1
|
Qüesta JI, Antoniou-Kourounioti RL, Rosa S, Li P, Duncan S, Whittaker C, Howard M, Dean C. Noncoding SNPs influence a distinct phase of Polycomb silencing to destabilize long-term epigenetic memory at Arabidopsis FLC. Genes Dev 2020; 34:446-461. [PMID: 32001513 PMCID: PMC7050481 DOI: 10.1101/gad.333245.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
In Arabidopsis thaliana, the cold-induced epigenetic regulation of FLOWERING LOCUS C (FLC) involves distinct phases of Polycomb repressive complex 2 (PRC2) silencing. During cold, a PHD-PRC2 complex metastably and digitally nucleates H3K27me3 within FLC On return to warm, PHD-PRC2 spreads across the locus delivering H3K27me3 to maintain long-term silencing. Here, we studied natural variation in this process in Arabidopsis accessions, exploring Lov-1, which shows FLC reactivation on return to warm, a feature characteristic of FLC in perennial Brassicaceae This analysis identifies an additional phase in this Polycomb silencing mechanism downstream from H3K27me3 spreading. In this long-term silencing (perpetuated) phase, the PHD proteins are lost from the nucleation region and silencing is likely maintained by the read-write feedbacks associated with H3K27me3. A combination of noncoding SNPs in the nucleation region mediates instability in this long-term silencing phase with the result that Lov-1 FLC frequently digitally reactivates in individual cells, with a probability that diminishes with increasing cold duration. We propose that this decrease in reactivation probability is due to reduced DNA replication after flowering. Overall, this work defines an additional phase in the Polycomb mechanism instrumental in natural variation of silencing, and provides avenues to dissect broader evolutionary changes at FLC.
Collapse
Affiliation(s)
- Julia I Qüesta
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Stefanie Rosa
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Peijin Li
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Susan Duncan
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Charles Whittaker
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
2
|
Huang Y, Chen DH, Liu BY, Shen WH, Ruan Y. Conservation and diversification of polycomb repressive complex 2 (PRC2) proteins in the green lineage. Brief Funct Genomics 2017; 16:106-119. [PMID: 27032420 DOI: 10.1093/bfgp/elw007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The polycomb group (PcG) proteins are key epigenetic regulators of gene expression in animals and plants. They act in multiprotein complexes, of which the best characterized is the polycomb repressive complex 2 (PRC2), which catalyses the trimethylation of histone H3 at lysine 27 (H3K27me3) at chromatin targets. In Arabidopsis thaliana, PRC2 proteins are involved in the regulation of diverse developmental processes, including cell fate determination, vegetative growth and development, flowering time control and embryogenesis. Here, we systematically analysed the evolutionary conservation and diversification of PRC2 components in lower and higher plants. We searched for and identified PRC2 homologues from the sequenced genomes of several green lineage species, from the unicellular green alga Ostreococcus lucimarinus to more complicated angiosperms. We found that some PRC2 core components, e.g. E(z), ESC/FIE and MSI/p55, are ancient and have multiplied coincidently with multicellular evolution. For one component, some members are newly formed, especially in the Cruciferae. During evolution, higher plants underwent copy number multiplication of various PRC2 components, which occurred independently for each component, without any obvious co-amplification of PRC2 members. Among the amplified members, usually one was well-conserved and the others were more diversified. Gene amplification occurred at different times for different PcG members during green lineage evolution. Certain PRC2 core components or members of them were highly conserved. Our study provides an insight into the evolutionary conservation and diversification of PcG proteins and may guide future functional characterization of these important epigenetic regulators in plants other than Arabidopsis.
Collapse
Affiliation(s)
- Yong Huang
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | - Dong-Hong Chen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | - Bo-Yu Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China
| | - Wen-Hui Shen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Institut de Biologie Moléculaire Des Plantes Du CNRS, Université de Strasbourg, 12 Rue Du Général Zimmer, Strasbourg Cedex, France
| | - Ying Ruan
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China
| |
Collapse
|
3
|
Qüesta JI, Song J, Geraldo N, An H, Dean C. Arabidopsis
transcriptional repressor VAL1 triggers Polycomb silencing at
FLC
during vernalization. Science 2016; 353:485-8. [DOI: 10.1126/science.aaf7354] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/01/2016] [Indexed: 12/17/2022]
|
4
|
Hepworth J, Dean C. Flowering Locus C's Lessons: Conserved Chromatin Switches Underpinning Developmental Timing and Adaptation. PLANT PHYSIOLOGY 2015; 168:1237-45. [PMID: 26149571 PMCID: PMC4528751 DOI: 10.1104/pp.15.00496] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/03/2015] [Indexed: 05/18/2023]
Abstract
Analysis of how seasonal cues influence the timing of the floral transition has revealed many important principles for how epigenetic regulation can integrate a variety of environmental cues with developmental signals. The study of the pathways that necessitate overwintering in plants and their ability to respond to prolonged cold (the vernalization requirement and response pathways) has elaborated different chromatin regulatory pathways and the involvement of noncoding RNAs. The major target of these vernalization pathways in Arabidopsis (Arabidopsis thaliana) is Flowering Locus C (FLC). A relatively simple picture of FLC regulation is emerging of a few core complexes and mechanisms that antagonize each other's actions. This balance provides a fine degree of control that has nevertheless permitted evolution of a wide range of natural variation in vernalization in Arabidopsis. Similar simple routes of adaptation may underlie life history variation between species.
Collapse
Affiliation(s)
- Jo Hepworth
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
5
|
Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature 2014; 515:587-90. [PMID: 25219852 PMCID: PMC4247276 DOI: 10.1038/nature13722] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 07/29/2014] [Indexed: 01/29/2023]
Abstract
The reprogramming of epigenetic states in gametes and embryos is essential for correct development in plants and mammals. In plants, the germ line arises from somatic tissues of the flower, necessitating the erasure of chromatin modifications that have accumulated at specific loci during development or in response to external stimuli. If this process occurs inefficiently, it can lead to epigenetic states being inherited from one generation to the next. However, in most cases, accumulated epigenetic modifications are efficiently erased before the next generation. An important example of epigenetic reprogramming in plants is the resetting of the expression of the floral repressor locus FLC in Arabidopsis thaliana. FLC is epigenetically silenced by prolonged cold in a process called vernalization. However, the locus is reactivated before the completion of seed development, ensuring the requirement for vernalization in every generation. In contrast to our detailed understanding of the polycomb-mediated epigenetic silencing induced by vernalization, little is known about the mechanism involved in the reactivation of FLC. Here we show that a hypomorphic mutation in the jumonji-domain-containing protein ELF6 impaired the reactivation of FLC in reproductive tissues, leading to the inheritance of a partially vernalized state. ELF6 has H3K27me3 demethylase activity, and the mutation reduced this enzymatic activity in planta. Consistent with this, in the next generation of mutant plants, H3K27me3 levels at the FLC locus stayed higher, and FLC expression remained lower, than in the wild type. Our data reveal an ancient role for H3K27 demethylation in the reprogramming of epigenetic states in plant and mammalian embryos.
Collapse
|
6
|
Abstract
Plants have to cope with constantly changing conditions and need to respond to environmental stresses and seasonal changes in temperature and photoperiod. Alignment of their development with particular seasons requires memory mechanisms and an ability to integrate noisy temperature signals over long time scales. An increasingly well understood example of how seasonal changes influence development is vernalization, the acceleration of flowering by prolonged cold. Vernalization has been dissected in Arabidopsis thaliana and shown to involve a Polycomb-based epigenetic memory system. This minireview summarizes our current understanding of this mechanism and its modulation through adaptation. A key concept that has emerged is that cell-autonomous switching between epigenetic states can provide the basis for quantitative accumulation of environmental memory.
Collapse
Affiliation(s)
- Jie Song
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | | | | |
Collapse
|
7
|
Crevillén P, Sonmez C, Wu Z, Dean C. A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization. EMBO J 2012; 32:140-8. [PMID: 23222483 DOI: 10.1038/emboj.2012.324] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/31/2012] [Indexed: 12/18/2022] Open
Abstract
Gene activation in eukaryotes frequently involves interactions between chromosomal regions. We have investigated whether higher-order chromatin structures are involved in the regulation of the Arabidopsis floral repressor gene FLC, a target of several chromatin regulatory pathways. Here, we identify a gene loop involving the physical interaction of the 5' and 3' flanking regions of the FLC locus using chromosome conformation capture. The FLC loop is unaffected by mutations disrupting conserved chromatin regulatory pathways leading to very different expression states. However, the loop is disrupted during vernalization, the cold-induced, Polycomb-dependent epigenetic silencing of FLC. Loop disruption parallels timing of the cold-induced FLC transcriptional shut-down and upregulation of FLC antisense transcripts, but does not need a cold-induced PHD protein required for the epigenetic silencing. We suggest that gene loop disruption is an early step in the switch from an expressed to a Polycomb-silenced state.
Collapse
Affiliation(s)
- Pedro Crevillén
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | | | | | |
Collapse
|
8
|
Yang H, Mo H, Fan D, Cao Y, Cui S, Ma L. Overexpression of a histone H3K4 demethylase, JMJ15, accelerates flowering time in Arabidopsis. PLANT CELL REPORTS 2012; 31:1297-1308. [PMID: 22555401 DOI: 10.1007/s00299-012-1249-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/26/2012] [Accepted: 03/17/2012] [Indexed: 05/28/2023]
Abstract
UNLABELLED The methylation of histone 3 lysine 4 (H3K4) is essential for gene activation. Flowering Locus C (FLC), an important flowering repressor, quantitatively regulates flowering time in Arabidopsis and its expression level is coincident with H3K4 trimethylation (H3K4me3) dynamics. The methylation state of FLC chromatin is determined by the balance between methylation and demethylation, which is mediated by histone methyltransferases and demethylases, respectively. However, little is known about the role of histone demethylase(s) in FLC regulation. Here, we characterized the biochemical activity and biological function of a novel JmjC domain-containing H3K4 demethylase, JMJ15, in Arabidopsis. JMJ15, which is a member of the H3K4 demethylase JARID1 family, displayed H3K4me3 demethylase activity both in vitro and in vivo. The mutation of JMJ15 did not produce an obvious phenotype; however, overexpression JMJ15 resulted in an obvious early flowering phenotype, which was associated with the repression of FLC level and reduction in H3K4me3 at the FLC locus, resulting in increased FT expression. Our results suggest that JMJ15 is a novel H3K4 demethylase, involved in the control of flowering time by demethylating H3K4me3 at FLC chromatin when it was overexpressed in Arabidopsis. KEY MESSAGE Overexpression of a histone H3K4 demethylase, JMJ15, represses FLC expression by decreasing its chromatin H3K4me3 level, thereby controlling flowering time in Arabidopsis.
Collapse
Affiliation(s)
- Hongchun Yang
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang 050016, Hebei, China
| | | | | | | | | | | |
Collapse
|
9
|
Liu F, Marquardt S, Lister C, Swiezewski S, Dean C. Targeted 3' processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 2009; 327:94-7. [PMID: 19965720 DOI: 10.1126/science.1180278] [Citation(s) in RCA: 339] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Noncoding RNA is emerging as an important regulator of gene expression in many organisms. We are characterizing RNA-mediated chromatin silencing of the Arabidopsis major floral repressor gene, FLC. Through suppressor mutagenesis, we identify a requirement for CstF64 and CstF77, two conserved RNA 3'-end-processing factors, in FLC silencing. However, FLC sense transcript 3' processing is not affected in the mutants. Instead, CstF64 and CstF77 are required for 3' processing of FLC antisense transcripts. A specific RNA-binding protein directs their activity to a proximal antisense polyadenylation site. This targeted processing triggers localized histone demethylase activity and results in reduced FLC sense transcription. Targeted 3' processing of antisense transcripts may be a common mechanism triggering transcriptional silencing of the corresponding sense gene.
Collapse
Affiliation(s)
- Fuquan Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
10
|
A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci U S A 2008; 105:16831-6. [PMID: 18854416 DOI: 10.1073/pnas.0808687105] [Citation(s) in RCA: 362] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vernalization, the acceleration of flowering by winter, involves cold-induced epigenetic silencing of Arabidopsis FLC. This process has been shown to require conserved Polycomb Repressive Complex 2 (PRC2) components including the Su(z)12 homologue, VRN2, and two plant homeodomain (PHD) finger proteins, VRN5 and VIN3. However, the sequence of events leading to FLC repression was unclear. Here we show that, contrary to expectations, VRN2 associates throughout the FLC locus independently of cold. The vernalization-induced silencing is triggered by the cold-dependent association of the PHD finger protein VRN5 to a specific domain in FLC intron 1, and this association is dependent on the cold-induced PHD protein VIN3. In plants returned to warm conditions, VRN5 distribution changes, and it associates more broadly over FLC, coincident with significant increases in H3K27me3. Biochemical purification of a VRN5 complex showed that during prolonged cold a PHD-PRC2 complex forms composed of core PRC2 components (VRN2, SWINGER [an E(Z) HMTase homologue], FIE [an ESC homologue], MSI1 [p55 homologue]), and three related PHD finger proteins, VRN5, VIN3, and VEL1. The PHD-PRC2 activity increases H3K27me3 throughout the locus to levels sufficient for stable silencing. Arabidopsis PHD-PRC2 thus seems to act similarly to Pcl-PRC2 of Drosophila and PHF1-PRC2 of mammals. These data show FLC silencing involves changed composition and dynamic redistribution of Polycomb complexes at different stages of the vernalization process, a mechanism with greater parallels to Polycomb silencing of certain mammalian loci than the classic Drosophila Polycomb targets.
Collapse
|
11
|
Mylne JS, Barrett L, Tessadori F, Mesnage S, Johnson L, Bernatavichute YV, Jacobsen SE, Fransz P, Dean C. LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. Proc Natl Acad Sci U S A 2006; 103:5012-7. [PMID: 16549797 PMCID: PMC1458786 DOI: 10.1073/pnas.0507427103] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vernalization is the acceleration of flowering by prolonged cold that aligns the onset of reproductive development with spring conditions. A key step of vernalization in Arabidopsis is the epigenetic silencing of FLOWERING LOCUS C (FLC), which encodes a repressor of flowering. The vernalization-induced epigenetic silencing of FLC is associated with histone deacetylation and H3K27me2 and H3K9me2 methylation mediated by VRN/VIN proteins. We have analyzed whether different histone methyltransferases and the chromodomain protein LIKE HETEROCHROMATIN PROTEIN (LHP)1 might play a role in vernalization. No single loss-of-function mutation in the histone methyltransferases studied disrupted the vernalization response; however, lhp1 mutants revealed a role for LHP1 in maintaining epigenetic silencing of FLC. Like LHP1, VRN1 functions in both flowering-time control and vernalization. We explored the localization of VRN1 and found it to be associated generally with Arabidopsis chromosomes but not the heterochromatic chromocenters. This association did not depend on vernalization or VRN2 function and was maintained during mitosis but was lost in meiotic chromosomes, suggesting that VRN1 may contribute to chromatin silencing that is not meiotically stable.
Collapse
Affiliation(s)
- Joshua S. Mylne
- *Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Lynne Barrett
- *Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Federico Tessadori
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM, Amsterdam, The Netherlands
| | - Stéphane Mesnage
- *Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Lianna Johnson
- Howard Hughes Medical Institute, Department of Molecular, Cell, and Developmental Biology, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1606; and
| | - Yana V. Bernatavichute
- Howard Hughes Medical Institute, Department of Molecular, Cell, and Developmental Biology, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1606; and
| | - Steven E. Jacobsen
- Howard Hughes Medical Institute, Department of Molecular, Cell, and Developmental Biology, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1606; and
| | - Paul Fransz
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM, Amsterdam, The Netherlands
| | - Caroline Dean
- *Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|