Mizuno Y, Hukushima K. Power-law decay in the nonadiabatic photodissociation dynamics of alkali halides due to quantum wavepacket interference.
J Chem Phys 2018;
149:174313. [PMID:
30409014 DOI:
10.1063/1.5048957]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The nonadiabatic photodissociation dynamics of alkali halide molecules excited by a femtosecond laser pulse in the gas phase are investigated theoretically, and it is shown that the population of the photoexcited molecules exhibits power-law decay with exponent -1/2, in contrast to exponential decay, which is often assumed in femtosecond spectroscopy and unimolecular reaction theory. To elucidate the mechanism of the power-law decay, a diagrammatic method that visualizes the structure of the nonadiabatic reaction dynamics as a pattern of occurrence of dynamical events, such as wavepacket bifurcation, turning, and dissociation, is developed. Using this diagrammatic method, an analytical formula for the power-law decay is derived, and the theoretical decay curve is compared with the corresponding numerical decay curve computed by a wavepacket dynamics simulation in the case of lithium fluoride. This study reveals that the cause of the power-law decay is the quantum interference arising from the wavepacket bifurcation and merging due to nonadiabatic transitions.
Collapse