Stx-converting phages.
Collapse
Affiliation(s)
- Yujie Zhang
- Produce Safety and Microbiology Research Unit, US Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Yen-Te Liao
- Produce Safety and Microbiology Research Unit, US Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, US Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, US Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
11
|
Abstract
Bacteriophages employ small proteins to usurp host molecular machinery, thereby interfering with central metabolic processes in infected bacteria. Generally, phages inhibit or redirect host transcription to favor transcription of their own genomes. Mechanistic and structural studies of phage-modulated host transcription may provide inspirations for the development of novel antibacterial substances.
Collapse
Affiliation(s)
- Markus C Wahl
- Freie Universität Berlin, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Ranjan Sen
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
12
|
Abstract
Lambdoid bacteriophage Q protein mediates the switch from middle to late bacteriophage gene expression by enabling RNA polymerase (RNAP) to read through transcription terminators preceding bacteriophage late genes. Q loads onto RNAP engaged in promoter-proximal pausing at a Q binding element (QBE) and adjacent sigma-dependent pause element (SDPE) to yield a Q-loading complex, and Q subsequently translocates with RNAP as a pausing-deficient, termination-deficient Q-loaded complex. Here, we report high-resolution structures of 4 states on the pathway of antitermination by Q from bacteriophage 21 (Q21): Q21, the Q21-QBE complex, the Q21-loading complex, and the Q21-loaded complex. The results show that Q21 forms a torus, a "nozzle," that narrows and extends the RNAP RNA-exit channel, extruding topologically linked single-stranded RNA and preventing the formation of pause and terminator hairpins.
Collapse
|
13
|
Structural basis for transcription antitermination at bacterial intrinsic terminator. Nat Commun 2019; 10:3048. [PMID: 31296855 PMCID: PMC6624301 DOI: 10.1038/s41467-019-10955-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2019] [Accepted: 05/29/2019] [Indexed: 01/25/2023] Open
Abstract
Bacteriophages typically hijack the host bacterial transcriptional machinery to regulate their own gene expression and that of the host bacteria. The structural basis for bacteriophage protein-mediated transcription regulation—in particular transcription antitermination—is largely unknown. Here we report the 3.4 Å and 4.0 Å cryo-EM structures of two bacterial transcription elongation complexes (P7-NusA-TEC and P7-TEC) comprising the bacteriophage protein P7, a master host-transcription regulator encoded by bacteriophage Xp10 of the rice pathogen Xanthomonas oryzae pv. Oryzae (Xoo) and discuss the mechanisms by which P7 modulates the host bacterial RNAP. The structures together with biochemical evidence demonstrate that P7 prevents transcription termination by plugging up the RNAP RNA-exit channel and impeding RNA-hairpin formation at the intrinsic terminator. Moreover, P7 inhibits transcription initiation by restraining RNAP-clamp motions. Our study reveals the structural basis for transcription antitermination by phage proteins and provides insights into bacterial transcription regulation. Bacteriophages reprogram the host transcriptional machinery. Here the authors provide insights into the mechanism of how bacteriophages regulate host transcription by determining the cryo-EM structures of two bacterial transcription elongation complexes bound with the bacteriophage master host-transcription regulator protein P7.
Collapse
|
14
|
Abstract
Bacteriophage Q protein engages σ-dependent paused RNA polymerase (RNAP) by binding to a DNA site embedded in late gene promoter and renders RNAP resistant to termination signals. Here, we report a single-particle cryo-electron microscopy (cryo-EM) structure of an intact Q-engaged arrested complex. The structure reveals key interactions responsible for σ-dependent pause, Q engagement, and Q-mediated transcription antitermination. The structure shows that two Q protomers (QI and QII) bind to a direct-repeat DNA site and contact distinct elements of the RNA exit channel. Notably, QI forms a narrow ring inside the RNA exit channel and renders RNAP resistant to termination signals by prohibiting RNA hairpin formation in the RNA exit channel. Because the RNA exit channel is conserved among all multisubunit RNAPs, it is likely to serve as an important contact site for regulators that modify the elongation properties of RNAP in other organisms, as well. Bacteriophage Q protein serves as a model regulator for the study of transcription elongation. Here the authors report a cryo-EM structure of an intact Q-engaged arrested complex, revealing the interactions responsible for σ-dependent pause, Q engagement, and Q-mediated transcription antitermination.
Collapse
|
15
|
Roberts JW. Mechanisms of Bacterial Transcription Termination. J Mol Biol 2019; 431:4030-4039. [PMID: 30978344 DOI: 10.1016/j.jmb.2019.04.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 01/28/2023]
Abstract
Bacterial transcription termination, described mostly for Escherichia coli, occurs in three recognized ways: intrinsic termination, an activity only of the core RNAP enzyme and transcript sequences that encode an RNA hairpin and terminal uridine-rich segment; termination by the enzyme Rho, an ATP-dependent RNA translocase that releases RNA by forcing uncharacterized structural changes in the elongating complex; and Mfd-dependent termination, the activity of an ATP-dependent DNA translocase that is thought to dissociate the elongation complex by exerting torque on a stalled RNAP. Intrinsic termination can be described in terms of the nucleic acid movements in the process, whereas the enzymatic mechanisms have been illuminated importantly by definitive structural and biochemical analysis of their activity.
Collapse
Affiliation(s)
- Jeffrey W Roberts
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Kim S, Jacobs-Wagner C. Effects of mRNA Degradation and Site-Specific Transcriptional Pausing on Protein Expression Noise. Biophys J 2019; 114:1718-1729. [PMID: 29642040 DOI: 10.1016/j.bpj.2018.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 12/20/2022] Open
Abstract
Genetically identical cells exhibit diverse phenotypes even when experiencing the same environment. This phenomenon in part originates from cell-to-cell variability (noise) in protein expression. Although various kinetic schemes of stochastic transcription initiation are known to affect gene expression noise, how posttranscription initiation events contribute to noise at the protein level remains incompletely understood. To address this question, we developed a stochastic simulation-based model of bacterial gene expression that integrates well-known dependencies between transcription initiation, transcription elongation dynamics, mRNA degradation, and translation. We identified realistic conditions under which mRNA lifetime and transcriptional pauses modulate the protein expression noise initially introduced by the promoter architecture. For instance, we found that the short lifetime of bacterial mRNAs facilitates the production of protein bursts. Conversely, RNA polymerase (RNAP) pausing at specific sites during transcription elongation can attenuate protein bursts by fluidizing the RNAP traffic to the point of erasing the effect of a bursty promoter. Pause-prone sites, if located close to the promoter, can also affect noise indirectly by reducing both transcription and translation initiation due to RNAP and ribosome congestion. Our findings highlight how the interplay between transcription initiation, transcription elongation, translation, and mRNA degradation shapes the distribution in protein numbers. They also have implications for our understanding of gene evolution and suggest combinatorial strategies for modulating phenotypic variability by genetic engineering.
Collapse
Affiliation(s)
- Sangjin Kim
- Microbial Sciences Institute, West Haven, Connecticut; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut; Howard Hughes Medical Institute, New Haven, Connecticut
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, West Haven, Connecticut; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut; Howard Hughes Medical Institute, New Haven, Connecticut; Department of Microbial Pathogenesis, Yale School of Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
17
|
Shao Q, Trinh JT, Zeng L. High-resolution studies of lysis-lysogeny decision-making in bacteriophage lambda. J Biol Chem 2018; 294:3343-3349. [PMID: 30242122 DOI: 10.1074/jbc.tm118.003209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023] Open
Abstract
Cellular decision-making guides complex development such as cell differentiation and disease progression. Much of our knowledge about decision-making is derived from simple models, such as bacteriophage lambda infection, in which lambda chooses between the vegetative lytic fate and the dormant lysogenic fate. This paradigmatic system is broadly understood but lacking mechanistic details, partly due to limited resolution of past studies. Here, we discuss how modern technologies have enabled high-resolution examination of lambda decision-making to provide new insights and exciting possibilities in studying this classical system. The advent of techniques for labeling specific DNA, RNA, and proteins in cells allows for molecular-level characterization of events in lambda development. These capabilities yield both new answers and new questions regarding how the isolated lambda genetic circuit acts, what biological events transpire among phages in their natural context, and how the synergy of simple phage macromolecules brings about complex behaviors.
Collapse
Affiliation(s)
- Qiuyan Shao
- From the Department of Biochemistry and Biophysics and.,the Center for Phage Technology, Texas A&M University, College Station, Texas 77843
| | - Jimmy T Trinh
- From the Department of Biochemistry and Biophysics and.,the Center for Phage Technology, Texas A&M University, College Station, Texas 77843
| | - Lanying Zeng
- From the Department of Biochemistry and Biophysics and .,the Center for Phage Technology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
18
|
Shao Q, Cortes MG, Trinh JT, Guan J, Balázsi G, Zeng L. Coupling of DNA Replication and Negative Feedback Controls Gene Expression for Cell-Fate Decisions. iScience 2018; 6:1-12. [PMID: 30240603 PMCID: PMC6137276 DOI: 10.1016/j.isci.2018.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2018] [Revised: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
Cellular decision-making arises from the expression of genes along a regulatory cascade, which leads to a choice between distinct phenotypic states. DNA dosage variations, often introduced by replication, can significantly affect gene expression to ultimately bias decision outcomes. The bacteriophage lambda system has long served as a paradigm for cell-fate determination, yet the effect of DNA replication remains largely unknown. Here, through single-cell studies and mathematical modeling we show that DNA replication drastically boosts cI expression to allow lysogenic commitment by providing more templates. Conversely, expression of CII, the upstream regulator of cI, is surprisingly robust to DNA replication due to the negative autoregulation of the Cro repressor. Our study exemplifies how living organisms can not only utilize DNA replication for gene expression control but also implement mechanisms such as negative feedback to allow the expression of certain genes to be robust to dosage changes resulting from DNA replication.
Collapse
Affiliation(s)
- Qiuyan Shao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Michael G Cortes
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Jimmy T Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Jingwen Guan
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA; Molecular and Environmental Plant Science, Texas A&M University, College Station, TX 77843, USA
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA; Molecular and Environmental Plant Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
19
|
Mustaev A, Roberts J, Gottesman M. Transcription elongation. Transcription 2017; 8:150-161. [PMID: 28301288 PMCID: PMC5501382 DOI: 10.1080/21541264.2017.1289294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/23/2022] Open
Abstract
This review is focused on recent progress in understanding how Escherichia coli RNAP polymerase translocates along the DNA template and the factors that affect this movement. We discuss the fundamental aspects of RNAP translocation, template signals that influence forward or backward movement, and host or phage factors that modulate translocation.
Collapse
Affiliation(s)
- Arkady Mustaev
- PHRI Center, NJMS, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jeffrey Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Max Gottesman
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
20
|
Steinert H, Sochor F, Wacker A, Buck J, Helmling C, Hiller F, Keyhani S, Noeske J, Grimm S, Rudolph MM, Keller H, Mooney RA, Landick R, Suess B, Fürtig B, Wöhnert J, Schwalbe H. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation. eLife 2017; 6. [PMID: 28541183 PMCID: PMC5459577 DOI: 10.7554/elife.21297] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2016] [Accepted: 05/24/2017] [Indexed: 01/18/2023] Open
Abstract
In bacteria, the regulation of gene expression by cis-acting transcriptional riboswitches located in the 5'-untranslated regions of messenger RNA requires the temporal synchronization of RNA synthesis and ligand binding-dependent conformational refolding. Ligand binding to the aptamer domain of the riboswitch induces premature termination of the mRNA synthesis of ligand-associated genes due to the coupled formation of 3'-structural elements acting as terminators. To date, there has been no high resolution structural description of the concerted process of synthesis and ligand-induced restructuring of the regulatory RNA element. Here, we show that for the guanine-sensing xpt-pbuX riboswitch from Bacillus subtilis, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. We show that only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding. DOI:http://dx.doi.org/10.7554/eLife.21297.001
Collapse
Affiliation(s)
- Hannah Steinert
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Florian Sochor
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Anna Wacker
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Janina Buck
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Christina Helmling
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Fabian Hiller
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Sara Keyhani
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jonas Noeske
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Steffen Grimm
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Martin M Rudolph
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Heiko Keller
- Center for Biomolecular Magnetic Resonance, Institute of Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Boris Fürtig
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jens Wöhnert
- Center for Biomolecular Magnetic Resonance, Institute of Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Probiotic Enterococcus faecalis Symbioflor® down regulates virulence genes of EHEC in vitro and decrease pathogenicity in a Caenorhabditis elegans model. Arch Microbiol 2016; 199:203-213. [DOI: 10.1007/s00203-016-1291-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 11/30/2022]
|
22
|
Regulatory elements of stx2 gene and the expression level of Shiga-like toxin 2 in Escherichia coli O157:H7. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 51:132-140. [PMID: 27317410 DOI: 10.1016/j.jmii.2016.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/02/2015] [Revised: 09/19/2015] [Accepted: 04/25/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND/PURPOSE Shiga-like toxin (Stx) is an important factor in the pathogenesis of Escherichia coli O157:H7 infection and is responsible for some severe complications. Stx2 is usually associated with hemolytic uremic syndrome in humans. Its expression is regulated by elements located upstream of the stx2 gene, including stx2-promoter sequence, ribosome binding site, and the antiterminator q gene. The present study aimed to find the correlation between regulatory elements and the expression level of Stx2 in two local isolates of E. coli O157:H7. METHODS Two local E. coli O157:H7 strains SM-25(1) and KL-48(2), originating from human and cattle feces, respectively, and an E. coli reference strain, ATCC 43894, were investigated. The complete stx2 gene covering the sequences of promoter, ribosome binding site, and open reading frame and q gene of each strain was analyzed. The magnitude of Stx2 production was detected with a reverse passive latex agglutination method and Stx mediated cellular damage was determined with the Vero cell assay. RESULTS A comparison of the complete stx2 gene contained stx2-promoter, ribosome binding site, and q genes of two local strains KL-48(2) and SM25(1), and the E. coli ATCC 43894 showed that the amino acid sequences were identical. Both local isolates were Stx negative in the reverse passive latex agglutination test and nontoxic in the Vero cell assay. CONCLUSION The expression level of Shiga-like toxin of the two local isolates of E. coli O157:H7 did not only depend on the regulatory elements of the stx2 gene.
Collapse
|
23
|
Bird JG, Strobel EJ, Roberts JW. A universal transcription pause sequence is an element of initiation factor σ70-dependent pausing. Nucleic Acids Res 2016; 44:6732-40. [PMID: 27098041 PMCID: PMC5001585 DOI: 10.1093/nar/gkw285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2015] [Accepted: 04/07/2016] [Indexed: 11/12/2022] Open
Abstract
The Escherichia coli σ70 initiation factor is required for a post-initiation, promoter-proximal pause essential for regulation of lambdoid phage late gene expression; potentially, σ70 acts at other sites during transcription elongation as well. The pause is induced by σ70 binding to a repeat of the promoter -10 sequence. After σ70 binding, further RNA synthesis occurs as DNA is drawn (or 'scrunched') into the enzyme complex, presumably exactly as occurs during initial synthesis from the promoter; this synthesis then pauses at a defined site several nucleotides downstream from the active center position when σ70 first engages the -10 sequence repeat. We show that the actual pause site in the stabilized, scrunched complex is the 'elemental pause sequence' recognized from its frequent occurrence in the E. coli genome. σ70 binding and the elemental pause sequence together, but neither alone, produce a substantial transcription pause.
Collapse
Affiliation(s)
- Jeremy G Bird
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Eric J Strobel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jeffrey W Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Gifsy-1 Prophage IsrK with Dual Function as Small and Messenger RNA Modulates Vital Bacterial Machineries. PLoS Genet 2016; 12:e1005975. [PMID: 27057757 PMCID: PMC4825925 DOI: 10.1371/journal.pgen.1005975] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2015] [Accepted: 03/14/2016] [Indexed: 11/20/2022] Open
Abstract
While an increasing number of conserved small regulatory RNAs (sRNAs) are known to function in general bacterial physiology, the roles and modes of action of sRNAs from horizontally acquired genomic regions remain little understood. The IsrK sRNA of Gifsy-1 prophage of Salmonella belongs to the latter class. This regulatory RNA exists in two isoforms. The first forms, when a portion of transcripts originating from isrK promoter reads-through the IsrK transcription-terminator producing a translationally inactive mRNA target. Acting in trans, the second isoform, short IsrK RNA, binds the inactive transcript rendering it translationally active. By switching on translation of the first isoform, short IsrK indirectly activates the production of AntQ, an antiterminator protein located upstream of isrK. Expression of antQ globally interferes with transcription termination resulting in bacterial growth arrest and ultimately cell death. Escherichia coli and Salmonella cells expressing AntQ display condensed chromatin morphology and localization of UvrD to the nucleoid. The toxic phenotype of AntQ can be rescued by co-expression of the transcription termination factor, Rho, or RNase H, which protects genomic DNA from breaks by resolving R-loops. We propose that AntQ causes conflicts between transcription and replication machineries and thus promotes DNA damage. The isrK locus represents a unique example of an island-encoded sRNA that exerts a highly complex regulatory mechanism to tune the expression of a toxic protein.
Collapse
|
25
|
Wells CD, Deighan P, Brigham M, Hochschild A. Nascent RNA length dictates opposing effects of NusA on antitermination. Nucleic Acids Res 2016; 44:5378-89. [PMID: 27025650 PMCID: PMC4914094 DOI: 10.1093/nar/gkw198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 12/31/2022] Open
Abstract
The NusA protein is a universally conserved bacterial transcription elongation factor that binds RNA polymerase (RNAP). When functioning independently, NusA enhances intrinsic termination. Paradoxically, NusA stimulates the function of the N and Q antiterminator proteins of bacteriophage λ. The mechanistic basis for NusA's functional plasticity is poorly understood. Here we uncover an effect of nascent RNA length on the ability of NusA to collaborate with Q. Ordinarily, Q engages RNAP during early elongation when it is paused at a specific site just downstream of the phage late-gene promoter. NusA facilitates this engagement process and both proteins remain associated with the transcription elongation complex (TEC) as it escapes the pause and transcribes the late genes. We show that the λ-related phage 82 Q protein (82Q) can also engage RNAP that is paused at a promoter-distal position and thus contains a nascent RNA longer than that associated with the natively positioned TEC. However, the effect of NusA in this context is antagonistic rather than stimulatory. Moreover, cleaving the long RNA associated with the promoter-distal TEC restores NusA's stimulatory effect. Our findings reveal a critical role for nascent RNA in modulating NusA's effect on 82Q-mediated antitermination, with implications for understanding NusA's functional plasticity.
Collapse
Affiliation(s)
| | - Padraig Deighan
- Department of Microbiology and Immunobiology, Boston, MA 02115, USA Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | | | - Ann Hochschild
- Department of Microbiology and Immunobiology, Boston, MA 02115, USA
| |
Collapse
|
26
|
Abstract
Production of a messenger RNA proceeds through sequential stages of transcription initiation and transcript elongation and termination. During each of these stages, RNA polymerase (RNAP) function is regulated by RNAP-associated protein factors. In bacteria, RNAP-associated σ factors are strictly required for promoter recognition and have historically been regarded as dedicated initiation factors. However, the primary σ factor in Escherichia coli, σ(70), can remain associated with RNAP during the transition from initiation to elongation, influencing events that occur after initiation. Quantitative studies on the extent of σ(70) retention have been limited to complexes halted during early elongation. Here, we used multiwavelength single-molecule fluorescence-colocalization microscopy to observe the σ(70)-RNAP complex during initiation from the λ PR' promoter and throughout the elongation of a long (>2,000-nt) transcript. Our results provide direct measurements of the fraction of actively transcribing complexes with bound σ(70) and the kinetics of σ(70) release from actively transcribing complexes. σ(70) release from mature elongation complexes was slow (0.0038 s(-1)); a substantial subpopulation of elongation complexes retained σ(70) throughout transcript elongation, and this fraction depended on the sequence of the initially transcribed region. We also show that elongation complexes containing σ(70) manifest enhanced recognition of a promoter-like pause element positioned hundreds of nucleotides downstream of the promoter. Together, the results provide a quantitative framework for understanding the postinitiation roles of σ(70) during transcription.
Collapse
|
27
|
Imashimizu M, Shimamoto N, Oshima T, Kashlev M. Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications. Transcription 2015; 5:e28285. [PMID: 25764114 PMCID: PMC4214235 DOI: 10.4161/trns.28285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023] Open
Abstract
Regulation of transcription elongation via pausing of RNA polymerase has multiple physiological roles. The pausing mechanism depends on the sequence heterogeneity of the DNA being transcribed, as well as on certain interactions of polymerase with specific DNA sequences. In order to describe the mechanism of regulation, we introduce the concept of heterogeneity into the previously proposed alternative models of elongation, power stroke and Brownian ratchet. We also discuss molecular origins and physiological significances of the heterogeneity.
Collapse
|
28
|
Goldman SR, Nair NU, Wells CD, Nickels BE, Hochschild A. The primary σ factor in Escherichia coli can access the transcription elongation complex from solution in vivo. eLife 2015; 4. [PMID: 26371553 PMCID: PMC4604602 DOI: 10.7554/elife.10514] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
The σ subunit of bacterial RNA polymerase (RNAP) confers on the enzyme the ability to initiate promoter-specific transcription. Although σ factors are generally classified as initiation factors, σ can also remain associated with, and modulate the behavior of, RNAP during elongation. Here we establish that the primary σ factor in Escherichia coli, σ70, can function as an elongation factor in vivo by loading directly onto the transcription elongation complex (TEC) in trans. We demonstrate that σ70 can bind in trans to TECs that emanate from either a σ70-dependent promoter or a promoter that is controlled by an alternative σ factor. We further demonstrate that binding of σ70 to the TEC in trans can have a particularly large impact on the dynamics of transcription elongation during stationary phase. Our findings establish a mechanism whereby the primary σ factor can exert direct effects on the composition of the entire transcriptome, not just that portion that is produced under the control of σ70-dependent promoters. DOI:http://dx.doi.org/10.7554/eLife.10514.001 Proteins are made following instructions that are encoded by sections of DNA called genes. In the first step of protein production, an enzyme called RNA polymerase uses the gene as a template to make molecules of messenger ribonucleic acid (mRNA). This process—known as transcription—starts when RNA polymerase binds to a site at the start of a gene. The enzyme then moves along the DNA, assembling the mRNA as it goes. This stage of transcription is known as elongation and continues until the RNA polymerase reaches the end of the gene. In bacteria, RNA polymerase needs a family of proteins called sigma factors to help it identify and bind to the start sites associated with the genes that will be transcribed. In the well studied bacterium known as E. coli, the primary sigma factor that is required for transcription initiation on most genes is called sigma 70. Recent research has shown that sigma 70 also influences the activity of RNA polymerase during elongation. During this stage, the RNA polymerase and several other proteins interact to form a complex called the transcription elongation complex (or TEC for short). However, it is not clear how sigma 70 gains access to this complex: does it simply remain with RNA polymerase after transcription starts, or is it freshly incorporated into the TEC during elongation? Goldman, Nair et al. found that sigma 70 is able to incorporate into TECs during elongation and causes them to pause at specific sites in the gene. Sigma 70 can even incorporate into TECs on genes where transcription was initiated by a different sigma factor. These findings indicate that sigma 70 can directly influence the transcription of all genes, not just the genes with start sites that are recognized by this sigma factor. Goldman et al. also observed that in cells that were growing and dividing rapidly, the pauses that occurred due to sigma 70 associating with TECs were of shorter duration than those in cells that were growing slowly. This implies that the growth status of the cells modulates the pausing of RNA polymerase during transcription. In the future, it will be important to understand how much influence the primary sigma factor has on RNA polymerase during elongation in E. coli and other bacteria. DOI:http://dx.doi.org/10.7554/eLife.10514.002
Collapse
Affiliation(s)
- Seth R Goldman
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States.,Department of Genetics, Waksman Institute, Rutgers University, New Brunswick, United States
| | - Nikhil U Nair
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Christopher D Wells
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Bryce E Nickels
- Department of Genetics, Waksman Institute, Rutgers University, New Brunswick, United States
| | - Ann Hochschild
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
29
|
Abstract
The movement of RNA polymerase (RNAP) during transcription elongation is modulated by DNA-encoded elements that cause the elongation complex to pause. One of the best-characterized pause sequences is a binding site for the σ(70) initiation factor that induces pausing at a site near lambdoid phage late-gene promoters. An essential component of this σ(70)-dependent pause is the elemental pause site (EPS), a sequence that itself induces transcription pausing throughout the Escherichia coli genome and underlies other complex regulatory pause elements, such as the ops and his operon pauses. Here, we identify and provide a detailed kinetic analysis of a transcription cycle analogous to abortive cycling that underlies the σ(70)-dependent pause. We show that, in σ(70)-dependent pausing, the elemental pause acts primarily to modulate the rate at which complexes attempt to disengage the σ(70):DNA interaction. Our findings establish the σ(70)-dependent pause-encoding region as a multipartite element in which several pause-inducing components make distinct mechanistic contributions to the induction and maintenance of a regulatory transcription pause.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Jeffrey W Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
30
|
Abstract
Viral genomes harbor a variety of unusual translational phenomena that allow them to pack coding information more densely and evade host restriction mechanisms imposed by the cellular translational apparatus. Annotating translated sequences within these genomes thus poses particular challenges, but identifying the full complement of proteins encoded by a virus is critical for understanding its life cycle and defining the epitopes it presents for immune surveillance. Ribosome profiling is an emerging technique for global analysis of translation that offers direct and experimental annotation of viral genomes. Ribosome profiling has been applied to two herpesvirus genomes, those of human cytomegalovirus and Kaposi's sarcoma-associated herpesvirus, revealing translated sequences within presumptive long noncoding RNAs and identifying other micropeptides. Synthesis of these proteins has been confirmed by mass spectrometry and by identifying T cell responses following infection. Ribosome profiling in other viruses will likely expand further our understanding of viral gene regulation and the proteome.
Collapse
Affiliation(s)
- Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720;
| |
Collapse
|
31
|
Casjens SR, Hendrix RW. Bacteriophage lambda: Early pioneer and still relevant. Virology 2015; 479-480:310-30. [PMID: 25742714 PMCID: PMC4424060 DOI: 10.1016/j.virol.2015.02.010] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2014] [Revised: 01/13/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112, USA; Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
32
|
Feklístov A, Sharon BD, Darst SA, Gross CA. Bacterial sigma factors: a historical, structural, and genomic perspective. Annu Rev Microbiol 2014; 68:357-76. [PMID: 25002089 DOI: 10.1146/annurev-micro-092412-155737] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Transcription initiation is the crucial focal point of gene expression in prokaryotes. The key players in this process, sigma factors (σs), associate with the catalytic core RNA polymerase to guide it through the essential steps of initiation: promoter recognition and opening, and synthesis of the first few nucleotides of the transcript. Here we recount the key advances in σ biology, from their discovery 45 years ago to the most recent progress in understanding their structure and function at the atomic level. Recent data provide important structural insights into the mechanisms whereby σs initiate promoter opening. We discuss both the housekeeping σs, which govern transcription of the majority of cellular genes, and the alternative σs, which direct RNA polymerase to specialized operons in response to environmental and physiological cues. The review concludes with a genome-scale view of the extracytoplasmic function σs, the most abundant group of alternative σs.
Collapse
|
33
|
Malinen AM, NandyMazumdar M, Turtola M, Malmi H, Grocholski T, Artsimovitch I, Belogurov GA. CBR antimicrobials alter coupling between the bridge helix and the β subunit in RNA polymerase. Nat Commun 2014; 5:3408. [PMID: 24598909 PMCID: PMC3959191 DOI: 10.1038/ncomms4408] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2013] [Accepted: 02/06/2014] [Indexed: 01/17/2023] Open
Abstract
Bacterial RNA polymerase (RNAP) is a validated target for antibacterial drugs. CBR703 series antimicrobials allosterically inhibit transcription by binding to a conserved α helix (β' bridge helix, BH) that interconnects the two largest RNAP subunits. Here we show that disruption of the BH-β subunit contacts by amino-acid substitutions invariably results in accelerated catalysis, slowed-down forward translocation and insensitivity to regulatory pauses. CBR703 partially reverses these effects in CBR-resistant RNAPs while inhibiting catalysis and promoting pausing in CBR-sensitive RNAPs. The differential response of variant RNAPs to CBR703 suggests that the inhibitor binds in a cavity walled by the BH, the β' F-loop and the β fork loop. Collectively, our data are consistent with a model in which the β subunit fine tunes RNAP elongation activities by altering the BH conformation, whereas CBRs deregulate transcription by increasing coupling between the BH and the β subunit.
Collapse
Affiliation(s)
- Anssi M. Malinen
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Monali NandyMazumdar
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Matti Turtola
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Henri Malmi
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Thadee Grocholski
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
34
|
Strobel EJ, Roberts JW. Regulation of promoter-proximal transcription elongation: enhanced DNA scrunching drives λQ antiterminator-dependent escape from a σ70-dependent pause. Nucleic Acids Res 2014; 42:5097-108. [PMID: 24550164 PMCID: PMC4005639 DOI: 10.1093/nar/gku147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
During initial transcription, RNA polymerase remains bound at the promoter and synthesizes RNA without movement along the DNA template, drawing downstream DNA into itself in a process called scrunching and thereby storing energy to sever the bonds that hold the enzyme at the promoter. We show that DNA scrunching also is the driving force behind the escape of RNA polymerase from a regulatory pause of the late gene operon of bacteriophage λ, and that this process is enhanced by the activity of the Q(λ) antiterminator. Furthermore, we show that failure of transcription complexes to escape the pause results in backtracking and arrest in a process analogous to abortive initiation. We identify a sequence element that modulates both abortive synthesis and the formation of arrested elongation complexes.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
35
|
Vorobiev SM, Gensler Y, Vahedian-Movahed H, Seetharaman J, Su M, Huang JY, Xiao R, Kornhaber G, Montelione GT, Tong L, Ebright RH, Nickels BE. Structure of the DNA-binding and RNA-polymerase-binding region of transcription antitermination factor λQ. Structure 2014; 22:488-95. [PMID: 24440517 DOI: 10.1016/j.str.2013.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
The bacteriophage λ Q protein is a transcription antitermination factor that controls expression of the phage late genes as a stable component of the transcription elongation complex. To join the elongation complex, λQ binds a specific DNA sequence element and interacts with RNA polymerase that is paused during early elongation. λQ binds to the paused early-elongation complex through interactions between λQ and two regions of RNA polymerase: region 4 of the σ(70) subunit and the flap region of the β subunit. We present the 2.1 Å resolution crystal structure of a portion of λQ containing determinants for interaction with DNA, interaction with region 4 of σ(70), and interaction with the β flap. The structure provides a framework for interpreting prior genetic and biochemical analysis and sets the stage for future structural studies to elucidate the mechanism by which λQ alters the functional properties of the transcription elongation complex.
Collapse
Affiliation(s)
- Sergey M Vorobiev
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027, USA
| | - Yocheved Gensler
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Hanif Vahedian-Movahed
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Jayaraman Seetharaman
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027, USA
| | - Min Su
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027, USA
| | - Janet Y Huang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854, USA
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Rutgers University, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854, USA
| | - Gregory Kornhaber
- Center for Advanced Biotechnology and Medicine, Rutgers University, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Rutgers University, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854, USA
| | - Liang Tong
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027, USA
| | - Richard H Ebright
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
36
|
Blasche S, Wuchty S, Rajagopala SV, Uetz P. The protein interaction network of bacteriophage lambda with its host, Escherichia coli. J Virol 2013; 87:12745-55. [PMID: 24049175 PMCID: PMC3838138 DOI: 10.1128/jvi.02495-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2013] [Accepted: 09/10/2013] [Indexed: 11/20/2022] Open
Abstract
Although most of the 73 open reading frames (ORFs) in bacteriophage λ have been investigated intensively, the function of many genes in host-phage interactions remains poorly understood. Using yeast two-hybrid screens of all lambda ORFs for interactions with its host Escherichia coli, we determined a raw data set of 631 host-phage interactions resulting in a set of 62 high-confidence interactions after multiple rounds of retesting. These links suggest novel regulatory interactions between the E. coli transcriptional network and lambda proteins. Targeted host proteins and genes required for lambda infection are enriched among highly connected proteins, suggesting that bacteriophages resemble interaction patterns of human viruses. Lambda tail proteins interact with both bacterial fimbrial proteins and E. coli proteins homologous to other phage proteins. Lambda appears to dramatically differ from other phages, such as T7, because of its unusually large number of modified and processed proteins, which reduces the number of host-virus interactions detectable by yeast two-hybrid screens.
Collapse
Affiliation(s)
- Sonja Blasche
- Genomics and Proteomics Core Facilities, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Wuchty
- National Center of Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
37
|
Abstract
Prophages represent a large fraction of prokaryotic genomes and often provide new functions to their hosts, in particular virulence and fitness. How prokaryotic cells maintain such gene providers is central for understanding bacterial genome evolution by horizontal transfer. Prophage excision occurs through site-specific recombination mediated by a prophage-encoded integrase. In addition, a recombination directionality factor (or excisionase) directs the reaction toward excision and prevents the phage genome from being reintegrated. In this work, we describe the role of the transcription termination factor Rho in prophage maintenance through control of the synthesis of transcripts that mediate recombination directionality factor expression and, thus, excisive recombination. We show that Rho inhibition by bicyclomycin allows for the expression of prophage genes that lead to excisive recombination. Thus, besides its role in the silencing of horizontally acquired genes, Rho also maintains lysogeny of defective and functional prophages.
Collapse
|
38
|
High-resolution view of bacteriophage lambda gene expression by ribosome profiling. Proc Natl Acad Sci U S A 2013; 110:11928-33. [PMID: 23812753 DOI: 10.1073/pnas.1309739110] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage lambda is one of the most extensively studied organisms and has been a primary model for understanding basic modes of genetic regulation. Here, we examine the progress of lambda gene expression during phage development by ribosome profiling and, thereby, provide a very-high-resolution view of lambda gene expression. The known genes are expressed in a predictable fashion, authenticating the analysis. However, many previously unappreciated potential open reading frames become apparent in the expression analysis, revealing an unexpected complexity in the pattern of lambda gene function.
Collapse
|
39
|
Mapping and regulation of genes within Salmonella pathogenicity island 12 that contribute to in vivo fitness of Salmonella enterica Serovar Typhimurium. Infect Immun 2013; 81:2394-404. [PMID: 23630960 DOI: 10.1128/iai.00067-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
Salmonella pathogenicity island 12 (SPI-12) of Salmonella enterica serovar Typhimurium is a 15-kb region that encompasses genes STM2230 to STM2245 and encodes a remnant phage known to contribute to bacterial virulence. In mouse infection experiments and replication assays in macrophages, we demonstrated a role for four genes in SPI-12 for bacterial survival in the host. STM2239, a potential Q antiterminator, showed a prominent contribution to bacterial fitness. Transcriptional reporter experiments, quantitative reverse transcription-PCR (RT-PCR), and immunoblotting demonstrated that the virulence regulator SsrB and STM2239 contribute to transcriptional activation of genes in SPI-12. SsrB was found to indirectly regulate this locus by transcriptional read-through from the sspH2 (STM2241) promoter. Chromatin immunoprecipitation showed that STM2239 copurified with the promoter regulating STM2237, suggesting that STM2239 may function as an antiterminator to activate adjacent genes. These results demonstrate that bacteriophage genes may be adapted by pathogenic bacteria to improve fitness in the host.
Collapse
|
40
|
Tyler JS, Beeri K, Reynolds JL, Alteri CJ, Skinner KG, Friedman JH, Eaton KA, Friedman DI. Prophage induction is enhanced and required for renal disease and lethality in an EHEC mouse model. PLoS Pathog 2013; 9:e1003236. [PMID: 23555250 PMCID: PMC3610611 DOI: 10.1371/journal.ppat.1003236] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2012] [Accepted: 01/22/2013] [Indexed: 11/23/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC), particularly serotype O157:H7, causes hemorrhagic colitis, hemolytic uremic syndrome, and even death. In vitro studies showed that Shiga toxin 2 (Stx2), the primary virulence factor expressed by EDL933 (an O157:H7 strain), is encoded by the 933W prophage. And the bacterial subpopulation in which the 933W prophage is induced is the producer of Stx2. Using the germ-free mouse, we show the essential role 933W induction plays in the virulence of EDL933 infection. An EDL933 derivative with a single mutation in its 933W prophage, resulting specifically in that phage being uninducible, colonizes the intestines, but fails to cause any of the pathological changes seen with the parent strain. Hence, induction of the 933W prophage is the primary event leading to disease from EDL933 infection. We constructed a derivative of EDL933, SIVET, with a biosensor that specifically measures induction of the 933W prophage. Using this biosensor to measure 933W induction in germ-free mice, we found an increase three logs greater than was expected from in vitro results. Since the induced population produces and releases Stx2, this result indicates that an activity in the intestine increases Stx2 production.
Collapse
Affiliation(s)
- Jessica S. Tyler
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Karen Beeri
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jared L. Reynolds
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher J. Alteri
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Katherine G. Skinner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jonathan H. Friedman
- Department of Mathwork, Mathworks, Natick, Massachusetts, United States of America
| | - Kathryn A. Eaton
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David I. Friedman
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
41
|
Weixlbaumer A, Leon K, Landick R, Darst SA. Structural basis of transcriptional pausing in bacteria. Cell 2013; 152:431-41. [PMID: 23374340 PMCID: PMC3564060 DOI: 10.1016/j.cell.2012.12.020] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2012] [Revised: 11/08/2012] [Accepted: 12/13/2012] [Indexed: 11/20/2022]
Abstract
Transcriptional pausing by multisubunit RNA polymerases (RNAPs) is a key mechanism for regulating gene expression in both prokaryotes and eukaryotes and is a prerequisite for transcription termination. Pausing and termination states are thought to arise through a common, elemental pause state that is inhibitory for nucleotide addition. We report three crystal structures of Thermus RNAP elemental paused elongation complexes (ePECs). The structures reveal the same relaxed, open-clamp RNAP conformation in the ePEC that may arise by failure to re-establish DNA contacts during translocation. A kinked bridge-helix sterically blocks the RNAP active site, explaining how this conformation inhibits RNAP catalytic activity. Our results provide a framework for understanding how RNA hairpin formation stabilizes the paused state and how the ePEC intermediate facilitates termination.
Collapse
Affiliation(s)
| | - Katherine Leon
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Robert Landick
- Departments of Biochemistry and Bacteriology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Seth A. Darst
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
42
|
Abstract
RNA polymerase is a ratchet machine that oscillates between productive and backtracked states at numerous DNA positions. Since its first description 15 years ago, backtracking--the reversible sliding of RNA polymerase along DNA and RNA--has been implicated in many critical processes in bacteria and eukaryotes, including the control of transcription elongation, pausing, termination, fidelity, and genome instability.
Collapse
|
43
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
44
|
Gaballa A, MacLellan S, Helmann JD. Transcription activation by the siderophore sensor Btr is mediated by ligand-dependent stimulation of promoter clearance. Nucleic Acids Res 2011; 40:3585-95. [PMID: 22210890 PMCID: PMC3333878 DOI: 10.1093/nar/gkr1280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial transcription factors often function as DNA-binding proteins that selectively activate or repress promoters, although the biochemical mechanisms vary. In most well-understood examples, activators function by either increasing the affinity of RNA polymerase (RNAP) for the target promoter, or by increasing the isomerization of the initial closed complex to the open complex. We report that Bacillus subtilis Btr, a member of the AraC family of activators, functions principally as a ligand-dependent activator of promoter clearance. In the presence of its co-activator, the siderophore bacillibactin (BB), the Btr:BB complex enhances productive transcription, while having only modest effects on either RNAP promoter association or the production of abortive transcripts. Btr binds to two direct repeat sequences adjacent to the −35 region; recognition of the downstream motif is most important for establishing a productive interaction between the Btr:BB complex and RNAP. The resulting Btr:BB dependent increase in transcription enables the production of the ferric-BB importer to be activated by the presence of its cognate substrate.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | |
Collapse
|
45
|
Santangelo TJ, Artsimovitch I. Termination and antitermination: RNA polymerase runs a stop sign. Nat Rev Microbiol 2011; 9:319-29. [PMID: 21478900 DOI: 10.1038/nrmicro2560] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
Termination signals induce rapid and irreversible dissociation of the nascent transcript from RNA polymerase. Terminators at the end of genes prevent unintended transcription into the downstream genes, whereas terminators in the upstream regulatory leader regions adjust expression of the structural genes in response to metabolic and environmental signals. Premature termination within an operon leads to potentially deleterious defects in the expression of the downstream genes, but also provides an important surveillance mechanism. This Review discusses the actions of bacterial and phage antiterminators that allow RNA polymerase to override a terminator when the circumstances demand it.
Collapse
Affiliation(s)
- Thomas J Santangelo
- Department of Microbiology and The RNA Group, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
46
|
Larson MH, Landick R, Block SM. Single-molecule studies of RNA polymerase: one singular sensation, every little step it takes. Mol Cell 2011; 41:249-62. [PMID: 21292158 DOI: 10.1016/j.molcel.2011.01.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2010] [Revised: 12/09/2010] [Accepted: 01/05/2011] [Indexed: 11/17/2022]
Abstract
Transcription is the first of many biochemical steps that turn the genetic information found in DNA into the proteins responsible for driving cellular processes. In this review, we highlight certain advantages of single-molecule techniques in the study of prokaryotic and eukaryotic transcription, and the specific ways in which these techniques complement conventional, ensemble-based biochemistry. We focus on recent literature, highlighting examples where single-molecule methods have provided fresh insights into mechanism. We also present recent technological advances and outline future directions in the field.
Collapse
Affiliation(s)
- Matthew H Larson
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
47
|
Σ(70)-dependent transcription pausing in Escherichia coli. J Mol Biol 2011; 412:782-92. [PMID: 21316374 DOI: 10.1016/j.jmb.2011.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2010] [Revised: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 11/24/2022]
Abstract
After promoter escape in Escherichia coli, the initiating σ(70) factor is retained by core RNA polymerase (RNAP) for at least tens of nucleotides. While it is bound, σ(70) can engage a repeat of a promoter DNA element located downstream of the promoter and thereby induce a transcription pause. The σ(70)-dependent promoter-proximal pause that occurs at all lambdoid phage late gene promoters is essential to regulation of the late gene operons. Several, and possibly many, E. coli promoters have associated σ(70)-dependent pauses. Clearly characterized σ(70)-dependent pauses occur within 25 nucleotides of the start site, but σ(70)-dependent pausing might occur farther downstream as well. In this review, we summarize evidence for σ(70)-dependent promoter-proximal and promoter-distal pausing, and we discuss its potential regulatory function and mechanistic basis.
Collapse
|
48
|
Deighan P, Pukhrambam C, Nickels BE, Hochschild A. Initial transcribed region sequences influence the composition and functional properties of the bacterial elongation complex. Genes Dev 2011; 25:77-88. [PMID: 21205867 DOI: 10.1101/gad.1991811] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
Abstract
The bacterial RNA polymerase (RNAP) holoenzyme consists of a catalytic core enzyme (α(2)ββ'ω) in complex with a σ factor that is essential for promoter recognition and transcription initiation. During early elongation, the stability of interactions between σ and the remainder of the transcription complex decreases. Nevertheless, there is no mechanistic requirement for release of σ upon the transition to elongation. Furthermore, σ can remain associated with RNAP during transcription elongation and influence regulatory events that occur during transcription elongation. Here we demonstrate that promoter-like DNA sequence elements within the initial transcribed region that are known to induce early elongation pausing through sequence-specific interactions with σ also function to increase the σ content of downstream elongation complexes. Our findings establish σ-dependent pausing as a mechanism by which initial transcribed region sequences can influence the composition and functional properties of the transcription elongation complex over distances of at least 700 base pairs.
Collapse
Affiliation(s)
- Padraig Deighan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
49
|
Bai L, Wang MD. Comparison of Pause Predictions of Two Sequence-Dependent Transcription Models. JOURNAL OF STATISTICAL MECHANICS (ONLINE) 2010; 2010:P12007. [PMID: 22446379 PMCID: PMC3310166 DOI: 10.1088/1742-5468/2010/12/p12007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/31/2023]
Abstract
Two recent theoretical models, Bai et al. (2004, 2007) and Tadigotla et al. (2006), formulated thermodynamic explanations of sequence-dependent transcription pausing by RNA polymerase (RNAP). The two models differ in some basic assumptions and therefore make different yet overlapping predictions for pause locations, and different predictions on pause kinetics and mechanisms. Here we present a comprehensive comparison of the two models. We show that while they have comparable predictive power of pause locations at low NTP concentrations, the Bai et al. model is more accurate than Tadigotla et al. at higher NTP concentrations. Pausing kinetics predicted by Bai et al. is also consistent with time-course transcription reactions, while Tadigotla et al. is unsuited for this type of kinetic prediction. More importantly, the two models in general predict different pausing mechanisms even for the same pausing sites, and the Bai et al. model provides an explanation more consistent with recent single molecule observations.
Collapse
Affiliation(s)
- Lu Bai
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D. Wang
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
50
|
Nechaev S, Adelman K. Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:34-45. [PMID: 21081187 DOI: 10.1016/j.bbagrm.2010.11.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/03/2010] [Revised: 11/06/2010] [Accepted: 11/09/2010] [Indexed: 01/12/2023]
Abstract
Proper regulation of gene expression is essential for the differentiation, development and survival of all cells and organisms. Recent work demonstrates that transcription of many genes, including key developmental and stimulus-responsive genes, is regulated after the initiation step, by pausing of RNA polymerase II during elongation through the promoter-proximal region. Thus, there is great interest in better understanding the events that follow transcription initiation and the ways in which the efficiency of early elongation can be modulated to impact expression of these highly regulated genes. Here we describe our current understanding of the steps involved in the transition from an unstable initially transcribing complex into a highly stable and processive elongation complex. We also discuss the interplay between factors that affect early transcript elongation and the potential physiological consequences for genes that are regulated through transcriptional pausing.
Collapse
Affiliation(s)
- Sergei Nechaev
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|