1
|
Kanemaru K, Watanabe Y, Yoshida N, Nakano H. Solvent effects in four-component relativistic electronic structure theory based on the reference interaction-site model. J Comput Chem 2022; 44:5-14. [PMID: 36190170 DOI: 10.1002/jcc.27009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 11/07/2022]
Abstract
A combined method of the Dirac-Hartree-Fock (DHF) method and the reference interaction-site model (RISM) theory is reported; this is the initial implementation of the coupling of the four-component relativistic electronic structure theory and an integral equation theory of molecular liquids. In the method, the DHF and RISM equations are solved self-consistently, and therefore the electronic structure of the solute, including relativistic effects, and the solvation structure are determined simultaneously. The formulation is constructed based on the variational principle with respect to the Helmholtz energy, and analytic free energy gradients are also derived using the variational property. The method is applied to the iodine ion (I- ), methyl iodide (CH3 I), and hydrogen chalcogenide (H2 X, where X = O-Po) in aqueous solutions, and the electronic structures of the solutes, as well as the solvation free energies and their component analysis, solvent distributions, and solute-solvent interactions, are discussed.
Collapse
Affiliation(s)
- Kodai Kanemaru
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Watanabe
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan.,Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Haruyuki Nakano
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Cruz JC, Garza J, Yanai T, Hirata S. Stochastic evaluation of four-component relativistic second-order many-body perturbation energies: A potentially quadratic-scaling correlation method. J Chem Phys 2022; 156:224102. [DOI: 10.1063/5.0091973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A second-order many-body perturbation correction to the relativistic Dirac-Hartree-Fock energy is evaluated stochastically by integrating 13-dimensional products of four-component spinors and Coulomb potentials. The integration in the real space of electron coordinates is carried out by the Monte Carlo (MC) method with the Metropolis sampling, whereas the MC integration in the imaginary-time domain is performed by the inverse-CDF (cumulative distribution function) method. The computational cost to reach a given relative statistical error for spatially compact but heavy molecules is observed to be no worse than cubic and possibly quadratic with the number of electrons or basis functions. This is a vast improvement over the quintic scaling of the conventional, deterministic second-order many-body perturbation method. The algorithm is also easily and efficiently parallelized with demonstrated 92% strong scalability going from 64 to 4096 processors for a fixed job size.
Collapse
Affiliation(s)
- J. César Cruz
- Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | - Jorge Garza
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules, Nagoya University, Japan
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, United States of America
| |
Collapse
|
3
|
Ghosh A, Chaudhuri RK, Chattopadhyay S. Relativistic state-specific multireference coupled cluster theory description for bond-breaking energy surfaces. J Chem Phys 2016; 145:124303. [DOI: 10.1063/1.4962911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
4
|
Chaudhuri RK, Chattopadhyay S, Mahapatra US. Taming the Electronic Structure of Lead and Eka-lead (Flerovium) by the Relativistic Coupled Cluster Method. J Phys Chem A 2013; 117:8555-67. [DOI: 10.1021/jp402376b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Sudip Chattopadhyay
- Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah
711103, India
| | | |
Collapse
|
5
|
Transition energies of Rn- and Fr-like actinide ions by relativistic intermediate Hamiltonian Fock-space coupled-cluster methods. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Ebisuzaki R, Watanabe Y, Kawashima Y, Nakano H. Parallel Implementation of the Four-Component Relativistic Quasidegenerate Perturbation Theory with General Multiconfigurational Reference Functions. J Chem Theory Comput 2011; 7:998-1005. [DOI: 10.1021/ct2000205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryo Ebisuzaki
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Yoshihiro Watanabe
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Yukio Kawashima
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan
- Institute of Advanced Research, Kyushu University, Fukuoka 812-8581, Japan
| | - Haruyuki Nakano
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
7
|
MULLER BHENDRIK, KUTZELNIGG WERNER. A CCSD(T)-R12 study of the ten-electron systems Ne, F-, HF, H2O, NH3, NH4+ and CH4. Mol Phys 2010. [DOI: 10.1080/002689797170284] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Accurate Relativistic Fock-Space Calculations for Many-Electron Atoms. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1380-7323(04)80029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
|
10
|
|
11
|
|
12
|
|
13
|
Relativistic multireference Møller-Plesset perturbation theory calculations for the term energies and transition probabilities of ions in the nitrogen isoelectronic sequence. ADVANCES IN QUANTUM CHEMISTRY 2001. [DOI: 10.1016/s0065-3276(05)39016-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Liu W, Kutzelnigg W, van Wüllen C. Relativistic MCSCF by means of quasidegenerate direct perturbation theory. II. Preliminary applications. J Chem Phys 2000. [DOI: 10.1063/1.480510] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Franke R, Van W�llen C. First-order relativistic corrections to MP2 energy from standard gradient codes: Comparison with results from density functional theory. J Comput Chem 1998. [DOI: 10.1002/(sici)1096-987x(19981115)19:14<1596::aid-jcc5>3.0.co;2-e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Kaldor U, Eliav E. High-Accuracy Calculations for Heavy and Super-Heavy Elements. ADVANCES IN QUANTUM CHEMISTRY 1998. [DOI: 10.1016/s0065-3276(08)60194-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Klopper W. Simple recipe for implementing computation of first-order relativistic corrections to electron correlation energies in framework of direct perturbation theory. J Comput Chem 1997. [DOI: 10.1002/(sici)1096-987x(19970115)18:1<20::aid-jcc3>3.0.co;2-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Klopper W. Simple recipe for implementing computation of first-order relativistic corrections to electron correlation energies in framework of direct perturbation theory. J Comput Chem 1997. [DOI: 10.1002/(sici)1096-987x(19970115)18:1%3c20::aid-jcc3%3e3.0.co;2-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Jorge F, Bobbio T, da Silva A. Adapted Gaussian basis sets for the relativistic closed-shell atoms from helium to barium generated with the generator coordinate Dirac-Fock method. Chem Phys Lett 1996. [DOI: 10.1016/s0009-2614(96)01287-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Ishikawa Y, Koc K. Relativistic many-body perturbation theory for general open-shell multiplet states of atoms. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1996; 53:3966-3973. [PMID: 9913359 DOI: 10.1103/physreva.53.3966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
21
|
Eliav E, Kaldor U, Ishikawa Y, Seth M, Pyykkö P. Calculated energy levels of thallium and eka-thallium (element 113). PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1996; 53:3926-3933. [PMID: 9913354 DOI: 10.1103/physreva.53.3926] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
22
|
Eliav E, Kaldor U, Ishikawa Y. Transition energies of barium and radium by the relativistic coupled-cluster method. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1996; 53:3050-3056. [PMID: 9913242 DOI: 10.1103/physreva.53.3050] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
23
|
Jorge FE, da Silva ABF. A generator coordinate version of the closed‐shell Dirac–Fock equations. J Chem Phys 1996. [DOI: 10.1063/1.471288] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Eliav E, Kaldor U, Ishikawa Y. Transition energies of mercury and ekamercury (element 112) by the relativistic coupled-cluster method. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1995; 52:2765-2769. [PMID: 9912557 DOI: 10.1103/physreva.52.2765] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
25
|
Eliav E, Kaldor U, Ishikawa Y. Transition energies of ytterbium, lutetium, and lawrencium by the relativistic coupled-cluster method. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1995; 52:291-296. [PMID: 9912247 DOI: 10.1103/physreva.52.291] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
26
|
Eliav E, Kaldor U, Ishikawa Y. Ground state electron configuration of Rutherfordium: Role of dynamic correlation. PHYSICAL REVIEW LETTERS 1995; 74:1079-1082. [PMID: 10058929 DOI: 10.1103/physrevlett.74.1079] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
27
|
Eliav E, Kaldor U, Ishikawa Y. Relativistic coupled-cluster method: Intrashell excitations in the f2 shells of Pr+3 and U+4. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1995; 51:225-230. [PMID: 9911577 DOI: 10.1103/physreva.51.225] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
28
|
Eliav E, Kaldor U, Schwerdtfeger P, Hess BA, Ishikawa Y. Ground state electron configuration of element 111. PHYSICAL REVIEW LETTERS 1994; 73:3203-3206. [PMID: 10057317 DOI: 10.1103/physrevlett.73.3203] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
29
|
Ishikawa Y, Koc K. Relativistic many-body perturbation theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian: Relativistic correlation energies for the noble-gas sequence through Rn (Z=86), the group-IIB atoms through Hg, and the ions of Ne isoelectronic sequence. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1994; 50:4733-4742. [PMID: 9911470 DOI: 10.1103/physreva.50.4733] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
30
|
Eliav E, Kaldor U, Ishikawa Y. Ionization potentials and excitation energies of the alkali-metal atoms by the relativistic coupled-cluster method. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1994; 50:1121-1128. [PMID: 9911001 DOI: 10.1103/physreva.50.1121] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
31
|
Dyall KG. Second-order Møller-Plesset perturbation theory for molecular Dirac-Hartree-Fock wavefunctions. Theory for up to two open-shell electrons. Chem Phys Lett 1994. [DOI: 10.1016/0009-2614(94)00488-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
(Ilyabaev) EE, Kaldor U, Ishikawa Y. Relativistic coupled cluster method based on Dirac—Coulomb—Breit wavefunctions. Ground state energies of atoms with two to five electrons. Chem Phys Lett 1994. [DOI: 10.1016/0009-2614(94)00317-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Eliav E, Kaldor U, Ishikawa Y. Open-shell relativistic coupled-cluster method with Dirac-Fock-Breit wave functions: Energies of the gold atom and its cation. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1994; 49:1724-1729. [PMID: 9910422 DOI: 10.1103/physreva.49.1724] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
34
|
Koc K, Ishikawa Y. Single-Fock-operator method for matrix Dirac-Fock self-consistent-field calculations on open-shell atoms. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1994; 49:794-798. [PMID: 9910302 DOI: 10.1103/physreva.49.794] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
35
|
|
36
|
Ishikawa Y, Quiney HM. Relativistic many-body perturbation-theory calculations based on Dirac-Fock-Breit wave functions. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1993; 47:1732-1739. [PMID: 9909124 DOI: 10.1103/physreva.47.1732] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
37
|
Malli GL, Ishikawa Y. Universal Gaussian basis set for accurate ab initio /P relat ivistic Dirac-Fock calculations. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1993; 47:143-146. [PMID: 9908905 DOI: 10.1103/physreva.47.143] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
38
|
Ab initio Dirac—Fock self-consistent field calculations for open-shell heavy-atom systems: bonding in AuH+ ion. Chem Phys Lett 1992. [DOI: 10.1016/0009-2614(92)86087-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
|
40
|
Matrix Dirac—Fock—Breit SCF calculations on heavy atoms using geometric basis sets of Gaussian functions. Chem Phys Lett 1992. [DOI: 10.1016/0009-2614(92)85104-i] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Kagawa T, Honda Y, Kiyokawa S. Relativistic configuration-interaction theory for atomic systems. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1991; 44:7092-7107. [PMID: 9905850 DOI: 10.1103/physreva.44.7092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
42
|
Ishikawa Y. Relativistic many-body perturbation-theory calculations on Kr: accurate representation of second- and third-order energies with contracted Gaussian basis set. Chem Phys Lett 1991. [DOI: 10.1016/0009-2614(91)87040-i] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Ishikawa Y, Quiney HM, Malli GL. Dirac-Fock-Breit self-consistent-field method: Gaussian basis-set calculations on many-electron atoms. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1991; 43:3270-3278. [PMID: 9905409 DOI: 10.1103/physreva.43.3270] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
44
|
Rizzo A, Clementi E, Sekiya M. Correlation energies in the isoelectronic series of He, Li, Be and Ne. Chem Phys Lett 1991. [DOI: 10.1016/0009-2614(91)85087-d] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|