Caballo A, Huits AJTM, Parker DH, Horke DA. Disentangling Multiphoton Ionization and Dissociation Channels in Molecular Oxygen Using Photoelectron-Photoion Coincidence Imaging.
J Phys Chem A 2023;
127:92-98. [PMID:
36542330 PMCID:
PMC9841573 DOI:
10.1021/acs.jpca.2c06707]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Multiphoton excitation of molecular oxygen in the 392-408 nm region is studied using a tunable femtosecond laser coupled with a double velocity map imaging photoelectron-photoion coincidence spectrometer. The laser intensity is held at ≤∼1 TW/cm2 to ensure excitation in the perturbative regime, where the possibility of resonance enhanced multiphoton ionization (REMPI) can be investigated. O2+ production is found to be resonance enhanced around 400 nm via three-photon excitation to the e'3Δu(v = 0) state, similar to results from REMPI studies using nanosecond dye lasers. O+ production reaches 7% of the total ion yield around 405 nm due to two processes: autoionization following five-photon excitation of O2, producing O2+(X(v)) in a wide range of vibrational states followed by two- or three-photon dissociation, or six-photon excitation to a superexcited O2** state followed by neutral dissociation and subsequent ionization of the electronically excited O atom. Coincidence detection is shown to be crucial in identifying these competing pathways.
Collapse