1
|
Du L, Barral P, Cantara M, de Hond J, Lu YK, Ketterle W. Atomic physics on a 50-nm scale: Realization of a bilayer system of dipolar atoms. Science 2024; 384:546-551. [PMID: 38696550 DOI: 10.1126/science.adh3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/19/2024] [Indexed: 05/04/2024]
Abstract
Controlling ultracold atoms with laser light has greatly advanced quantum science. The wavelength of light sets a typical length scale for most experiments to the order of 500 nanometers (nm) or greater. In this work, we implemented a super-resolution technique that localizes and arranges atoms on a sub-50-nm scale, without any fundamental limit in resolution. We demonstrate this technique by creating a bilayer of dysprosium atoms and observing dipolar interactions between two physically separated layers through interlayer sympathetic cooling and coupled collective excitations. At 50-nm distance, dipolar interactions are 1000 times stronger than at 500 nm. For two atoms in optical tweezers, this should enable purely magnetic dipolar gates with kilohertz speed.
Collapse
Affiliation(s)
- Li Du
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pierre Barral
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael Cantara
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julius de Hond
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yu-Kun Lu
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wolfgang Ketterle
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Chomaz L, Ferrier-Barbut I, Ferlaino F, Laburthe-Tolra B, Lev BL, Pfau T. Dipolar physics: a review of experiments with magnetic quantum gases. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 86:026401. [PMID: 36583342 DOI: 10.1088/1361-6633/aca814] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Since the achievement of quantum degeneracy in gases of chromium atoms in 2004, the experimental investigation of ultracold gases made of highly magnetic atoms has blossomed. The field has yielded the observation of many unprecedented phenomena, in particular those in which long-range and anisotropic dipole-dipole interactions (DDIs) play a crucial role. In this review, we aim to present the aspects of the magnetic quantum-gas platform that make it unique for exploring ultracold and quantum physics as well as to give a thorough overview of experimental achievements. Highly magnetic atoms distinguish themselves by the fact that their electronic ground-state configuration possesses a large electronic total angular momentum. This results in a large magnetic moment and a rich electronic transition spectrum. Such transitions are useful for cooling, trapping, and manipulating these atoms. The complex atomic structure and large dipolar moments of these atoms also lead to a dense spectrum of resonances in their two-body scattering behaviour. These resonances can be used to control the interatomic interactions and, in particular, the relative importance of contact over dipolar interactions. These features provide exquisite control knobs for exploring the few- and many-body physics of dipolar quantum gases. The study of dipolar effects in magnetic quantum gases has covered various few-body phenomena that are based on elastic and inelastic anisotropic scattering. Various many-body effects have also been demonstrated. These affect both the shape, stability, dynamics, and excitations of fully polarised repulsive Bose or Fermi gases. Beyond the mean-field instability, strong dipolar interactions competing with slightly weaker contact interactions between magnetic bosons yield new quantum-stabilised states, among which are self-bound droplets, droplet assemblies, and supersolids. Dipolar interactions also deeply affect the physics of atomic gases with an internal degree of freedom as these interactions intrinsically couple spin and atomic motion. Finally, long-range dipolar interactions can stabilise strongly correlated excited states of 1D gases and also impact the physics of lattice-confined systems, both at the spin-polarised level (Hubbard models with off-site interactions) and at the spinful level (XYZ models). In the present manuscript, we aim to provide an extensive overview of the various related experimental achievements up to the present.
Collapse
Affiliation(s)
- Lauriane Chomaz
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Physikalisches Institut der Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - Igor Ferrier-Barbut
- Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Francesca Ferlaino
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
| | - Bruno Laburthe-Tolra
- Université Sorbonne Paris Nord, Laboratoire de Physique des Lasers, F-93430 Villetaneuse, France
- CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
| | - Benjamin L Lev
- Departments of Physics and Applied Physics and Ginzton Laboratory, Stanford University, Stanford, CA 94305, United States of America
| | - Tilman Pfau
- Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| |
Collapse
|
3
|
Grimshaw CL, Billam TP, Gardiner SA. Soliton Interferometry with Very Narrow Barriers Obtained from Spatially Dependent Dressed States. PHYSICAL REVIEW LETTERS 2022; 129:040401. [PMID: 35938999 DOI: 10.1103/physrevlett.129.040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Bright solitons in atomic Bose-Einstein condensates are strong candidates for high precision matter-wave interferometry, as their inherent stability against dispersion supports long interrogation times. An analog to a beam splitter is then a narrow potential barrier. A very narrow barrier is desirable for interferometric purposes, but in a typical realization using a blue-detuned optical dipole potential, the width is limited by the laser wavelength. We investigate a soliton interferometry scheme using the geometric scalar potential experienced by atoms in a spatially dependent dark state to overcome this limit. We propose a possible implementation and numerically probe the effects of deviations from the ideal configuration.
Collapse
Affiliation(s)
- Callum L Grimshaw
- Joint Quantum Centre (JQC) Durham-Newcastle, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Thomas P Billam
- Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Simon A Gardiner
- Joint Quantum Centre (JQC) Durham-Newcastle, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
4
|
Qian ZH, Cui JM, Luo XW, Zheng YX, Huang YF, Ai MZ, He R, Li CF, Guo GC. Super-resolved Imaging of a Single Cold Atom on a Nanosecond Timescale. PHYSICAL REVIEW LETTERS 2021; 127:263603. [PMID: 35029497 DOI: 10.1103/physrevlett.127.263603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/03/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
In cold atomic systems, fast and high-resolution microscopy of individual atoms is crucial, since it can provide direct information on the dynamics and correlations of the system. Here, we demonstrate nanosecond-scale two-dimensional stroboscopic pictures of a single trapped ion beyond the optical diffraction limit, by combining the main idea of ground-state depletion microscopy with quantum-state transition control in cold atoms. We achieve a spatial resolution up to 175 nm using a NA=0.1 objective in the experiment, which represents a more than tenfold improvement compared with direct fluorescence imaging. To show the potential of this method, we apply it to observe the secular motion of the trapped ion; we demonstrate a temporal resolution up to 50 ns with a displacement detection sensitivity of 10 nm. Our method provides a powerful tool for probing particle positions, momenta, and correlations, as well as their dynamics in cold atomic systems.
Collapse
Affiliation(s)
- Zhong-Hua Qian
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Jin-Ming Cui
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Xi-Wang Luo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yong-Xiang Zheng
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yun-Feng Huang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Zhong Ai
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Ran He
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Cidrim A, do Espirito Santo TS, Schachenmayer J, Kaiser R, Bachelard R. Photon Blockade with Ground-State Neutral Atoms. PHYSICAL REVIEW LETTERS 2020; 125:073601. [PMID: 32857558 DOI: 10.1103/physrevlett.125.073601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
We show that induced dipole-dipole interactions allow for photon blockade in subwavelength ensembles of two-level, ground-state neutral atoms. Our protocol relies on the energy shift of the single-excitation, superradiant state of N atoms, which can be engineered to yield an effective two-level system. A coherent pump induces Rabi oscillation between the ground state and a collective bright state, with at most a single excitation shared among all atoms. The possibility of using clock transitions that are long-lived and relatively robust against stray fields, alongside new prospects on experiments with subwavelength lattices, makes our proposal a promising alternative for quantum information protocols.
Collapse
Affiliation(s)
- A Cidrim
- Departamento de Física, Universidade Federal de São Carlos, Rod. Washington Luís, km 235-SP-310, 13565-905 São Carlos, SP, Brazil
| | - T S do Espirito Santo
- Instituto de Física de São Carlos, Universidade de São Paulo-13560-970 São Carlos, SP, Brazil
| | - J Schachenmayer
- IPCMS (UMR 7504) and ISIS (UMR 7006), Université de Strasbourg, CNRS, 67000 Strasbourg, France
| | - R Kaiser
- Université de Côte d'Azur, CNRS, Institut de Physique de Nice, 06560 Valbonne, France
| | - R Bachelard
- Departamento de Física, Universidade Federal de São Carlos, Rod. Washington Luís, km 235-SP-310, 13565-905 São Carlos, SP, Brazil
- Université de Côte d'Azur, CNRS, Institut de Physique de Nice, 06560 Valbonne, France
| |
Collapse
|
6
|
Bienias P, Subhankar S, Wang Y, Tsui TC, Jendrzejewski F, Tiecke T, Juzeliūnas G, Jiang L, Rolston SL, Porto JV, Gorshkov AV. Coherent optical nanotweezers for ultracold atoms. PHYSICAL REVIEW. A 2020; 102:10.1103/PhysRevA.102.013306. [PMID: 33344798 PMCID: PMC7745712 DOI: 10.1103/physreva.102.013306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There has been a recent surge of interest and progress in creating subwavelength free-space optical potentials for ultracold atoms. A key open question is whether geometric potentials, which are repulsive and ubiquitous in the creation of subwavelength free-space potentials, forbid the creation of narrow traps with long lifetimes. Here, we show that it is possible to create such traps. We propose two schemes for realizing subwavelength traps and demonstrate their superiority over existing proposals. We analyze the lifetime of atoms in such traps and show that long-lived bound states are possible. This work allows for subwavelength control and manipulation of ultracold matter, with applications in quantum chemistry and quantum simulation.
Collapse
Affiliation(s)
- P. Bienias
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - S. Subhankar
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Y. Wang
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - T-C. Tsui
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - F. Jendrzejewski
- Kirchhoff Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - T. Tiecke
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - G. Juzeliūnas
- Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - L. Jiang
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - S. L. Rolston
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - J. V. Porto
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - A. V. Gorshkov
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|