1
|
Wen Y, Latham CM, Moore AN, Thomas NT, Lancaster BD, Reeves KA, Keeble AR, Fry CS, Johnson DL, Thompson KL, Noehren B, Fry JL. Vitamin D status associates with skeletal muscle loss after anterior cruciate ligament reconstruction. JCI Insight 2023; 8:e170518. [PMID: 37856482 PMCID: PMC10795826 DOI: 10.1172/jci.insight.170518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUNDAlthough 25-hydroxyvitamin D [25(OH)D] concentrations of 30 ng/mL or higher are known to reduce injury risk and boost strength, the influence on anterior cruciate ligament reconstruction (ACLR) outcomes remains unexamined. This study aimed to define the vitamin D signaling response to ACLR, assess the relationship between vitamin D status and muscle fiber cross-sectional area (CSA) and bone density outcomes, and discover vitamin D receptor (VDR) targets after ACLR.METHODSTwenty-one young, healthy, physically active participants with recent ACL tears were enrolled (17.8 ± 3.2 years, BMI 26.0 ± 3.5 kg/m2). Data were collected through blood samples, vastus lateralis biopsies, dual energy x-ray bone density measurements, and isokinetic dynamometer measures at baseline, 1 week, 4 months, and 6 months after ACLR. The biopsies facilitated CSA, Western blotting, RNA-seq, and VDR ChIP-seq analyses.RESULTSACLR surgery led to decreased circulating bioactive vitamin D and increased VDR and activating enzyme expression in skeletal muscle 1 week after ACLR. Participants with less than 30 ng/mL 25(OH)D levels (n = 13) displayed more significant quadriceps fiber CSA loss 1 week and 4 months after ACLR than those with 30 ng/mL or higher (n = 8; P < 0.01 for post hoc comparisons; P = 0.041 for time × vitamin D status interaction). RNA-seq and ChIP-seq data integration revealed genes associated with energy metabolism and skeletal muscle recovery, potentially mediating the impact of vitamin D status on ACLR recovery. No difference in bone mineral density losses between groups was observed.CONCLUSIONCorrecting vitamin D status prior to ACLR may aid in preserving skeletal muscle during recovery.FUNDINGNIH grants R01AR072061, R01AR071398-04S1, and K99AR081367.
Collapse
Affiliation(s)
- Yuan Wen
- Center for Muscle Biology, College of Health Sciences
- Department of Physiology, College of Medicine
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine
| | | | | | | | | | | | - Alexander R. Keeble
- Center for Muscle Biology, College of Health Sciences
- Department of Physiology, College of Medicine
| | | | | | - Katherine L. Thompson
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, Kentucky, USA
| | - Brian Noehren
- Center for Muscle Biology, College of Health Sciences
- Department of Orthopaedic Surgery & Sports Medicine, and
| | - Jean L. Fry
- Center for Muscle Biology, College of Health Sciences
| |
Collapse
|
2
|
Clerget G, Bourguignon-Igel V, Marmier-Gourrier N, Rolland N, Wacheul L, Manival X, Charron C, Kufel J, Méreau A, Senty-Ségault V, Tollervey D, Lafontaine DLJ, Branlant C, Rederstorff M. Synergistic defects in pre-rRNA processing from mutations in the U3-specific protein Rrp9 and U3 snoRNA. Nucleic Acids Res 2020; 48:3848-3868. [PMID: 31996908 PMCID: PMC7144924 DOI: 10.1093/nar/gkaa066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 01/24/2023] Open
Abstract
U3 snoRNA and the associated Rrp9/U3-55K protein are essential for 18S rRNA production by the SSU-processome complex. U3 and Rrp9 are required for early pre-rRNA cleavages at sites A0, A1 and A2, but the mechanism remains unclear. Substitution of Arg 289 in Rrp9 to Ala (R289A) specifically reduced cleavage at sites A1 and A2. Surprisingly, R289 is located on the surface of the Rrp9 β-propeller structure opposite to U3 snoRNA. To understand this, we first characterized the protein-protein interaction network of Rrp9 within the SSU-processome. This identified a direct interaction between the Rrp9 β-propeller domain and Rrp36, the strength of which was reduced by the R289A substitution, implicating this interaction in the observed processing phenotype. The Rrp9 R289A mutation also showed strong synergistic negative interactions with mutations in U3 that destabilize the U3/pre-rRNA base-pair interactions or reduce the length of their linking segments. We propose that the Rrp9 β-propeller and U3/pre-rRNA binding cooperate in the structure or stability of the SSU-processome. Additionally, our analysis of U3 variants gave insights into the function of individual segments of the 5′-terminal 72-nt sequence of U3. We interpret these data in the light of recently reported SSU-processome structures.
Collapse
Affiliation(s)
| | | | | | | | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S/FNRS), Université Libre de Bruxelles (ULB), and Center for Microscopy and Molecular Imaging (CMMI), B-6041 Charleroi-Gosselies, Belgium
| | - Xavier Manival
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - Joanna Kufel
- Wellcome Center for Cell Biology, University of Edinburgh, Scotland, UK
| | - Agnès Méreau
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - David Tollervey
- Wellcome Center for Cell Biology, University of Edinburgh, Scotland, UK
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S/FNRS), Université Libre de Bruxelles (ULB), and Center for Microscopy and Molecular Imaging (CMMI), B-6041 Charleroi-Gosselies, Belgium
| | | | | |
Collapse
|
3
|
Abstract
The kink-turn (k-turn) is a widespread structural motif found in functional RNA species. It typically comprises a three-nucleotide bulge followed by tandem trans sugar edge-Hoogsteen G:A base pairs. It introduces a sharp kink into the axis of duplex RNA, juxtaposing the minor grooves. Cross-strand H-bonds form at the interface, accepted by the conserved adenine nucleobases of the G:A basepairs. Alternative acceptors for one of these divides the k-turns into two conformational classes N3 and N1. The base pair that follows the G:A pairs (3b:3n) determines which conformation is adopted by a given k-turn. k-turns often mediate tertiary contacts in folded RNA species and frequently bind proteins. Common k-turn binding proteins include members of the L7Ae family, such as the human 15·5k protein. A recognition helix within these proteins binds in the widened major groove on the outside of the k-turn, that makes specific H-bonds with the conserved guanine nucleobases of the G:A pairs. L7Ae binds with extremely high affinity, and single-molecule data are consistent with folding by conformational selection. The standard, simple k-turn can be elaborated in a variety of ways, that include the complex k-turns and the k-junctions. In free solution in the absence of added metal ions or protein k-turns do not adopt the tightly-kinked conformation. They undergo folding by the binding of proteins, by the formation of tertiary contacts, and some (but not all) will fold on the addition of metal ions. Whether or not folding occurs in the presence of metal ions depends on local sequence, including the 3b:3n position, and the -1b:-1n position (5' to the bulge). In most cases -1b:-1n = C:G, so that the 3b:3n position is critical since it determines both folding properties and conformation. In general, the selection of these sequence matches a given k-turn to its biological requirements. The k-turn structure is now very well understood, to the point at which they can be used as a building block for the formation of RNA nano-objects, including triangles and squares.
Collapse
|
4
|
Huang L, Lilley DMJ. The Kink Turn, a Key Architectural Element in RNA Structure. J Mol Biol 2016; 428:790-801. [PMID: 26522935 PMCID: PMC5061560 DOI: 10.1016/j.jmb.2015.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/24/2015] [Indexed: 01/03/2023]
Abstract
Kink turns (k-turns) are widespread structural elements that introduce an axial bend into duplex RNA with an included angle of 50°. These mediate key tertiary interactions and bind specific proteins including members of the L7Ae family. The standard k-turn comprises a three-nucleotide bulge followed by G·A and A·G pairs. The RNA kinks by an association of the two minor grooves, stabilized by the formation of a number of key cross-strand hydrogen bonds mostly involving the adenine bases of the G·A and A·G pairs. The k-turns may be divided into two conformational classes, depending on the receptor for one of these hydrogen bonds. k-turns become folded by one of three different processes. Some, but not all, k-turns become folded in the presence of metal ions. Whether or not a given k-turn is folded under these conditions is determined by its sequence. We present a set of rules for the prediction of folding properties and the structure adopted on local sequence.
Collapse
Affiliation(s)
- Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.
| |
Collapse
|
5
|
Abstract
DEAD-box proteins, a large class of RNA-dependent ATPases, regulate all aspects of gene expression and RNA metabolism. They can facilitate dissociation of RNA duplexes and remodeling of RNA-protein complexes, serve as ATP-dependent RNA-binding proteins, or even anneal duplexes. These proteins have highly conserved sequence elements that are contained within two RecA-like domains; consequently, their structures are nearly identical. Furthermore, crystal structures of DEAD-box proteins with bound RNA reveal interactions exclusively between the protein and the RNA backbone. Together, these findings suggest that DEAD-box proteins interact with their substrates in a nonspecific manner, which is confirmed in biochemical experiments. Nevertheless, this contrasts with the need to target these enzymes to specific substrates in vivo. Using the DEAD-box protein Rok1 and its cofactor Rrp5, which both function during maturation of the small ribosomal subunit, we show here that Rrp5 provides specificity to the otherwise nonspecific biochemical activities of the Rok1 DEAD-domain. This finding could reconcile the need for specific substrate binding of some DEAD-box proteins with their nonspecific binding surface and expands the potential roles of cofactors to specificity factors. Identification of helicase cofactors and their RNA substrates could therefore help define the undescribed roles of the 19 DEAD-box proteins that function in ribosome assembly.
Collapse
|
6
|
Liu N, Xiao B, Ren HY, Tang ZL, Li K. Systematic identification and characterization of porcine snoRNAs: structural, functional and developmental insights. Anim Genet 2012; 44:24-33. [DOI: 10.1111/j.1365-2052.2012.02363.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Nan Liu
- State Key Laboratory for Animal Nutrition; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing; 100193; China
| | - Bang Xiao
- State Key Laboratory for Animal Nutrition; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing; 100193; China
| | - Hong-Yan Ren
- State Key Laboratory for Animal Nutrition; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing; 100193; China
| | - Zhong-Lin Tang
- State Key Laboratory for Animal Nutrition; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing; 100193; China
| | - Kui Li
- State Key Laboratory for Animal Nutrition; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing; 100193; China
| |
Collapse
|
7
|
Hokii Y, Sasano Y, Sato M, Sakamoto H, Sakata K, Shingai R, Taneda A, Oka S, Himeno H, Muto A, Fujiwara T, Ushida C. A small nucleolar RNA functions in rRNA processing in Caenorhabditis elegans. Nucleic Acids Res 2010; 38:5909-18. [PMID: 20460460 PMCID: PMC2943600 DOI: 10.1093/nar/gkq335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CeR-2 RNA is one of the newly identified Caenorhabditis elegans noncoding RNAs (ncRNAs). The characterization of CeR-2 by RNomic studies has failed to classify it into any known ncRNA family. In this study, we examined the spatiotemporal expression patterns of CeR-2 to gain insight into its function. CeR-2 is expressed in most cells from the early embryo to adult stages. The subcellular localization of this RNA is analogous to that of fibrillarin, a major protein of the nucleolus. It was observed that knockdown of C/D small nucleolar ribonucleoproteins (snoRNPs), but not of H/ACA snoRNPs, resulted in the aberrant nucleolar localization of CeR-2 RNA. A mutant worm with a reduced amount of cellular CeR-2 RNA showed changes in its pre-rRNA processing pattern compared with that of the wild-type strain N2. These results suggest that CeR-2 RNA is a C/D snoRNA involved in the processing of rRNAs.
Collapse
Affiliation(s)
- Yusuke Hokii
- Functional Genomics and Technology, United Graduate School of Agricultural Science, Iwate University, 18-8 Ueda 3-chome, Morioka 020-8550
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mammalian DEAD box protein Ddx51 acts in 3' end maturation of 28S rRNA by promoting the release of U8 snoRNA. Mol Cell Biol 2010; 30:2947-56. [PMID: 20404093 DOI: 10.1128/mcb.00226-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biogenesis of eukaryotic ribosomes requires a number of RNA helicases that drive molecular rearrangements at various points of the assembly pathway. While many ribosome synthesis factors are conserved among all eukaryotes, certain features of ribosome maturation, such as U8 snoRNA-assisted processing of the 5.8S and 28S rRNA precursors, are observed only in metazoan cells. Here, we identify the mammalian DEAD box helicase family member Ddx51 as a novel ribosome synthesis factor and an interacting partner of the nucleolar GTP-binding protein Nog1. Unlike any previously studied yeast helicases, Ddx51 is required for the formation of the 3' end of 28S rRNA. Ddx51 binds to pre-60S subunit complexes and promotes displacement of U8 snoRNA from pre-rRNA, which is necessary for the removal of the 3' external transcribed spacer from 28S rRNA and productive downstream processing. These data demonstrate the emergence of a novel factor that facilitates a pre-rRNA processing event specific for higher eukaryotes.
Collapse
|
9
|
Hertel J, de Jong D, Marz M, Rose D, Tafer H, Tanzer A, Schierwater B, Stadler PF. Non-coding RNA annotation of the genome of Trichoplax adhaerens. Nucleic Acids Res 2009; 37:1602-15. [PMID: 19151082 PMCID: PMC2655684 DOI: 10.1093/nar/gkn1084] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/22/2008] [Accepted: 12/23/2008] [Indexed: 02/06/2023] Open
Abstract
A detailed annotation of non-protein coding RNAs is typically missing in initial releases of newly sequenced genomes. Here we report on a comprehensive ncRNA annotation of the genome of Trichoplax adhaerens, the presumably most basal metazoan whose genome has been published to-date. Since blast identified only a small fraction of the best-conserved ncRNAs--in particular rRNAs, tRNAs and some snRNAs--we developed a semi-global dynamic programming tool, GotohScan, to increase the sensitivity of the homology search. It successfully identified the full complement of major and minor spliceosomal snRNAs, the genes for RNase P and MRP RNAs, the SRP RNA, as well as several small nucleolar RNAs. We did not find any microRNA candidates homologous to known eumetazoan sequences. Interestingly, most ncRNAs, including the pol-III transcripts, appear as single-copy genes or with very small copy numbers in the Trichoplax genome.
Collapse
Affiliation(s)
- Jana Hertel
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraβe 16-18, D-04107 Leipzig, Division of Ecology and Evolution, Institut für Tierökologie und Zellbiologie, Tierärztliche Hochschule Hannover, Bünteweg 17d, D-30559 Hannover, Germany, Department of Theoretical Chemistry, University of Vienna, Währingerstraβe 17, A-1090 Wien, Austria, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA, RNomics Group, Fraunhofer Institut für Zelltherapie und Immunologie, Deutscher Platz 5e, D-04103 Leipzig, Germany and Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Danielle de Jong
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraβe 16-18, D-04107 Leipzig, Division of Ecology and Evolution, Institut für Tierökologie und Zellbiologie, Tierärztliche Hochschule Hannover, Bünteweg 17d, D-30559 Hannover, Germany, Department of Theoretical Chemistry, University of Vienna, Währingerstraβe 17, A-1090 Wien, Austria, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA, RNomics Group, Fraunhofer Institut für Zelltherapie und Immunologie, Deutscher Platz 5e, D-04103 Leipzig, Germany and Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Manja Marz
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraβe 16-18, D-04107 Leipzig, Division of Ecology and Evolution, Institut für Tierökologie und Zellbiologie, Tierärztliche Hochschule Hannover, Bünteweg 17d, D-30559 Hannover, Germany, Department of Theoretical Chemistry, University of Vienna, Währingerstraβe 17, A-1090 Wien, Austria, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA, RNomics Group, Fraunhofer Institut für Zelltherapie und Immunologie, Deutscher Platz 5e, D-04103 Leipzig, Germany and Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Dominic Rose
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraβe 16-18, D-04107 Leipzig, Division of Ecology and Evolution, Institut für Tierökologie und Zellbiologie, Tierärztliche Hochschule Hannover, Bünteweg 17d, D-30559 Hannover, Germany, Department of Theoretical Chemistry, University of Vienna, Währingerstraβe 17, A-1090 Wien, Austria, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA, RNomics Group, Fraunhofer Institut für Zelltherapie und Immunologie, Deutscher Platz 5e, D-04103 Leipzig, Germany and Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Hakim Tafer
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraβe 16-18, D-04107 Leipzig, Division of Ecology and Evolution, Institut für Tierökologie und Zellbiologie, Tierärztliche Hochschule Hannover, Bünteweg 17d, D-30559 Hannover, Germany, Department of Theoretical Chemistry, University of Vienna, Währingerstraβe 17, A-1090 Wien, Austria, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA, RNomics Group, Fraunhofer Institut für Zelltherapie und Immunologie, Deutscher Platz 5e, D-04103 Leipzig, Germany and Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Andrea Tanzer
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraβe 16-18, D-04107 Leipzig, Division of Ecology and Evolution, Institut für Tierökologie und Zellbiologie, Tierärztliche Hochschule Hannover, Bünteweg 17d, D-30559 Hannover, Germany, Department of Theoretical Chemistry, University of Vienna, Währingerstraβe 17, A-1090 Wien, Austria, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA, RNomics Group, Fraunhofer Institut für Zelltherapie und Immunologie, Deutscher Platz 5e, D-04103 Leipzig, Germany and Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Bernd Schierwater
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraβe 16-18, D-04107 Leipzig, Division of Ecology and Evolution, Institut für Tierökologie und Zellbiologie, Tierärztliche Hochschule Hannover, Bünteweg 17d, D-30559 Hannover, Germany, Department of Theoretical Chemistry, University of Vienna, Währingerstraβe 17, A-1090 Wien, Austria, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA, RNomics Group, Fraunhofer Institut für Zelltherapie und Immunologie, Deutscher Platz 5e, D-04103 Leipzig, Germany and Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraβe 16-18, D-04107 Leipzig, Division of Ecology and Evolution, Institut für Tierökologie und Zellbiologie, Tierärztliche Hochschule Hannover, Bünteweg 17d, D-30559 Hannover, Germany, Department of Theoretical Chemistry, University of Vienna, Währingerstraβe 17, A-1090 Wien, Austria, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA, RNomics Group, Fraunhofer Institut für Zelltherapie und Immunologie, Deutscher Platz 5e, D-04103 Leipzig, Germany and Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| |
Collapse
|
10
|
Frye M, Watt FM. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol 2006; 16:971-81. [PMID: 16713953 DOI: 10.1016/j.cub.2006.04.027] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 04/05/2006] [Accepted: 04/05/2006] [Indexed: 12/22/2022]
Abstract
BACKGROUND Myc is a well-known proto-oncogene, but its functions in normal tissue remain enigmatic. In adult epidermis, Myc stimulates exit from the stem cell compartment, decreasing cell adhesion and, by an unknown mechanism, triggering proliferation of transit-amplifying cells. RESULTS We describe a novel direct target gene of Myc, Misu, that is expressed at low levels in normal epidermis but is upregulated on Myc activation. Misu encodes a previously uncharacterized RNA methyltransferase with high sequence homology to NSun2 and defines a new family of mammalian SUN-domain-containing proteins. The nucleolar localization of Misu is dependent on RNA polymerase III transcripts, and knockdown of Misu decreases nucleolar size. In G2 phase of the cell cycle, Misu is found in cytoplasmic vesicles, and it decorates the spindle in mitosis. Misu expression is highest in S phase, and RNAi constructs block Myc-induced keratinocyte proliferation and cell-cycle progression. Misu is expressed at low levels in normal tissues, but is highly induced in a range of tumors. Growth of human squamous-cell-carcinoma xenografts is decreased by Misu RNAi. CONCLUSIONS Misu is a novel downstream Myc target that methylates RNA polymerase III transcripts. Misu mediates Myc-induced cell proliferation and growth and is a potential target for cancer therapies.
Collapse
Affiliation(s)
- Michaela Frye
- Keratinocyte Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom.
| | | |
Collapse
|
11
|
Bax R, Vos HR, Raué HA, Vos JC. Saccharomyces cerevisiae Sof1p associates with 35S Pre-rRNA independent from U3 snoRNA and Rrp5p. EUKARYOTIC CELL 2006; 5:427-34. [PMID: 16524898 PMCID: PMC1398065 DOI: 10.1128/ec.5.3.427-434.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sof1p is a trans-acting protein that is essential for biogenesis of the 40S ribosomal subunits in the yeast Saccharomyces cerevisiae. Because of its involvement in the early cleavage steps of precursor rRNA, its interaction with Nop1p and its ability to coprecipitate U3 snoRNA, Sof1p has so far been regarded as a protein that is specific to the U3 snoRNP. To determine whether a site exists within U3 snoRNA with which Sof1p directly or indirectly associates, we studied the ability of ProtA-tagged Sof1p to coimmunoprecipitate mutant versions of U3 snoRNA. None of the tested mutations had a significant effect on the recovery of mutant U3 from cell extracts. Further coimmunoprecipitation experiments, using cells that could be genetically depleted for either Sof1p or U3 snoRNA demonstrated that the two factors associate independently of each other with the 35S precursor RNA. Indeed, association between Sof1p and U3 snoRNA was abolished in cells in which 35S pre-rRNA transcription was blocked. Finally, we found that an overall reduction in the levels of box C/D snoRNPs by genetic depletion of the common Nop58p protein did not affect coprecipitation of 35S pre-rRNA by Sof1p. From these data, we conclude that Sof1p does not assemble into the 90S preribosome as part of the U3, or any other box C/D, snoRNP. The early and independently assembling trans-acting factor Rrp5p also proved to be dispensable for assembly of Sof1p.
Collapse
Affiliation(s)
- Ralph Bax
- Section of Biochemistry and Molecular Biology, FEW, Vrije Universiteit, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
12
|
Yang H, Henning D, Valdez BC. Functional interaction between RNA helicase II/Gu(alpha) and ribosomal protein L4. FEBS J 2005; 272:3788-802. [PMID: 16045751 DOI: 10.1111/j.1742-4658.2005.04811.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RNA helicase II/Gu(alpha) is a multifunctional nucleolar protein involved in ribosomal RNA processing in Xenopus laevis oocytes and mammalian cells. Downregulation of Gu(alpha) using small interfering RNA (siRNA) in HeLa cells resulted in 80% inhibition of both 18S and 28S rRNA production. The mechanisms underlying this effect remain unclear. Here we show that in mammalian cells, Gu(alpha) physically interacts with ribosomal protein L4 (RPL4), a component of 60S ribosome large subunit. The ATPase activity of Gu(alpha) is important for this interaction and is also necessary for the function of Gu(alpha) in the production of both 18S and 28S rRNAs. Knocking down RPL4 expression using siRNA in mouse LAP3 cells inhibits the production of 47/45S, 32S, 28S, and 18S rRNAs. This inhibition is reversed by exogenous expression of wild-type human RPL4 protein but not the mutant form lacking Gu(alpha)-interacting motif. These observations have suggested that the function of Gu(alpha) in rRNA processing is at least partially dependent on its ability to interact with RPL4.
Collapse
Affiliation(s)
- Hushan Yang
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
13
|
Borovjagin AV, Gerbi SA. An evolutionary intra-molecular shift in the preferred U3 snoRNA binding site on pre-ribosomal RNA. Nucleic Acids Res 2005; 33:4995-5005. [PMID: 16147982 PMCID: PMC1199564 DOI: 10.1093/nar/gki815] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Correct docking of U3 small nucleolar RNA (snoRNA) on pre-ribosomal RNA (pre-rRNA) is essential for rRNA processing to produce 18S rRNA. In this report, we have used Xenopus oocytes to characterize the structural requirements of the U3 snoRNA 3′-hinge interaction with region E1 of the external transcribed spacer (ETS) of pre-rRNA. This interaction is crucial for docking to initiate rRNA processing. 18S rRNA production was inhibited when fewer than 6 of the 8 bp of the U3 3′–hinge complex with the ETS could form; moreover, base pairing involving the right side of the 3′-hinge was more important than the left. Increasing the length of the U3 hinge–ETS interaction by 9 bp impaired rRNA processing. Formation of 18S rRNA was also inhibited by swapping the U3 5′- and 3′-hinge interactions with the ETS or by shifting the base pairing of the U3 3′-hinge to the sequence directly adjacent to ETS region E1. However, 18S rRNA production was partially restored by a compensatory shift that allowed the sequence adjacent to the U3 3′-hinge to pair with the eight bases directly adjacent to ETS region E1. The results suggest that the geometry of the U3 snoRNA interaction with the ETS is critical for rRNA processing.
Collapse
MESH Headings
- Animals
- Base Pairing
- Base Sequence
- Binding Sites
- Evolution, Molecular
- Molecular Sequence Data
- Mutation
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Xenopus laevis
Collapse
Affiliation(s)
| | - Susan A. Gerbi
- To whom correspondence should be addressed. Tel: +1 401 863 2359; Fax: +1 401 863 1348;
| |
Collapse
|
14
|
Gallagher JEG, Dunbar DA, Granneman S, Mitchell BM, Osheim Y, Beyer AL, Baserga SJ. RNA polymerase I transcription and pre-rRNA processing are linked by specific SSU processome components. Genes Dev 2004; 18:2506-17. [PMID: 15489292 PMCID: PMC529538 DOI: 10.1101/gad.1226604] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 08/19/2004] [Indexed: 01/30/2023]
Abstract
Sequential events in macromolecular biosynthesis are often elegantly coordinated. The small ribosomal subunit (SSU) processome is a large ribonucleoprotein (RNP) required for processing of precursors to the small subunit RNA, the 18S, of the ribosome. We have found that a subcomplex of SSU processome proteins, the t-Utps, is also required for optimal rRNA transcription in vivo in the yeast Saccharomyces cerevisiae. The t-Utps are ribosomal chromatin (r-chromatin)-associated, and they exist in a complex in the absence of the U3 snoRNA. Transcription is required neither for the formation of the subcomplex nor for its r-chromatin association. The t-Utps are associated with the pre-18S rRNAs independent of the presence of the U3 snoRNA. This association may thus represent an early step in the formation of the SSU processome. Our results indicate that rRNA transcription and pre-rRNA processing are coordinated via specific components of the SSU processome.
Collapse
Affiliation(s)
- Jennifer E G Gallagher
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-8024, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Bernstein KA, Baserga SJ. The small subunit processome is required for cell cycle progression at G1. Mol Biol Cell 2004; 15:5038-46. [PMID: 15356263 PMCID: PMC524768 DOI: 10.1091/mbc.e04-06-0515] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Without ribosome biogenesis, translation of mRNA into protein ceases and cellular growth stops. We asked whether ribosome biogenesis is cell cycle regulated in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and we determined that it is not regulated in the same manner as in metazoan cells. We therefore turned our attention to cellular sensors that relay cell size information via ribosome biogenesis. Our results indicate that the small subunit (SSU) processome, a complex consisting of 40 proteins and the U3 small nucleolar RNA necessary for ribosome biogenesis, is not mitotically regulated. Furthermore, Nan1/Utp17, an SSU processome protein, does not provide a link between ribosome biogenesis and cell growth. However, when individual SSU processome proteins are depleted, cells arrest in the G1 phase of the cell cycle. This arrest was further supported by the lack of staining for proteins expressed in post-G1. Similarly, synchronized cells depleted of SSU processome proteins did not enter G2. This suggests that when ribosomes are no longer made, the cells stall in the G1. Therefore, yeast cells must grow to a critical size, which is dependent upon having a sufficient number of ribosomes during the G1 phase of the cell cycle, before cell division can occur.
Collapse
Affiliation(s)
- Kara A Bernstein
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
16
|
Gerbi SA, Borovjagin AV, Odreman FE, Lange TS. U4 snRNA nucleolar localization requires the NHPX/15.5-kD protein binding site but not Sm protein or U6 snRNA association. J Cell Biol 2003; 162:821-32. [PMID: 12939253 PMCID: PMC2172826 DOI: 10.1083/jcb.200301071] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
All small nuclear RNAs (snRNAs) of the [U4/U6.U5] tri-snRNP localize transiently to nucleoli, as visualized by microscopy after injection of fluorescein-labeled transcripts into Xenopus laevis oocyte nuclei. Here, we demonstrate that these RNAs traffic to nucleoli independently of one another, because U4 snRNA deleted in the U6 base-pairing region still localizes to nucleoli. Furthermore, depletion of endogenous U6 snRNA does not affect nucleolar localization of injected U4 or U5. The wild-type U4 transcripts used here are functional: they exhibit normal nucleocytoplasmic traffic, associate with Sm proteins, form the [U4/U6] di-snRNP, and localize to nucleoli and Cajal bodies. The nucleolar localization element (NoLE) of U4 snRNA was mapped by mutagenesis. Neither the 5'-cap nor the 3'-region of U4, which includes the Sm protein binding site, are essential for nucleolar localization. The only region in U4 snRNA required for nucleolar localization is the 5'-proximal stem loop, which contains the binding site for the NHPX/15.5-kD protein. Even mutation of just five nucleotides, essential for binding this protein, impaired U4 nucleolar localization. Intriguingly, the NHPX/15.5-kD protein also binds the nucleolar localization element of box C/D small nucleolar RNAs, suggesting that this protein might mediate nucleolar localization of several small RNAs.
Collapse
Affiliation(s)
- Susan A Gerbi
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
17
|
Yuan G, Klämbt C, Bachellerie JP, Brosius J, Hüttenhofer A. RNomics in Drosophila melanogaster: identification of 66 candidates for novel non-messenger RNAs. Nucleic Acids Res 2003; 31:2495-507. [PMID: 12736298 PMCID: PMC156043 DOI: 10.1093/nar/gkg361] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By generating a specialised cDNA library from four different developmental stages of Drosophila melanogaster, we have identified 66 candidates for small non-messenger RNAs (snmRNAs) and have confirmed their expression by northern blot analysis. Thirteen of them were expressed at certain stages of D.melanogaster development, only. Thirty-five species belong to the class of small nucleolar RNAs (snoRNAs), divided into 15 members from the C/D subclass and 20 members from the H/ACA subclass, which mostly guide 2'-O-methylation and pseudouridylation, respectively, of rRNA and snRNAs. These also include two outstanding C/D snoRNAs, U3 and U14, both functioning as pre-rRNA chaperones. Surprisingly, the sequence of the Drosophila U14 snoRNA reflects a major change of function of this snoRNA in Diptera relative to yeast and vertebrates. Among the 22 snmRNAs lacking known sequence and structure motifs, five were located in intergenic regions, two in introns, five in untranslated regions of mRNAs, eight were derived from open reading frames, and two were transcribed opposite to an intron. Interestingly, detection of two RNA species from this group implies that certain snmRNA species are processed from alternatively spliced pre-mRNAs. Surprisingly, a few snmRNA sequences could not be found on the published D.melanogaster genome, which might suggest that more snmRNA genes (as well as mRNAs) are hidden in unsequenced regions of the genome.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Gene Expression Regulation, Developmental
- Gene Library
- Genes, Insect/genetics
- Genomics/methods
- Nucleic Acid Conformation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nucleolar/genetics
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Guozhong Yuan
- Institute for Experimental Pathology (ZMBE), Universität Münster, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
18
|
Gerbi SA, Lange TS. All small nuclear RNAs (snRNAs) of the [U4/U6.U5] Tri-snRNP localize to nucleoli; Identification of the nucleolar localization element of U6 snRNA. Mol Biol Cell 2002; 13:3123-37. [PMID: 12221120 PMCID: PMC124147 DOI: 10.1091/mbc.01-12-0596] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previously, we showed that spliceosomal U6 small nuclear RNA (snRNA) transiently passes through the nucleolus. Herein, we report that all individual snRNAs of the [U4/U6.U5] tri-snRNP localize to nucleoli, demonstrated by fluorescence microscopy of nucleolar preparations after injection of fluorescein-labeled snRNA into Xenopus oocyte nuclei. Nucleolar localization of U6 is independent from [U4/U6] snRNP formation since sites of direct interaction of U6 snRNA with U4 snRNA are not nucleolar localization elements. Among all regions in U6, the only one required for nucleolar localization is its 3' end, which associates with the La protein and subsequently during maturation of U6 is bound by Lsm proteins. This 3'-nucleolar localization element of U6 is both essential and sufficient for nucleolar localization and also required for localization to Cajal bodies. Conversion of the 3' hydroxyl of U6 snRNA to a 3' phosphate prevents association with the La protein but does not affect U6 localization to nucleoli or Cajal bodies.
Collapse
Affiliation(s)
- Susan A Gerbi
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|