Patrón A, Sánchez-Rey B, Prados A. Strong nonexponential relaxation and memory effects in a fluid with nonlinear drag.
Phys Rev E 2022;
104:064127. [PMID:
35030916 DOI:
10.1103/physreve.104.064127]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/24/2021] [Indexed: 11/07/2022]
Abstract
We analyze the dynamical evolution of a fluid with nonlinear drag, for which binary collisions are elastic, described at the kinetic level by the Enskog-Fokker-Planck equation. This model system, rooted in the theory of nonlinear Brownian motion, displays a really complex behavior when quenched to low temperatures. Its glassy response is controlled by a long-lived nonequilibrium state, independent of the degree of nonlinearity and also of the Brownian-Brownian collisions rate. The latter property entails that this behavior persists in the collisionless case, where the fluid is described by the nonlinear Fokker-Planck equation. The observed response, which includes nonexponential, algebraic, relaxation, and strong memory effects, presents scaling properties: the time evolution of the temperature-for both relaxation and memory effects-falls onto a master curve, regardless of the details of the experiment. To account for the observed behavior in simulations, it is necessary to develop an extended Sonine approximation for the kinetic equation-which considers not only the fourth cumulant but also the sixth one.
Collapse