Rudinsky S, Sanz AS, Gauvin R. Wave-packet numerical investigation of thermal diffuse scattering: A time-dependent quantum approach to electron diffraction simulations.
Micron 2019;
126:102737. [PMID:
31577974 DOI:
10.1016/j.micron.2019.102737]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 11/19/2022]
Abstract
The effects of thermal diffuse scattering on diffraction of highly-accelerated electrons by crystal lattices are investigated with a method that combines the frozen phonon approximation with an exact numerical solution of the time-dependent Schrödinger equation. The phonon configuration for each single-electron diffraction process is determined by means of Einstein's model. It is shown that this procedure provides the possibility of describing and explaining, in a natural way, after averaging over a number of electron realizations, how the typical diffraction features that characterize a fully coherent pattern are gradually suppressed by thermally-induced incoherence. This is achieved by a controlled increase of the lattice atomic vibrations and is in contrast to the use of attenuating Debye-Waller factors and complex potential absorbers. A lattice with reduced dimensionality is first considered as a working model, where the method renders results compatible with those reported in the literature. Subsequently, a full three-dimensional system is simulated and results are compared to experimental imaging displaying the method's reliability.
Collapse