1
|
Wagner S, Kahl G, Melnyk R, Baumketner A. On the lattice ground state of densely packed hard ellipses. J Chem Phys 2024; 160:151101. [PMID: 38624111 DOI: 10.1063/5.0203311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Among lattice configurations of densely packed hard ellipses, Monte Carlo simulations are used to identify the so-called parallel and diagonal lattices as the two favorable states. The free energies of these two states are computed for several system sizes employing the Einstein crystal method. An accurate calculation of the free energy difference between the two states reveals the parallel lattice as the state with the lowest free energy. The origin of the entropic difference between the two states is further elucidated by assessing the roles of the translational and rotational degrees of freedom.
Collapse
Affiliation(s)
- S Wagner
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| | - G Kahl
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| | - R Melnyk
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitsky Str., Lviv UA-79011, Ukraine
| | - A Baumketner
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitsky Str., Lviv UA-79011, Ukraine
| |
Collapse
|
2
|
Hendley RS, Zhang L, Bevan MA. Multistate Dynamic Pathways for Anisotropic Colloidal Assembly and Reconfiguration. ACS NANO 2023; 17:20512-20524. [PMID: 37788439 DOI: 10.1021/acsnano.3c07202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report the controlled interfacial assembly and reconfiguration of rectangular prism colloidal particles between microstructures of varying positional and orientational order including stable, metastable, and transient states. Structurally diverse states are realized by programming time dependent electric fields that mediate dipolar interactions determining particle position, orientation, compression, and chaining. We identify an order parameter set that defines each state as a combination of the positional and orientational order. These metrics are employed as reaction coordinates to capture the microstructure evolution between initial and final states upon field changes. Assembly trajectory manifolds between states in the low-dimensional reaction coordinate space reveal a dynamic pathway map including information about pathway accessibility, reversibility, and kinetics. By navigating the dynamic pathway map, we demonstrate reconfiguration between states on minute time scales, which is practically useful for particle-based materials processing and device responses. Our findings demonstrate a conceptually general approach to discover dynamic pathways as a basis to control assembly and reconfiguration of self-organizing building blocks that respond to global external stimuli.
Collapse
Affiliation(s)
- Rachel S Hendley
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lechuan Zhang
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael A Bevan
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Baron PB, Hendley RS, Bevan MA. Anisotropic particle multiphase equilibria in nonuniform fields. J Chem Phys 2023; 159:124902. [PMID: 38127375 DOI: 10.1063/5.0169659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 12/23/2023] Open
Abstract
We report a method to predict equilibrium concentration profiles of hard ellipses in nonuniform fields, including multiphase equilibria of fluid, nematic, and crystal phases. Our model is based on a balance of osmotic pressure and field mediated forces by employing the local density approximation. Implementation of this model requires development of accurate equations of state for each phase as a function of hard ellipse aspect ratio in the range k = 1-9. The predicted density profiles display overall good agreement with Monte Carlo simulations for hard ellipse aspect ratios k = 2, 4, and 6 in gravitational and electric fields with fluid-nematic, fluid-crystal, and fluid-nematic-crystal multiphase equilibria. The profiles of local order parameters for positional and orientational order display good agreement with values expected for bulk homogeneous hard ellipses in the same density ranges. Small discrepancies between predictions and simulations are observed at crystal-nematic and crystal-fluid interfaces due to limitations of the local density approximation, finite system sizes, and uniform periodic boundary conditions. The ability of the model to capture multiphase equilibria of hard ellipses in nonuniform fields as a function of particle aspect ratio provides a basis to control anisotropic particle microstructure on interfacial energy landscapes in diverse materials and applications.
Collapse
Affiliation(s)
- Philippe B Baron
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rachel S Hendley
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Michael A Bevan
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
4
|
Velasco E, Martínez-Ratón Y. Prediction of the liquid-crystal phase behavior of hard right triangles from fourth-virial density-functional theories. Phys Rev E 2023; 108:014603. [PMID: 37583235 DOI: 10.1103/physreve.108.014603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 08/17/2023]
Abstract
We have used an extended scaled-particle theory that incorporates four-body correlations through the fourth-order virial coefficient to analyze the orientational properties of a fluid of hard right isosceles triangles. This fluid has been analyzed by computer simulation studies, with clear indications of strong octatic correlations present in the liquid-crystal phase, although the more symmetric order tetratic phase would seem to be the most plausible candidate. Standard theories based on the second virial coefficient are unable to reproduce this behavior. Our extended theory predicts that octatic correlations, associated to a symmetry under global rotations of the oriented fluid by 45^{∘}, are highly enhanced, but not enough to give rise to a thermodynamically stable phase with strict octatic symmetry. We discuss different scenarios to improve the theoretical understanding of the elusive octatic phase in this intriguing fluid.
Collapse
Affiliation(s)
- Enrique Velasco
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Yuri Martínez-Ratón
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911, Leganés, Madrid, Spain
| |
Collapse
|
5
|
Luo Y, Gu M, Park M, Fang X, Kwon Y, Urueña JM, Read de Alaniz J, Helgeson ME, Marchetti CM, Valentine MT. Molecular-scale substrate anisotropy, crowding and division drive collective behaviours in cell monolayers. J R Soc Interface 2023; 20:20230160. [PMID: 37403487 PMCID: PMC10320338 DOI: 10.1098/rsif.2023.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023] Open
Abstract
The ability of cells to reorganize in response to external stimuli is important in areas ranging from morphogenesis to tissue engineering. While nematic order is common in biological tissues, it typically only extends to small regions of cells interacting via steric repulsion. On isotropic substrates, elongated cells can co-align due to steric effects, forming ordered but randomly oriented finite-size domains. However, we have discovered that flat substrates with nematic order can induce global nematic alignment of dense, spindle-like cells, thereby influencing cell organization and collective motion and driving alignment on the scale of the entire tissue. Remarkably, single cells are not sensitive to the substrate's anisotropy. Rather, the emergence of global nematic order is a collective phenomenon that requires both steric effects and molecular-scale anisotropy of the substrate. To quantify the rich set of behaviours afforded by this system, we analyse velocity, positional and orientational correlations for several thousand cells over days. The establishment of global order is facilitated by enhanced cell division along the substrate's nematic axis, and associated extensile stresses that restructure the cells' actomyosin networks. Our work provides a new understanding of the dynamics of cellular remodelling and organization among weakly interacting cells.
Collapse
Affiliation(s)
- Yimin Luo
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mengyang Gu
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Minwook Park
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Xinyi Fang
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Younghoon Kwon
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Juan Manuel Urueña
- BioPACIFIC MIP, California NanoSystems Institute, Santa Barbara, CA 93106, USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Matthew E. Helgeson
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cristina M. Marchetti
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Megan T. Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
6
|
Thelen T, Jara A, Torres-Díaz I. Synergistic interactions of binary suspensions of magnetic anisotropic particles. SOFT MATTER 2023; 19:640-651. [PMID: 36594605 DOI: 10.1039/d2sm01234k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report the effect of the dipole-dipole interaction and shape anisotropy in suspensions of permanently magnetized anisotropic particles. We quantify the dipolar interaction energy using an ellipsoid-dipole model to describe particles with similar or dissimilar shapes. The expression captures the physics of the point-dipole interaction energy between uniformly magnetized spherical particles. Additionally, we report Monte Carlo simulations to describe the effect of dipolar interaction and shape anisotropy under different field strengths. Results show that the shape anisotropy and dipolar interactions modify the head-to-tail interaction with respect to spheres, promoting dendritic and barbed-wire structures in uniform ellipsoids and binary mixtures, respectively. Furthermore, competing entropic and energy interactions generate a synergistic effect reducing the magnetic response of binary suspensions.
Collapse
Affiliation(s)
- Thomas Thelen
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - Adriana Jara
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - Isaac Torres-Díaz
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
7
|
Hendley RS, Zhang L, Bevan MA. Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures. SOFT MATTER 2022; 18:9273-9282. [PMID: 36445724 DOI: 10.1039/d2sm01078j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crystalline, and crystalline microstructures. Particle shapes investigated include disks, ellipses, squares, and rectangles, which show how systematic variations in anisotropy and corner curvature determine the number and type of resulting microstructures. AC electric fields induce dipolar interactions to control particle positional and orientational order. Microstructural states are determined via particle tracking to compute order parameters, which agree with computer simulations and show how particle packing and dipolar interactions together produce each structure. Results demonstrate how choice of particle shape and field conditions enable kinetically viable routes to assemble nematic, tetratic, and smectic liquid crystal structures as well as crystals with stretched 4- and 6-fold symmetry. Results show it is possible to assemble all corresponding hard particle phases, but also show how dipolar interactions influence and produce additional microstructures. Our findings provide design rules for the assembly of diverse microstructures of different shaped particles in AC electric fields, which could enable scalable and reconfigurable particle-based materials, displays, and printing technologies.
Collapse
Affiliation(s)
- Rachel S Hendley
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Lechuan Zhang
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Michael A Bevan
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
8
|
Torres-Díaz I, Hendley RS, Mishra A, Yeh AJ, Bevan MA. Hard superellipse phases: particle shape anisotropy & curvature. SOFT MATTER 2022; 18:1319-1330. [PMID: 35072684 DOI: 10.1039/d1sm01523k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report computer simulations of two-dimensional convex hard superellipse particle phases vs. particle shape parameters including aspect ratio, corner curvature, and sidewall curvature. Shapes investigated include disks, ellipses, squares, rectangles, and rhombuses, as well as shapes with non-uniform curvature including rounded squares, rounded rectangles, and rounded rhombuses. Using measures of orientational order, order parameters, and a novel stretched bond orientational order parameter, we systematically identify particle shape properties that determine liquid crystal and crystalline phases including their coarse boundaries and symmetry. We observe phases including isotropic, nematic, tetratic, plastic crystals, square crystals, and hexagonal crystals (including stretched variants). Our results catalog known benchmark shapes, but include new shapes that also interpolate between known shapes. Our results indicate design rules for particle shapes that determine two-dimensional liquid, liquid crystalline, and crystalline microstructures that can be realized via particle assembly.
Collapse
Affiliation(s)
- Isaac Torres-Díaz
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Rachel S Hendley
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Akhilesh Mishra
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Alex J Yeh
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Michael A Bevan
- Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
9
|
Basurto E, Gurin P, Varga S, Odriozola G. Anisotropy-independent packing of confined hard ellipses. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Tan X, Chen Y, Wang H, Zhang Z, Ling XS. 2D isotropic-nematic transition in colloidal suspensions of ellipsoids. SOFT MATTER 2021; 17:6001-6005. [PMID: 34059864 DOI: 10.1039/d1sm00367d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid crystals are important condensed matter systems for technological applications, as well as for fundamental studies. An important unresolved issue is the nature of the phase transition in a two-dimensional (2D) liquid crystal system. In contrast to numerous computational studies reported in the last few decades, there have been no convincing experiments to verify these numerical results. Anisotropic colloids provide an excellent experimental model system to study phase transitions, such as crystallization and glass transition in condensed matter physics with single particle resolution. However, using colloids to probe the two-dimensional liquid crystal transition remains a challenge, since the condensed anisotropic colloids usually become stuck in the metastable glassy state rather than approaching their equilibrium liquid crystal phase. Here we report a method of using an external magnetic field to assist a colloidal system of super-paramagnetic anisotropic particles to overcome the local free energy barriers in the metastable states and approach the equilibrium phase. The experiments demonstrate a 2D isotropic-nematic phase transition with increasing packing density. The effects of the anisotropy of the colloidal particles on the 2D isotropic-nematic transition are explored. Our experimental results are compared with those from previous computational work, and quantitative agreements are reached.
Collapse
Affiliation(s)
- Xinlan Tan
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Ya Chen
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Huaguang Wang
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China. and College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zexin Zhang
- Institute for Advanced Study, Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China. and College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | | |
Collapse
|
11
|
Soulé ER. Generalized van der Waals theory for phase behavior of two-dimensional nematic liquid crystals. II. Phase coexistence and adsorption. Phys Rev E 2021; 102:062704. [PMID: 33465970 DOI: 10.1103/physreve.102.062704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 11/07/2022]
Abstract
Adsorption of asymmetric particles or molecules into monolayers is important for many biological and technologically relevant physical systems. In-plane ordering can drastically affect adsorption and phase behavior. In this work, a generalized van der Waals theory previously developed [M. V. Zonta and E. R. Soulé, Phys. Rev. E 100, 062703 (2019)10.1103/PhysRevE.100.062703] is used to calculated phase behavior and adsorption isotherms in a system of hard-core rodlike particles with in-plane nematic order, as a function of the model parameters (aspect ratio L/B, isotropic and anisotropic interaction parameters χ and ν, and adsorption constant K_{ads}). For small L/B, isotropic-nematic and/or (depending on χ) isotropic liquid-gas coexistence is observed; as L/B increases, coexistence between two different nematic phases appears at low temperature, and liquid-gas equilibrium ceases to be observed for large enough L/B; this is understood considering that as aspect ratio increases, the range of stability of the nematic phase becomes larger. Adsorption isotherms are found to significantly deviate from Langmuir behavior, and are strongly affected by ordering and interactions (surface density in the adsorbed layer increases as interaction parameters and ordering increase). Phase coexistence is observed as discontinuous transitions in adsorption isotherms, where adsorption-desorption hysteresis cycles are possible.
Collapse
Affiliation(s)
- Ezequiel Rodolfo Soulé
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), J. B. Justo 4302, 7600 Mar del Plata, Argentina
| |
Collapse
|
12
|
Zheng Z, Ni R, Wang Y, Han Y. Translational and rotational critical-like behaviors in the glass transition of colloidal ellipsoid monolayers. SCIENCE ADVANCES 2021; 7:7/3/eabd1958. [PMID: 33523902 PMCID: PMC7810379 DOI: 10.1126/sciadv.abd1958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Critical-like behaviors have been found in translational degrees of freedom near the glass transition of spherical particle systems mainly with local polycrystalline structures, but it is not clear if criticality exists in more general glassy systems composed of nonspherical particles without crystalline structures. Here, through experiments and simulations, we show critical-like behaviors in both translational and rotational degrees of freedom in monolayers of monodisperse colloidal ellipsoids in the absence of crystalline orders. We find rich features of the Ising-like criticality in structure and slow dynamics at the ideal glass transition point ϕ0, showing the thermodynamic nature of glass transition at ϕ0 A dynamic criticality is found at the mode-coupling critical point ϕc for the fast-moving clusters whose critical exponents increase linearly with fragility, reflecting a dynamic glass transition. These results cast light on the glass transition and explain the mystery that the dynamic correlation lengths diverge at two different temperatures.
Collapse
Affiliation(s)
- Zhongyu Zheng
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ran Ni
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Yuren Wang
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yilong Han
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
13
|
Mizani S, Gurin P, Aliabadi R, Salehi H, Varga S. Demixing and tetratic ordering in some binary mixtures of hard superellipses. J Chem Phys 2020; 153:034501. [PMID: 32716200 DOI: 10.1063/5.0009705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We examine the fluid phase behavior of binary mixtures of hard superellipses using the scaled particle theory. The superellipse is a general two-dimensional convex object that can be tuned between the elliptical and rectangular shapes continuously at a given aspect ratio. We find that the shape of the particle affects strongly the stability of isotropic, nematic, and tetratic phases in the mixture even if the side lengths of both species are fixed. While the isotropic-isotropic demixing transition can be ruled out using the scaled particle theory, the first order isotropic-nematic and the nematic-nematic demixing transition can be stabilized with strong fractionation between the components. It is observed that the demixing tendency is strongest in small rectangle-large ellipse mixtures. Interestingly, it is possible to stabilize the tetratic order at lower densities in the mixture of hard squares and rectangles where the long rectangles form a nematic phase, while the squares stay in the tetratic order.
Collapse
Affiliation(s)
- Sakine Mizani
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Péter Gurin
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| | - Roohollah Aliabadi
- Department of Physics, Faculty of Science, Fasa University, 74617-81189 Fasa, Iran
| | - Hamdollah Salehi
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, P.O. Box 158, Veszprém H-8201, Hungary
| |
Collapse
|
14
|
Gámez F, Rodríguez-Almeida LF, Trejos VM. Thermodynamics of two-dimensional molecular fluids: Discrete perturbation theory and Monte Carlo simulations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
|
16
|
Zonta MV, Soulé ER. Generalized van der Waals theory for phase behavior of two-dimensional nematic liquid crystals: Phase ordering and the equation of state. Phys Rev E 2019; 100:062703. [PMID: 31962528 DOI: 10.1103/physreve.100.062703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Liquid crystalline ordering of anisotropic particles in two dimensions is important in many physical and biological systems and their phase behavior is still a topic of interest. A generalized van der Waals theory is formulated, accounting for repulsive excluded volume and attractive van der Waals and Maier-Saupe interactions, for rectangles confined to two dimensions. The phase ordering transitions and equation of state are analyzed as a function of the model parameters (aspect ratioL/B and isotropic and anisotropic interaction parameters χ and ν). Different phase transitions are observed: continuous isotropic-nematic (high L/B and ν), first-order isotropic-nematic (intermediate L/B and small ν), and continuous isotropic-tetratic (small L/B and ν) followed by a continuous tetratic-nematic transition at higher densities. Increasing L/B decreases the pressure, and this effect is more pronounced in the nematic than in the isotropic phase. Increasing both interaction parameters decreases pressure and can lead to phase separation.
Collapse
Affiliation(s)
- María Virginia Zonta
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), J. B. Justo 4302, 7600 Mar del Plata, Argentina
| | - Ezequiel Rodolfo Soulé
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), J. B. Justo 4302, 7600 Mar del Plata, Argentina
| |
Collapse
|
17
|
Wagner S, Kahl G. Structure and equation-of-state of a disordered system of shape anisotropic patchy particles. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1592254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Susanne Wagner
- Institut für Theoretische Physik and Center for Computational Materials Science (CMS), TU Wien, Wien, Austria
| | - Gerhard Kahl
- Institut für Theoretische Physik and Center for Computational Materials Science (CMS), TU Wien, Wien, Austria
| |
Collapse
|
18
|
Quiring P, Klopotek M, Oettel M. Nematic and gas-liquid transitions for sticky rods on square and cubic lattices. Phys Rev E 2019; 100:012707. [PMID: 31499763 DOI: 10.1103/physreve.100.012707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 06/10/2023]
Abstract
Using grand-canonical Monte Carlo simulations, we investigate the phase diagram of hard rods of length L with additional contact (sticky) attractions on square and cubic lattices. The phase diagram shows a competition between gas-liquid and ordering transitions (which are of demixing type on the square lattice for L≥7 and of nematic type on the cubic lattice for L≥5). On the square lattice, increasing attractions initially lead to a stabilization of the isotropic phase. On the cubic lattice, the nematic transition remains of weak first order upon increasing the attractions. In the vicinity of the gas-liquid transition, the coexistence gap of the nematic transition quickly widens. These features are different from nematic transitions in the continuum.
Collapse
Affiliation(s)
- P Quiring
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - M Klopotek
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - M Oettel
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
19
|
Geigenfeind T, de Las Heras D. Principal component analysis of the excluded area of two-dimensional hard particles. J Chem Phys 2019; 150:184906. [PMID: 31091902 DOI: 10.1063/1.5092865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The excluded area between a pair of two-dimensional hard particles with given relative orientation is the region in which one particle cannot be located due to the presence of the other particle. The magnitude of the excluded area as a function of the relative particle orientation plays a major role in the determination of the bulk phase behavior of hard particles. We use principal component analysis (PCA) to identify the different types of excluded areas corresponding to randomly generated two-dimensional hard particles modeled as non-self-intersecting polygons and star lines (line segments radiating from a common origin). Only three principal components are required to have an excellent representation of the value of the excluded area as a function of the relative particle orientation for sufficiently anisotropic particles. Independent of the particle shape, the minimum value of the excluded area is always achieved when the particles are antiparallel to each other. The property that affects the value of the excluded area most strongly is the elongation of the particle shape. PCA identifies four limiting cases of excluded areas with one to four global minima at equispaced relative orientations. We study selected particle shapes using Monte Carlo simulations.
Collapse
Affiliation(s)
- Thomas Geigenfeind
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
20
|
Jadrich RB, Lindquist BA, Piñeros WD, Banerjee D, Truskett TM. Unsupervised machine learning for detection of phase transitions in off-lattice systems. II. Applications. J Chem Phys 2018; 149:194110. [DOI: 10.1063/1.5049850] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- R. B. Jadrich
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - B. A. Lindquist
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - W. D. Piñeros
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - D. Banerjee
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - T. M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
21
|
Abaurrea Velasco C, Abkenar M, Gompper G, Auth T. Collective behavior of self-propelled rods with quorum sensing. Phys Rev E 2018; 98:022605. [PMID: 30253508 DOI: 10.1103/physreve.98.022605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Active agents-like phoretic particles, bacteria, sperm, and cytoskeletal filaments in motility assays-show a large variety of motility-induced collective behaviors, such as aggregation, clustering, and phase separation. The behavior of dense suspensions of engineered phoretic particles and of bacteria during biofilm formation is determined by two qualitatively different physical mechanisms: (i) volume exclusion (short-range steric repulsion) and (ii) quorum sensing (longer-range reduced propulsion due to alteration of the local chemical environment). To systematically characterize such systems, we study semi-penetrable self-propelled rods in two dimensions, with a propulsion force that decreases with increasing local rod density, by employing Brownian dynamics simulations. Volume exclusion and quorum sensing both lead to phase separation; however, the structure of the systems and the rod dynamics vastly differ. Quorum sensing enhances the polarity of the clusters, induces perpendicularity of rods at the cluster borders, and enhances cluster formation. For systems where the rods essentially become passive at high densities, formation of asters and stripes is observed. Systems of rods with larger aspect ratios show more ordered structures compared to those with smaller aspect ratios, due to their stronger alignment, with almost circular asters for strongly density-dependent propulsion force. With increasing range of the quorum-sensing interaction, the local density decreases, asters become less stable, and polar hedgehog clusters and clusters with domains appear.
Collapse
Affiliation(s)
- Clara Abaurrea Velasco
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Masoud Abkenar
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Thorsten Auth
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
22
|
Martínez-Ratón Y, Díaz-De Armas A, Velasco E. Uniform phases in fluids of hard isosceles triangles: One-component fluid and binary mixtures. Phys Rev E 2018; 97:052703. [PMID: 29906820 DOI: 10.1103/physreve.97.052703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 06/08/2023]
Abstract
We formulate the scaled particle theory for a general mixture of hard isosceles triangles and calculate different phase diagrams for the one-component fluid and for certain binary mixtures. The fluid of hard triangles exhibits a complex phase behavior: (i) the presence of a triatic phase with sixfold symmetry, (ii) the isotropic-uniaxial nematic transition is of first order for certain ranges of aspect ratios, and (iii) the one-component system exhibits nematic-nematic transitions ending in critical points. We found the triatic phase to be stable not only for equilateral triangles but also for triangles of similar aspect ratios. We focus the study of binary mixtures on the case of symmetric mixtures: equal particle areas with aspect ratios (κ_{i}) symmetric with respect to the equilateral one, κ_{1}κ_{2}=3. For these mixtures we found, aside from first-order isotropic-nematic and nematic-nematic transitions (the latter ending in a critical point): (i) a region of triatic phase stability even for mixtures made of particles that do not form this phase at the one-component limit, and (ii) the presence of a Landau point at which two triatic-nematic first-order transitions and a nematic-nematic demixing transition coalesce. This phase behavior is analogous to that of a symmetric three-dimensional mixture of rods and plates.
Collapse
Affiliation(s)
- Yuri Martínez-Ratón
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911, Leganés, Madrid, Spain
| | - Ariel Díaz-De Armas
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911, Leganés, Madrid, Spain
| | - Enrique Velasco
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049, Spain
| |
Collapse
|
23
|
Gao Y, Farkas V, Dullens RPA, Aarts DGAL. Structural disorder, filament growth and self-poisoning in short rods confined onto a flat wall. SOFT MATTER 2017; 13:8678-8683. [PMID: 29051962 DOI: 10.1039/c7sm01761h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Confocal microscopy was used to directly observe the structural coarsening of the first layer of short colloidal rods sedimented onto a flat wall. Based on an image analysis algorithm we devised, quantitative information on the location, orientation and length of each particle can be extracted with high precision. At high density the system undergoes structural arrest, and becomes trapped in a disordered state of randomly arranged filaments that are composed of side-by-side aligned rods. The frustration of structural order is signalled by a new peak that emerges in the radial distribution function. Configuration analysis shows that the peak is primarily due to pairs of particles that are arranged in a "T" shape, a configuration that is compatible with neither crystallization nor filament growth. Our results point to a self-poisoning mechanism for the frustration of structural order, and highlight the importance of particle shape in controlling colloidal assembly thus materials properties.
Collapse
Affiliation(s)
- Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangzhou, 518060, China.
| | | | | | | |
Collapse
|
24
|
Gschwind A, Klopotek M, Ai Y, Oettel M. Isotropic-nematic transition for hard rods on a three-dimensional cubic lattice. Phys Rev E 2017; 96:012104. [PMID: 29347067 DOI: 10.1103/physreve.96.012104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Using grand-canonical Monte Carlo (GCMC) simulations, we investigate the isotropic-nematic phase transition for hard rods of size L×1×1 on a three-dimensional cubic lattice. We observe such a transition for L≥6. For L=6, the nematic state has a negative order parameter, reflecting the co-occurrence of two dominating orientations. For L≥7, the nematic state has a positive order parameter, corresponding to the dominance of one orientation. We investigate rod lengths up to L=25 and find evidence for a very weakly first-order isotropic-nematic transition, while we cannot completely rule out a second-order transition. It was not possible to detect a density jump at the transition, despite using large systems containing several 10^{5} particles. The probability density distributions P(Q) from the GCMC simulations near the transition are very broad, pointing to strong fluctuations. Our results complement earlier results on the demixing (pseudonematic) transition for an equivalent system in two dimensions, which is presumably of Ising type and occurs for L≥7. We compare our results to lattice fundamental measure theory (FMT) and find that FMT strongly overestimates nematic order and consequently predicts a strong first-order transition. The rod packing fraction of the nematic coexisting states, however, agree reasonably well between FMT and GCMC.
Collapse
Affiliation(s)
- A Gschwind
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - M Klopotek
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| | - Y Ai
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - M Oettel
- Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
25
|
Díaz-De Armas A, Martínez-Ratón Y. Role of length polydispersity in the phase behavior of freely rotating hard-rectangle fluids. Phys Rev E 2017; 95:052702. [PMID: 28618522 DOI: 10.1103/physreve.95.052702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Indexed: 11/07/2022]
Abstract
We use the density-functional formalism, in particular the scaled-particle theory, applied to a length-polydisperse hard-rectangle fluid to study its phase behavior as a function of the mean particle aspect ratio κ_{0} and polydispersity Δ_{0}. The numerical solutions of the coexistence equations are calculated by transforming the original problem with infinite degrees of freedoms to a finite set of equations for the amplitudes of the Fourier expansion of the moments of the density profiles. We divide the study into two parts. The first one is devoted to the calculation of the phase diagrams in the packing fraction η_{0}-κ_{0} plane for a fixed Δ_{0} and selecting parent distribution functions with exponential (the Schulz distribution) or Gaussian decays. In the second part we study the phase behavior in the η_{0}-Δ_{0} plane for fixed κ_{0} while Δ_{0} is changed. We characterize in detail the orientational ordering of particles and the fractionation of different species between the coexisting phases. Also we study the character (second vs first order) of the isotropic-nematic phase transition as a function of polydispersity. We particularly focus on the stability of the tetratic phase as a function of κ_{0} and Δ_{0}. The isotropic-nematic transition becomes strongly of first order when polydispersity is increased: The coexistence gap widens and the location of the tricritical point moves to higher values of κ_{0} while the tetratic phase is slightly destabilized with respect to the nematic one. The results obtained here can be tested in experiments on shaken monolayers of granular rods.
Collapse
Affiliation(s)
- Ariel Díaz-De Armas
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - Yuri Martínez-Ratón
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
| |
Collapse
|
26
|
Lebovka NI, Tarasevich YY, Gigiberiya VA, Vygornitskii NV. Diffusion-driven self-assembly of rodlike particles: Monte Carlo simulation on a square lattice. Phys Rev E 2017; 95:052130. [PMID: 28618463 DOI: 10.1103/physreve.95.052130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 11/07/2022]
Abstract
The diffusion-driven self-assembly of rodlike particles was studied by means of Monte Carlo simulation. The rods were represented as linear k-mers (i.e., particles occupying k adjacent sites). In the initial state, they were deposited onto a two-dimensional square lattice of size L×L up to the jamming concentration using a random sequential adsorption algorithm. The size of the lattice, L, was varied from 128 to 2048, and periodic boundary conditions were applied along both x and y axes, while the length of the k-mers (determining the aspect ratio) was varied from 2 to 12. The k-mers oriented along the x and y directions (k_{x}-mers and k_{y}-mers, respectively) were deposited equiprobably. In the course of the simulation, the numbers of intraspecific and interspecific contacts between the same sort and between different sorts of k-mers, respectively, were calculated. Both the shift ratio of the actual number of shifts along the longitudinal or transverse axes of the k-mers and the electrical conductivity of the system were also examined. For the initial random configuration, quite different self-organization behavior was observed for short and long k-mers. For long k-mers (k≥6), three main stages of diffusion-driven spatial segregation (self-assembly) were identified: the initial stage, reflecting destruction of the jamming state; the intermediate stage, reflecting continuous cluster coarsening and labyrinth pattern formation; and the final stage, reflecting the formation of diagonal stripe domains. Additional examination of two artificially constructed initial configurations showed that this pattern of diagonal stripe domains is an attractor, i.e., any spatial distribution of k-mers tends to transform into diagonal stripes. Nevertheless, the time for relaxation to the steady state essentially increases as the lattice size growth.
Collapse
Affiliation(s)
- Nikolai I Lebovka
- Department of Physical Chemistry of Disperse Minerals, F.D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kiev, Ukraine, 03142 and Department of Physics, Taras Shevchenko Kiev National University, Kiev, Ukraine, 01033
| | - Yuri Yu Tarasevich
- Laboratory of Mathematical Modeling, Astrakhan State University, Astrakhan, Russia, 414056
| | - Volodymyr A Gigiberiya
- Department of Physical Chemistry of Disperse Minerals, F.D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kiev, Ukraine, 03142
| | - Nikolai V Vygornitskii
- Department of Physical Chemistry of Disperse Minerals, F.D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, Kiev, Ukraine, 03142
| |
Collapse
|
27
|
Dong J, Goldthorpe IA, Abukhdeir NM. Automated quantification of one-dimensional nanostructure alignment on surfaces. NANOTECHNOLOGY 2016; 27:235701. [PMID: 27119552 DOI: 10.1088/0957-4484/27/23/235701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.
Collapse
Affiliation(s)
- Jianjin Dong
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada. Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
28
|
Heinemann T, Antlanger M, Mazars M, Klapp SHL, Kahl G. Equilibrium structures of anisometric, quadrupolar particles confined to a monolayer. J Chem Phys 2016; 144:074504. [PMID: 26896992 DOI: 10.1063/1.4941585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the structural properties of a two-dimensional system of ellipsoidal particles carrying a linear quadrupole moment in their center. These particles represent a simple model for a variety of uncharged, non-polar conjugated organic molecules. Using optimization tools based on ideas of evolutionary algorithms, we first examine the ground state structures as we vary the aspect ratio of the particles and the pressure. Interestingly, we find, besides the intuitively expected T-like configurations, a variety of complex structures, characterized with up to three different particle orientations. In an effort to explore the impact of thermal fluctuations, we perform constant-pressure molecular dynamics simulations within a range of rather low temperatures. We observe that ground state structures formed by particles with a large aspect ratio are in particular suited to withstand fluctuations up to rather high temperatures. Our comprehensive investigations allow for a deeper understanding of molecular or colloidal monolayer arrangements under the influence of a typical electrostatic interaction on a coarse-grained level.
Collapse
Affiliation(s)
- Thomas Heinemann
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany
| | - Moritz Antlanger
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| | - Martial Mazars
- Laboratoire de Physique Théorique (UMR 8627), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany
| | - Gerhard Kahl
- Institut für Theoretische Physik and Center for Computational Materials Science (CMS), TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| |
Collapse
|
29
|
Varga S, Martínez-Ratón Y, Velasco E, Bautista-Carbajal G, Odriozola G. Effect of orientational restriction on monolayers of hard ellipsoids. Phys Chem Chem Phys 2016; 18:4547-56. [PMID: 26796794 DOI: 10.1039/c5cp05702g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of out-of-plane orientational freedom on the orientational ordering properties of a monolayer of hard ellipsoids is studied using the Parsons-Lee scaling approach and replica exchange Monte Carlo computer simulation. Prolate and oblate ellipsoids exhibit very different ordering properties, namely, the axes of revolution of prolate particles tend to lean out, while those of oblate ones prefer to lean into the confining plane. The driving mechanism of this is that the particles try to maximize the available free area on the confining surface, which can be achieved by minimizing the cross section areas of the particles with the plane. In the lack of out-of-plane orientational freedom the monolayer of prolate particles is identical to a two-dimensional hard ellipse system, which undergoes an isotropic-nematic ordering transition with increasing density. With gradually switching on the out-of-plane orientational freedom the prolate particles lean out from the confining plane and destabilisation of the in-plane isotropic-nematic phase transition is observed. The system of oblate particles behaves oppositely to that of prolates. It corresponds to a two-dimensional system of hard disks in the lack of out-of-plane freedom, while it behaves similar to that of hard ellipses in the freely rotating case. Solid phases can be realised by lower surface coverage due to the out-of-plane orientation freedom for both oblate and prolate shapes.
Collapse
Affiliation(s)
- Szabolcs Varga
- Institute of Physics and Mechatronics, University of Pannonia, PO Box 158, Veszprém, H-8201 Hungary
| | - Yuri Martínez-Ratón
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911, Leganés, Madrid, Spain
| | - Enrique Velasco
- Departamento de Física Teórica de la Materia Condensada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Gustavo Bautista-Carbajal
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, 09340, México, Distrito Federal, Mexico and Academia de Matemáticas, Universidad Autónoma de la Ciudad de México, 07160, México, D. F., Mexico
| | - Gerardo Odriozola
- Area de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, 02200 México, D. F., Mexico.
| |
Collapse
|
30
|
Xu WS, Duan X, Sun ZY, An LJ. Glass formation in a mixture of hard disks and hard ellipses. J Chem Phys 2015; 142:224506. [DOI: 10.1063/1.4922379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wen-Sheng Xu
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Li-Jia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
31
|
Müller T, de las Heras D, Rehberg I, Huang K. Ordering in granular-rod monolayers driven far from thermodynamic equilibrium. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062207. [PMID: 26172705 DOI: 10.1103/physreve.91.062207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 06/04/2023]
Abstract
The orientational order in vertically agitated granular-rod monolayers is investigated experimentally and compared quantitatively with equilibrium Monte Carlo simulations and density functional theory. At sufficiently high number density, short rods form a tetratic state and long rods form a uniaxial nematic state. The length-to-width ratio at which the order changes from tetratic to uniaxial is around 7.3 in both experiments and simulations. This agreement illustrates the universal aspects of the ordering of rod-shaped particles across equilibrium and nonequilibrium systems. Moreover, the assembly of granular rods into ordered states is found to be independent of the agitation frequency and strength, suggesting that the detailed nature of energy injection into such a nonequilibrium system does not play a crucial role.
Collapse
Affiliation(s)
- Thomas Müller
- Experimentalphysik V, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | - Ingo Rehberg
- Experimentalphysik V, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Kai Huang
- Experimentalphysik V, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
32
|
Geigenfeind T, Rosenzweig S, Schmidt M, de las Heras D. Confinement of two-dimensional rods in slit pores and square cavities. J Chem Phys 2015; 142:174701. [DOI: 10.1063/1.4919307] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
33
|
Dijkstra M. Entropy-Driven Phase Transitions in Colloids: From spheres to anisotropic particles. ADVANCES IN CHEMICAL PHYSICS 2014. [DOI: 10.1002/9781118949702.ch2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Mederos L, Velasco E, Martínez-Ratón Y. Hard-body models of bulk liquid crystals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:463101. [PMID: 25335432 DOI: 10.1088/0953-8984/26/46/463101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hard models for particle interactions have played a crucial role in the understanding of the structure of condensed matter. In particular, they help to explain the formation of oriented phases in liquids made of anisotropic molecules or colloidal particles and continue to be of great interest in the formulation of theories for liquids in bulk, near interfaces and in biophysical environments. Hard models of anisotropic particles give rise to complex phase diagrams, including uniaxial and biaxial nematic phases, discotic phases and spatially ordered phases such as smectic, columnar or crystal. Also, their mixtures exhibit additional interesting behaviours where demixing competes with orientational order. Here we review the different models of hard particles used in the theory of bulk anisotropic liquids, leaving aside interfacial properties and discuss the associated theoretical approaches and computer simulations, focusing on applications in equilibrium situations. The latter include one-component bulk fluids, mixtures and polydisperse fluids, both in two and three dimensions, and emphasis is put on liquid-crystal phase transitions and complex phase behaviour in general.
Collapse
Affiliation(s)
- Luis Mederos
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz, 3, E-28049 Madrid, Spain
| | | | | |
Collapse
|
35
|
Günther F, Frijters S, Harting J. Timescales of emulsion formation caused by anisotropic particles. SOFT MATTER 2014; 10:4977-89. [PMID: 24888563 DOI: 10.1039/c3sm53186d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Particle stabilized emulsions have received much interest in the recent past, but our understanding of the dynamics of emulsion formation is still limited. For simple spherical particles, the time dependent growth of fluid domains is dominated by the formation of droplets, particle adsorption and coalescence of droplets (Ostwald ripening), which eventually can be almost fully blocked due to the presence of the particles. Ellipsoidal particles are known to be more efficient stabilizers of fluid interfaces than spherical particles and their anisotropic shape and the related additional rotational degrees of freedom have an impact on the dynamics of emulsion formation. In this paper, we investigate this point by means of simple model systems consisting of a single ellipsoidal particle or a particle ensemble at a flat interface as well as a particle ensemble at a spherical interface. By applying combined multicomponent lattice Boltzmann and molecular dynamics simulations we demonstrate that the anisotropic shape of ellipsoidal particles causes two additional timescales to be of relevance in the dynamics of emulsion formation: a relatively short timescale can be attributed to the adsorption of single particles and the involved rotation of particles towards the interface. As soon as the interface is jammed, however, capillary interactions between the particles cause a local reordering on very long timescales leading to a continuous change in the interface configuration and increase of the interfacial area. This effect can be utilized to counteract the thermodynamic instability of particle stabilized emulsions and thus offers the possibility to produce emulsions with exceptional stability.
Collapse
Affiliation(s)
- Florian Günther
- Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, NL-5600MB Eindhoven, The Netherlands.
| | | | | |
Collapse
|
36
|
Martínez-Ratón Y, Varga S, Velasco E. Phase behaviour of liquid-crystal monolayers of rod-like and plate-like particles. J Chem Phys 2014; 140:204906. [DOI: 10.1063/1.4876719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Bautista-Carbajal G, Odriozola G. Phase diagram of two-dimensional hard ellipses. J Chem Phys 2014; 140:204502. [DOI: 10.1063/1.4878411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Luo AM, Sagis LMC, Ilg P. The Landau free energy of hard ellipses obtained from microscopic simulations. J Chem Phys 2014; 140:124901. [DOI: 10.1063/1.4868988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
de Las Heras D, Velasco E. Domain walls in two-dimensional nematics confined in a small circular cavity. SOFT MATTER 2014; 10:1758-1766. [PMID: 24652373 DOI: 10.1039/c3sm52650j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Using Monte Carlo simulation, we study a fluid of two-dimensional hard rods inside a small circular cavity bounded by a hard wall, from the dilute regime to the high-density, layering regime. Both planar and homeotropic anchoring of the nematic director can be induced at the walls through a free-energy penalty. The circular geometry creates frustration in the nematic phase and a polar-symmetry configuration with a distorted director field plus two +1/2 disclinations is created. At higher densities, a quasi-uniform structure is observed with a (minimal) director distortion which is relaxed via the formation of orientational domain walls. This novel structure is not predicted by elasticity theory and is similar to the step-like structures observed in three-dimensional hybrid slit pores. We speculate that the formation of domain walls is a general mechanism to relax elastic stresses under the conditions of strong surface anchoring and severe spatial confinement.
Collapse
Affiliation(s)
- Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany.
| | | |
Collapse
|
40
|
Slyusarenko K, Constantin D, Davidson P. A two-dimensional nematic phase of magnetic nanorods. J Chem Phys 2014; 140:104904. [DOI: 10.1063/1.4867790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Foulaadvand ME, Yarifard M. Two-dimensional system of hard ellipses: a molecular dynamics study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052504. [PMID: 24329285 DOI: 10.1103/physreve.88.052504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Indexed: 06/03/2023]
Abstract
We have simulated the dynamics of a two-dimensional system of hard ellipses by event-oriented molecular dynamics in microcanonical NVE ensemble. Various quantities, namely longitudinal and transverse velocity auto-correlation functions, translational and rotational diffusion mean-squared displacements, pressure, intermediate self-scattering function, radial distribution function, and angular spatial correlation, have been obtained and their dependence on packing fraction is characterized. Despite absence of prominent positional ordering, the orientational degree of freedom behaves nontrivially and exhibits interesting features. Slowing down is observed in the angular part of the motion near isotropic-nematic phase transition. It is shown that above a certain packing fraction the rotational mean-squared displacement exhibits a three-stage temporal regime including a plateau. Comparison to 2D system of hard needles is made and it is shown that from positional viewpoint, the ellipse system is more ordered.
Collapse
Affiliation(s)
- M Ebrahim Foulaadvand
- Department of Physics, University of Zanjan, P.O. Box 45196-311, Zanjan, Iran and Computational Physical Sciences Research Laboratory, Department of Nano-Sciences, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Mohsen Yarifard
- Department of Physics, University of Zanjan, P.O. Box 45196-311, Zanjan, Iran
| |
Collapse
|
42
|
Han Y, Lee J, Choi SQ, Choi MC, Kim MW. Shape-induced chiral ordering in two-dimensional packing of snowmanlike dimeric particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042202. [PMID: 24229162 DOI: 10.1103/physreve.88.042202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Indexed: 06/02/2023]
Abstract
Understanding the distinctive phase behaviors in random packing due to particle shapes is an important issue in condensed matter physics. In this paper, we investigate the random packing structure of two-dimensional (2D) snowmen via wax-snowman packing experiments and Brownian dynamics simulations. Both experiments and simulations reveal that neighboring snowmen have a strong short-range orientational correlation and consequently locally form particular conformations. A chiral conformation is dominant for high area fractions near the jamming condition (φ>0.8), and the proportion of the chiral conformation increases with γ. We also found that the attractive interaction does not have a significant impact on the results. The geometry of chirally ordered snowmen causes a mismatch with 2D crystalline symmetries and thus inhibits the development of long-range spatial order, despite the strong orientational correlation between neighbors.
Collapse
Affiliation(s)
- Youngkyu Han
- Department of Physics, KAIST, Daejeon 305-701, Korea
| | | | | | | | | |
Collapse
|
43
|
de las Heras D, Martínez-Ratón Y, Mederos L, Velasco E. Two-dimensional nematics in bulk and confined geometries. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2012.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Xu WS, Li YW, Sun ZY, An LJ. Hard ellipses: Equation of state, structure, and self-diffusion. J Chem Phys 2013; 139:024501. [DOI: 10.1063/1.4812361] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Mishra CK, Rangarajan A, Ganapathy R. Two-step glass transition induced by attractive interactions in quasi-two-dimensional suspensions of ellipsoidal particles. PHYSICAL REVIEW LETTERS 2013; 110:188301. [PMID: 23683247 DOI: 10.1103/physrevlett.110.188301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Indexed: 06/02/2023]
Abstract
We study experimentally the glass transition dynamics in quasi-two-dimensional suspensions of colloidal ellipsoids, aspect ratio α=2.1, with repulsive as well as attractive interactions. For the purely repulsive case, we find that the orientational and translational glass transitions occur at the same area fraction. Strikingly, for intermediate depletion attraction strengths, we find that the orientational glass transition precedes the translational one. By quantifying structure and dynamics, we show that quasi-long-range ordering is promoted at these attraction strengths, which subsequently results in a two-step glass transition. Most interestingly, within experimental certainty, we observe reentrant glass dynamics only in the translational degrees of freedom.
Collapse
Affiliation(s)
- Chandan K Mishra
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| | | | | |
Collapse
|
46
|
Qi W, de Graaf J, Qiao F, Marras S, Manna L, Dijkstra M. Phase diagram of octapod-shaped nanocrystals in a quasi-two-dimensional planar geometry. J Chem Phys 2013; 138:154504. [DOI: 10.1063/1.4799269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
47
|
Qi W, de Graaf J, Qiao F, Marras S, Manna L, Dijkstra M. Ordered two-dimensional superstructures of colloidal octapod-shaped nanocrystals on flat substrates. NANO LETTERS 2012; 12:5299-5303. [PMID: 22938387 DOI: 10.1021/nl302620j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We studied crystal structures in a monolayer consisting of anisotropic branched colloidal (nano)octapods. Experimentally, octapods were observed to form a monolayer on a substrate with a square-lattice crystal structure by drop-casting and fast evaporation of solvent. The experimental results were analyzed by Monte Carlo simulations using a hard octapod model consisting of four interpenetrating spherocylinders. We confirmed by means of free-energy calculations that crystal structures with a (binary-lattice) square morphology are indeed thermodynamically stable at high densities. The effect of the pod length-to-diameter ratio on the crystal structures was also considered and we used this to constructed the phase diagram for these hard octapods. In addition to the (binary-lattice) square crystal phase, a rhombic crystal and a hexagonal plastic-crystal (rotator) phase were obtained. Our phase diagram may prove instrumental in guiding future experimental studies.
Collapse
Affiliation(s)
- Weikai Qi
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Davatolhagh S, Foroozan S. Structural origin of enhanced translational diffusion in two-dimensional hard-ellipse fluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061707. [PMID: 23005114 DOI: 10.1103/physreve.85.061707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Indexed: 06/01/2023]
Abstract
The static correlations and diffusive dynamics of hard ellipses are investigated in the isotropic and nematic phases by Monte Carlo simulation. In particular, an enhancement of the translational diffusion with respect to the rotational diffusion is observed at an onset concentration φ_{on} within the isotropic phase, which is explained in terms of the formation of unstable nematic-like regions with a mean lifetime that exceeds the characteristic time of diffusion at φ_{on}. The relevance to the onset of spatially heterogeneous dynamics in supercooled glass-forming liquids is discussed.
Collapse
Affiliation(s)
- S Davatolhagh
- Department of Physics, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | | |
Collapse
|
49
|
A single-site anisotropic soft-core model for the study of phase behavior of soft rodlike particles. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4333-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Zheng Z, Wang F, Han Y. Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids. PHYSICAL REVIEW LETTERS 2011; 107:065702. [PMID: 21902341 DOI: 10.1103/physrevlett.107.065702] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Indexed: 05/31/2023]
Abstract
We observed a two-step glass transition in monolayers of colloidal ellipsoids by video microscopy. The glass transition in the rotational degree of freedom was at a lower density than that in the translational degree of freedom. Between the two transitions, ellipsoids formed an orientational glass. Approaching the respective glass transitions, the rotational and translational fastest-moving particles in the supercooled liquid moved cooperatively and formed clusters with power-law size distributions. The mean cluster sizes diverge in power law as they approach the glass transitions. The clusters of translational and rotational fastest-moving ellipsoids formed mainly within pseudonematic domains and around the domain boundaries, respectively.
Collapse
Affiliation(s)
- Zhongyu Zheng
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | |
Collapse
|