1
|
Song Y, Zhang N, Lei Y, Guo Y, Liu W. QUEST#4X: An Extension of QUEST#4 for Benchmarking Multireference Wave Function Methods. J Chem Theory Comput 2025; 21:1119-1135. [PMID: 39874298 DOI: 10.1021/acs.jctc.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Given a number of data sets for evaluating the performance of single reference methods for the low-lying excited states of closed-shell molecules, a comprehensive data set for assessing the performance of multireference methods for the low-lying excited states of open-shell systems is still lacking. For this reason, we propose an extension (QUEST#4X) of the radical subset of QUEST#4 (J. Chem. Theory Comput. 2020, 16, 3720) to cover 110 doublet and 39 quartet excited states. Near-exact results obtained by iterative configuration interaction with selection and second-order perturbation correction (iCIPT2) are taken as benchmark to calibrate static-dynamic-static configuration interaction (SDSCI) and static-dynamic-static second-order perturbation theory (SDSPT2), which are minimal MRCI and CI-like perturbation theory, respectively. It is found that SDSCI is very close in accuracy to internally contracted multireference configuration interaction with singles and doubles (ic-MRCISD), although its computational cost is just that of one iteration of the latter. Unlike most variants of MRPT2, SDSPT2 treats single and multiple states in the same way and performs similarly to multistate n-electron valence second-order perturbation theory (MS-NEVPT2). These findings put SDSCI and SDSPT2 on a firm basis.
Collapse
Affiliation(s)
- Yangyang Song
- Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| | - Ning Zhang
- Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Shaanxi key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, P. R. China
| | - Yang Guo
- School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Zhang Y, Jiang B, Guo H. SchrödingerNet: A Universal Neural Network Solver for the Schrödinger Equation. J Chem Theory Comput 2025; 21:670-677. [PMID: 39772624 DOI: 10.1021/acs.jctc.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Recent advances in machine learning have facilitated numerically accurate solution of the electronic Schrödinger equation (SE) by integrating various neural network (NN)-based wave function ansatzes with variational Monte Carlo methods. Nevertheless, such NN-based methods are all based on the Born-Oppenheimer approximation (BOA) and require computationally expensive training for each nuclear configuration. In this work, we propose a novel NN architecture, SchrödingerNet, to solve the full electronic-nuclear SE by defining a loss function designed to equalize local energies across the system. This approach is based on a translationally, rotationally and permutationally symmetry-adapted total wave function ansatz that includes both nuclear and electronic coordinates. This strategy not only allows for an efficient and accurate generation of a continuous potential energy surface at any geometry within the well-sampled nuclear configuration space, but also incorporates non-BOA corrections, through a single training process. Comparison with benchmarks of atomic and small molecular systems demonstrates its accuracy and efficiency.
Collapse
Affiliation(s)
- Yaolong Zhang
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Bin Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
3
|
Mansoori Kermani M, Truhlar DG. Creating Benchmarks for Lithium Clusters and Using Them for Testing and Validation. J Chem Theory Comput 2024; 20:10491-10506. [PMID: 39561291 DOI: 10.1021/acs.jctc.4c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Metal clusters often have a variety of possible structures, and they are calculated by a wide range of methods; however, fully converged benchmarks on the energy differences of structures and spin states that could be used to test or validate these methods are rare or nonexistent. Small lithium clusters are good candidates for such benchmarks to test different methods against well-converged relative energetics for qualitatively different structures because they have a small number of electrons. The present study provides fully converged benchmarks for Li4 and Li5 clusters and uses them to test a diverse group of approximation methods. To create a dataset of well-converged single-point energies for Li4 and Li5, stationary structures were optimized by Kohn-Sham density functional theory (KS-DFT) and then single-point energy calculations at these structures were carried out by two quite different beyond-CCSD(T) methods. To test other methods single-point energy calculations at these structures were carried out by KS-DFT, Mo̷ller-Plesset (MP) theory, coupled cluster (CC) theory, five composite methods (Gaussian-4, the Wuhan-Minnesota (WM) composite method, and the W2X, W3X, and W3X-L composite methods of Radom and co-workers), multiconfiguration pair-density functional theory (MC-PDFT), complete active space second-order perturbation theory (CASPT2), and n-electron valence state second-order perturbation theory (NEVPT2). Our results show that rhomboid and trigonal bipyramid (TBP) geometries are the most stable structures for Li4 and Li5, respectively. Using the W3X-L method to obtain our best estimates, the mean unsigned deviations were calculated for other methods for several structures and spin states of both Li4 and Li5. Binding energies and M diagnostics were calculated for all structures. The data in this paper are valuable for assessing the reliability of current electronic structure theories and also developing new density functionals and machine learned models.
Collapse
Affiliation(s)
- Maryam Mansoori Kermani
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
4
|
Arbuznikov AV, Wodyński A, Kaupp M. Suppressing the gauge problem in local hybrid functionals without a calibration function: The choice of local mixing function. J Chem Phys 2024; 161:164104. [PMID: 39440756 DOI: 10.1063/5.0233312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Modern functionals based on the exact-exchange (EXX) energy density like local hybrid functionals (LHs) or range-separated LHs have recently received additional attention due to their advantages over established functionals when it comes to the local balance between self-interaction errors and static-correlation errors. A possible theoretical drawback of such functionals over the years has been the so-called gauge problem due to the inherent ambiguity of exchange-energy densities. Modern LHs like LH20t or more sophisticated functionals based thereon have been constructed using suitably optimized calibration functions (CFs) to minimize the mismatch of the semi-local and EXX energy densities. Here, we show that the unphysical contributions arising from the gauge problem may also be reduced significantly without a CF by tailoring the position-dependence of the EXX admixture (local mixing function, LMF) in a way to suppress spurious positive energy-density contributions locally in space. This is achieved by building the so-called x-LMFs upon the ratio between EXX and semi-local exchange-energy densities. The resulting LH24x functional provides similar accuracy, e.g., for the GMTKN55 test suite, as LH20t, but without introduction of a CF! We provide detailed comparative analyses of integrated energies and spatially resolved energy densities. The good performances of LHs for chemically relevant energy differences are to some extent due to the core nature of unphysical artifacts that cancel out efficiently.
Collapse
Affiliation(s)
- Alexei V Arbuznikov
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Artur Wodyński
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
5
|
Hemmati R, Mostafanejad M, Ortiz JV. Numerical analysis of the complete active-space extended Koopmans's theorem. J Chem Phys 2024; 161:094101. [PMID: 39225538 DOI: 10.1063/5.0226057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
We investigate the numerical accuracy of the extended Koopmans's theorem (EKT) in reproducing the full configuration interaction (FCI) and complete active-space configuration interaction (CAS-CI) ionization energies (IEs) of atomic and molecular systems calculated as the difference between the energies of N and (N - 1) electron states. In particular, we study the convergence of the EKT IEs to their exact values as the basis set and the active space sizes vary. We find that the first FCI EKT IEs approach their exact counterparts as the basis set size increases. However, increasing the basis set or the active space sizes does not always lead to more accurate CAS-CI EKT IEs. Our investigation supports the observation of Davidson et al. [J. Chem. Phys. 155, 051102 (2021)] that the FCI EKT IEs can be systematically improved with arbitrary numerical accuracy by supplementing the basis set with diffuse functions of appropriate symmetry, which allow the detached electron to travel far away from the reference system. By changing the exponent and the center of the diffuse functions, our results delineate a complex pattern for the CAS-CI EKT IE of LiH, which can be important for the spectroscopic studies of small molecules.
Collapse
Affiliation(s)
- Reza Hemmati
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
- Molecular Sciences Software Institute, Blacksburg, Virginia 24060, USA
| | - Mohammad Mostafanejad
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
- Molecular Sciences Software Institute, Blacksburg, Virginia 24060, USA
| | - J V Ortiz
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| |
Collapse
|
6
|
Ammar A, Scemama A, Loos PF, Giner E. Compactification of determinant expansions via transcorrelation. J Chem Phys 2024; 161:084104. [PMID: 39171701 DOI: 10.1063/5.0217650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Although selected configuration interaction (SCI) algorithms can tackle much larger Hilbert spaces than the conventional full CI method, the scaling of their computational cost with respect to the system size remains inherently exponential. In addition, inaccuracies in describing the correlation hole at small interelectronic distances lead to the slow convergence of the electronic energy relative to the size of the one-electron basis set. To alleviate these effects, we show that the non-Hermitian, transcorrelated (TC) version of SCI significantly compactifies the determinant space, allowing us to reach a given accuracy with a much smaller number of determinants. Furthermore, we note a significant acceleration in the convergence of the TC-SCI energy as the basis set size increases. The extent of this compression and the energy convergence rate are closely linked to the accuracy of the correlation factor used for the similarity transformation of the Coulombic Hamiltonian. Our systematic investigation of small molecular systems in increasingly large basis sets illustrates the magnitude of these effects.
Collapse
Affiliation(s)
- Abdallah Ammar
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuel Giner
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| |
Collapse
|
7
|
Wang M, Zhou Y, Wang H. Performance assessment of the effective core potentials under the fermionic neural network: First and second row elements. J Chem Phys 2024; 160:204109. [PMID: 38785290 DOI: 10.1063/5.0207853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
The rapid development of deep learning techniques has driven the emergence of a neural network-based variational Monte Carlo (VMC) method (referred to as FermiNet), which has manifested high accuracy and strong predictive power in the electronic structure calculations of atoms, molecules, and some periodic systems. Recently, the implementation of the effective core potential (ECP) scheme has further facilitated more efficient calculations in practice. However, there is still a lack of comprehensive assessments of the ECP's performance under the FermiNet. In this work, we set sail to fill this gap by conducting extensive tests on the first two row elements regarding their atomic, spectral, and molecular properties. Our major finding is that, in general, the qualities of ECPs have been correctly reflected under FermiNet. Two recently built ECP tables, namely, correlation consistent ECP (ccECP) and energy consistent correlated electron pseudopotential (eCEPP), seem to prevail in terms of overall performance. In particular, ccECP performs slightly better on spectral precision and covers more elements, while eCEPP is more systematically built from both shape and energy consistency and better treats the core polarization. On the other hand, the high accuracy of the all-electron calculations is hindered by the absence of relativistic effects as well as the numerical instabilities in some heavier elements. Finally, with further in-depth discussions, we generate possible directions for developing and improving FermiNet in the near future.
Collapse
Affiliation(s)
- Mengsa Wang
- Graduate School of China Academy of Engineering Physics, Beijing 100088, China
- National Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Yuzhi Zhou
- CAEP Software Center for High Performance Numerical Simulation, Beijing 100088, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Han Wang
- National Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
- HEDPS, CAPT, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
8
|
Lévêque-Simon K, Camper A, Taïeb R, Caillat J, Lévêque C, Giner E. Production of positronium chloride: A study of the charge exchange reaction between Ps and Cl. J Chem Phys 2024; 160:104301. [PMID: 38456531 DOI: 10.1063/5.0182498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/17/2024] [Indexed: 03/09/2024] Open
Abstract
We present cross sections for the formation of positronium chloride (PsCl) in its ground state from the charge exchange between positronium (Ps) and chloride (Cl-) in the range of 10 meV-100 eV Ps energy. We have used theoretical models based on the first Born approximation in its three-body formulation. We simulated the collisions between Ps and Cl- using ab initio binding energies and positronic wave functions at both the mean-field and correlated levels extrapolated to the complete basis set limit. The accuracy of these ab initio data was benchmarked on the PsF system with the existing highly accurate results, including the very recent quantum Monte Carlo results. We have investigated Ps excited states up to n = 4. The results suggest that the channel Ps(n = 2) is of particular interest for the production of PsCl in the ground state and shows that an accurate treatment of correlation effects (i.e., electron-electron and electron-positron correlations) leads to a significant change in the magnitude of the PsCl production cross section with respect to the mean-field level.
Collapse
Affiliation(s)
- K Lévêque-Simon
- Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université and CNRS, F-75005 Paris, France
| | - A Camper
- Department of Physics, University of Oslo, Sem Saelandsvei 24, 0371 Oslo, Norway
| | - R Taïeb
- Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université and CNRS, F-75005 Paris, France
| | - J Caillat
- Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université and CNRS, F-75005 Paris, France
| | - C Lévêque
- Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université and CNRS, F-75005 Paris, France
| | - E Giner
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| |
Collapse
|
9
|
Chen Z, Yang W. Development of a machine learning finite-range nonlocal density functional. J Chem Phys 2024; 160:014105. [PMID: 38180254 DOI: 10.1063/5.0179149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Kohn-Sham density functional theory has been the most popular method in electronic structure calculations. To fulfill the increasing accuracy requirements, new approximate functionals are needed to address key issues in existing approximations. It is well known that nonlocal components are crucial. Current nonlocal functionals mostly require orbital dependence such as in Hartree-Fock exchange and many-body perturbation correlation energy, which, however, leads to higher computational costs. Deviating from this pathway, we describe functional nonlocality in a new approach. By partitioning the total density to atom-centered local densities, a many-body expansion is proposed. This many-body expansion can be truncated at one-body contributions, if a base functional is used and an energy correction is approximated. The contribution from each atom-centered local density is a single finite-range nonlocal functional that is universal for all atoms. We then use machine learning to develop this universal atom-centered functional. Parameters in this functional are determined by fitting to data that are produced by high-level theories. Extensive tests on several different test sets, which include reaction energies, reaction barrier heights, and non-covalent interaction energies, show that the new functional, with only the density as the basic variable, can produce results comparable to the best-performing double-hybrid functionals, (for example, for the thermochemistry test set selected from the GMTKN55 database, BLYP based machine learning functional gives a weighted total mean absolute deviations of 3.33 kcal/mol, while DSD-BLYP-D3(BJ) gives 3.28 kcal/mol) with a lower computational cost. This opens a new pathway to nonlocal functional development and applications.
Collapse
Affiliation(s)
- Zehua Chen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Weitao Yang
- Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
10
|
Constantin LA, Jana S, Śmiga S, Della Sala F. Adiabatic connection interaction strength interpolation method made accurate for the uniform electron gas. J Chem Phys 2023; 159:244111. [PMID: 38149733 DOI: 10.1063/5.0178800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
The adiabatic connection interaction strength interpolation (ISI)-like method provides a high-level expression for the correlation energy, being, in principle, exact not only in the weak-interaction limit, where it recovers the second-order Görling-Levy perturbation term, but also in the strong-interaction limit that is described by the strictly correlated electron approach. In this work, we construct a genISI functional made accurate for the uniform electron gas, a solid-state physics paradigm that is a very difficult test for ISI-like correlation functionals. We assess the genISI functional for various jellium spheres with the number of electrons Z ≤ 912 and for the non-relativistic noble atoms with Z ≤ 290. For the jellium clusters, the genISI is remarkably accurate, while for the noble atoms, it shows a good performance, similar to other ISI-like methods. Then, the genISI functional can open the path using the ISI-like method in solid-state calculations.
Collapse
Affiliation(s)
- Lucian A Constantin
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
| | - Subrata Jana
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Szymon Śmiga
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
| | - Fabio Della Sala
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano (LE), Italy
| |
Collapse
|
11
|
Jana S, Śmiga S, Constantin LA, Samal P. Semilocal Meta-GGA Exchange-Correlation Approximation from Adiabatic Connection Formalism: Extent and Limitations. J Phys Chem A 2023; 127:8685-8697. [PMID: 37811903 PMCID: PMC10591512 DOI: 10.1021/acs.jpca.3c03976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/24/2023] [Indexed: 10/10/2023]
Abstract
The incorporation of a strong-interaction regime within the approximate semilocal exchange-correlation functionals still remains a very challenging task for density functional theory. One of the promising attempts in this direction is the recently proposed adiabatic connection semilocal correlation (ACSC) approach [Constantin, L. A.; Phys. Rev. B 2019, 99, 085117] allowing one to construct the correlation energy functionals by interpolation of the high and low-density limits for the given semilocal approximation. The current study extends the ACSC method to the meta-generalized gradient approximations (meta-GGA) level of theory, providing some new insights in this context. As an example, we construct the correlation energy functional on the basis of the high- and low-density limits of the Tao-Perdew-Staroverov-Scuseria (TPSS) functional. Arose in this way, the TPSS-ACSC functional is one-electron self-interaction free and accurate for the strictly correlated and quasi-two-dimensional regimes. Based on simple examples, we show the advantages and disadvantages of ACSC semilocal functionals and provide some new guidelines for future developments in this context.
Collapse
Affiliation(s)
- Subrata Jana
- Department
of Chemistry & Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Szymon Śmiga
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzikadzka 5, 87-100 Toruń, Poland
| | - Lucian A. Constantin
- Istituto
di Nanoscienze, Consiglio Nazionale delle
Ricerche CNR-NANO, 41125 Modena, Italy
| | - Prasanjit Samal
- School
of Physical Sciences, National Institute of Science Education and
Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
12
|
Nakashima H, Nakatsuji H. Potential Energy Curves of the Low-Lying Five 1Σ + and 1Π States of a CH + Molecule Based on the Free Complement - Local Schrödinger Equation Theory and the Chemical Formula Theory. J Chem Theory Comput 2023; 19:6733-6744. [PMID: 37706317 DOI: 10.1021/acs.jctc.3c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The potential energy curves (PECs) of the low-lying five 1Σ+ and 1Π states (X1Σ+, C1Σ+, 31Σ+, A1Π, and D1Π states) of a CH+ molecule, an important interstellar molecule, were calculated by the free complement (FC) - local Schrödinger equation (LSE) theory with the direct local sampling scheme. The FC wave functions were constructed based on the chemical formula theory (CFT), whose local characters correspond to the covalent dissociations: C+(2P°(s2p))) + H(2S) of the X1Σ+ and A1Π states and the ionic dissociations: C(1D(s2p2)) + H+ of the C1Σ+ and D1Π states. All the calculated PECs were obtained with satisfying the chemical accuracy, i.e., error less than 1 kcal/mol, as absolute total energy of the Schrödinger equation without any energy shift. The spectroscopic data calculated from the PECs agreed well with both experimental and other accurate theoretical references. We also analyzed the wave functions using the inverse overlap weights proposed by Gallup et al. with the CFT configurations. For the X1Σ+ and A1Π states, the covalent C+(sp2) and C+(p3) configurations played important roles for bond formation. In the small internuclear distances of the C1Σ+, D1Π, and 31Σ+ states, the covalent character was also dominant as a result of the electron charge transfer from C to H+. Thus, the present FC-LSE results not only are accurate but also can provide chemical understanding according to the CFT.
Collapse
Affiliation(s)
- Hiroyuki Nakashima
- Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawaramachi, Sakyo-ku, Kyoto 606-8305, Japan
| | - Hiroshi Nakatsuji
- Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawaramachi, Sakyo-ku, Kyoto 606-8305, Japan
| |
Collapse
|
13
|
Lee N, Thom AJW. Studies on the Transcorrelated Method. J Chem Theory Comput 2023; 19:5743-5759. [PMID: 37640393 PMCID: PMC10500994 DOI: 10.1021/acs.jctc.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 08/31/2023]
Abstract
We investigate the possibility of using a transcorrelated (TC) Hamiltonian to describe electron correlation. A method to obtain TC wavefunctions was developed based on the mathematical framework of the bi-variational principle. This involves the construction of an effective TC Hamiltonian matrix, which can be solved in a self-consistent manner. This was optimized using a method we call second-order-moment minimization and demonstrate that it is possible to obtain highly accurate energies for some closed-shell atoms and helium-like ions. The effects of certain correlator terms on the description of electron-electron and electron-nuclear cusps were also examined graphically, and some TC wavefunctions were compared against near-exact Hylleraas wavefunctions.
Collapse
Affiliation(s)
- Nicholas Lee
- Department
of Chemistry, Physical and Theoretical Chemistry
Laboratory, South Parks
Road, Oxford OX1 3QZ, U.K.
| | - Alex J. W. Thom
- Yusuf
Hamied Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
14
|
Ren W, Fu W, Wu X, Chen J. Towards the ground state of molecules via diffusion Monte Carlo on neural networks. Nat Commun 2023; 14:1860. [PMID: 37012248 PMCID: PMC10070323 DOI: 10.1038/s41467-023-37609-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Diffusion Monte Carlo (DMC) based on fixed-node approximation has enjoyed significant developments in the past decades and become one of the go-to methods when accurate ground state energy of molecules and materials is needed. However, the inaccurate nodal structure hinders the application of DMC for more challenging electronic correlation problems. In this work, we apply the neural-network based trial wavefunction in fixed-node DMC, which allows accurate calculations of a broad range of atomic and molecular systems of different electronic characteristics. Our method is superior in both accuracy and efficiency compared to state-of-the-art neural network methods using variational Monte Carlo (VMC). We also introduce an extrapolation scheme based on the empirical linearity between VMC and DMC energies, and significantly improve our binding energy calculation. Overall, this computational framework provides a benchmark for accurate solutions of correlated electronic wavefunction and also sheds light on the chemical understanding of molecules.
Collapse
Affiliation(s)
- Weiluo Ren
- ByteDance Research, Zhonghang Plaza, No. 43, North 3rd Ring West Road, Haidian District, Beijing, People's Republic of China.
| | - Weizhong Fu
- ByteDance Research, Zhonghang Plaza, No. 43, North 3rd Ring West Road, Haidian District, Beijing, People's Republic of China
- School of Physics, Peking University, 100871, Beijing, People's Republic of China
| | - Xiaojie Wu
- ByteDance Research, Zhonghang Plaza, No. 43, North 3rd Ring West Road, Haidian District, Beijing, People's Republic of China
| | - Ji Chen
- School of Physics, Peking University, 100871, Beijing, People's Republic of China.
- Interdisciplinary Institute of Light-Element Quantum Materials, Frontiers Science Center for Nano-Optoelectronics, Peking University, 100871, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Roy PO, Cuierrier E, Ernzerhof M. Generating Exchange-Correlation Functionals with a Simplified, Self-Consistent Correlation Factor Model. J Phys Chem A 2023; 127:2026-2033. [PMID: 36802604 DOI: 10.1021/acs.jpca.2c08397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
We focus on the spherically averaged exchange-correlation hole ρXC(r, u) of density functional theory, which describes the reduction in the electron density at a distance u due to the reference electron localized at position r. The correlation factor (CF) approach, where the model exchange hole ρXmodel(r, u) is multiplied by a CF (fC(r, u)) to yield an approximation to the exchange-correlation hole ρXC(r, u) = fC(r, u) ρXmodel(r, u), has proven to be a powerful tool for the development of new approximations. One of the remaining challenges within the CF approach is the self-consistent implementation of the resulting functionals. To address this issue, here we propose a simplification of the previously developed CFs such that self-consistent implementations become feasible. As an illustration of the simplified CF model, we develop a new meta-GGA functional, and using only a minimum of empiricism, we provide an easy derivation of an approximation that is of an accuracy similar to more involved meta-GGA functionals.
Collapse
Affiliation(s)
- Pierre-Olivier Roy
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Etienne Cuierrier
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Matthias Ernzerhof
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
16
|
Yamamoto Y, Baruah T, Chang PH, Romero S, Zope RR. Self-consistent implementation of locally scaled self-interaction-correction method. J Chem Phys 2023; 158:064114. [PMID: 36792502 DOI: 10.1063/5.0130436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recently proposed local self-interaction correction (LSIC) method [Zope et al., J. Chem. Phys. 151, 214108 (2019)] is a one-electron self-interaction-correction (SIC) method that uses an iso-orbital indicator to apply the SIC at each point in space by scaling the exchange-correlation and Coulomb energy densities. The LSIC method is exact for the one-electron densities, also recovers the uniform electron gas limit of the uncorrected density functional approximation, and reduces to the well-known Perdew-Zunger SIC (PZSIC) method as a special case. This article presents the self-consistent implementation of the LSIC method using the ratio of Weizsäcker and Kohn-Sham kinetic energy densities as an iso-orbital indicator. The atomic forces as well as the forces on the Fermi-Löwdin orbitals are also implemented for the LSIC energy functional. Results show that LSIC with the simplest local spin density functional predicts atomization energies of the AE6 dataset better than some of the most widely used generalized-gradient-approximation (GGA) functional [e.g., Perdew-Burke-Ernzerhof (PBE)] and barrier heights of the BH6 database better than some of the most widely used hybrid functionals (e.g., PBE0 and B3LYP). The LSIC method [a mean absolute error (MAE) of 0.008 Å] predicts bond lengths of a small set of molecules better than the PZSIC-LSDA (MAE 0.042 Å) and LSDA (0.011 Å). This work shows that accurate results can be obtained from the simplest density functional by removing the self-interaction-errors using an appropriately designed SIC method.
Collapse
Affiliation(s)
- Yoh Yamamoto
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Po-Hao Chang
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Selim Romero
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Rajendra R Zope
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
17
|
Becke AD. Density-functional theory vs density-functional fits: The best of both. J Chem Phys 2022; 157:234102. [PMID: 36550023 DOI: 10.1063/5.0128996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In a recent paper [A. D. Becke, J. Chem. Phys. 156, 214101 (2022)], we compared two Kohn-Sham density functionals based on physical modeling and theory with the best density-functional power series fits in the literature. With only a handful of physically motivated pre-factors, our functionals matched, and even slightly exceeded, the performance of the best power-series functionals on the general main group thermochemistry, kinetics, and noncovalent interactions (GMTKN55) chemical database of Goerigk et al. [Phys. Chem. Chem. Phys. 19, 32184 (2017)]. This begs the question: how much can their performance be improved by adding power-series terms of our own? We address this question in the present work. First, we describe a series expansion variable that we believe contains more local physics than any other variable considered to date. Then we undertake modest, one-dimensional fits to the GMTKN55 data with our theory-based functional corrected by power-series exchange and dynamical correlation terms. We settle on 12 power-series terms (plus six parent terms) and achieve the lowest GMTKN55 "WTMAD2" error yet reported, by a substantial margin, for a hybrid Kohn-Sham density functional. The new functional is called "B22plus."
Collapse
Affiliation(s)
- Axel D Becke
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
18
|
Sparrow ZM, Ernst BG, Quady TK, DiStasio RA. Uniting Nonempirical and Empirical Density Functional Approximation Strategies Using Constraint-Based Regularization. J Phys Chem Lett 2022; 13:6896-6904. [PMID: 35863751 DOI: 10.1021/acs.jpclett.2c00643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we present a general framework that unites the two primary strategies for constructing density functional approximations (DFAs): nonempirical (NE) constraint satisfaction and empirical (E) data-driven optimization. The proposed method employs B-splines, bell-shaped spline functions with compact support, to construct each inhomogeneity correction factor (ICF). This choice offers several distinct advantages over traditional polynomial expansions by enabling explicit enforcement of linear and nonlinear constraints as well as ICF smoothness using Tikhonov and penalized B-splines (P-splines) regularization. As proof-of-concept, we use the so-called CASE (constrained and smoothed empirical) framework to construct a constraint-satisfying and data-driven global hybrid that exhibits enhanced performance across a diverse set of chemical properties. We argue that the CASE approach can be used to generate DFAs that maintain the physical rigor and transferability of NE-DFAs while leveraging high-quality quantum-mechanical data to remove the arbitrariness of ansatz selection and improve performance.
Collapse
Affiliation(s)
- Zachary M Sparrow
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Trine K Quady
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Nakatsuji H, Nakashima H. Direct local sampling method for solving the Schrödinger equation with the free complement - local Schrödinger equation theory. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
|
21
|
Abstract
Every practical method to solve the Schrödinger equation for interacting many-particle systems introduces approximations. Such methods are therefore plagued by systematic errors. For computational chemistry, it is decisive to quantify the specific error for some system under consideration. Traditionally, the primary way for such an error assessment has been benchmarking data, usually taken from the literature. However, their transferability to a specific molecular system, and hence, the reliability of the traditional approach always remains uncertain to some degree. In this communication, we elaborate on the shortcomings of this traditional way of static benchmarking by exploiting statistical analyses using one of the largest quantum chemical benchmark sets available. We demonstrate the uncertainty of error estimates in the light of the choice of reference data selected for a benchmark study. To alleviate the issues with static benchmarks, we advocate to rely instead on a rolling and system-focused approach for rigorously quantifying the uncertainty of a quantum chemical result. Since the errors of quantum chemical methods can strongly vary across chemical space, the transferability of traditional benchmarks is limited. This can be overcome by quantifying the uncertainty of quantum chemical results in a system-focused way.![]()
Collapse
Affiliation(s)
- Thomas Weymuth
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
22
|
Dobrautz W, Cohen AJ, Alavi A, Giner E. Performance of a one-parameter correlation factor for transcorrelation: Study on a series of second row atomic and molecular systems. J Chem Phys 2022; 156:234108. [PMID: 35732534 DOI: 10.1063/5.0088981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we investigate the performance of a recently proposed transcorrelated (TC) approach based on a single-parameter correlation factor [E. Giner, J. Chem. Phys. 154, 084119 (2021)] for systems involving more than two electrons. The benefit of such an approach relies on its simplicity as efficient numerical-analytical schemes can be set up to compute the two- and three-body integrals occurring in the effective TC Hamiltonian. To obtain accurate ground state energies within a given basis set, the present TC scheme is coupled to the recently proposed TC-full configuration interaction quantum Monte Carlo method [Cohen et al., J. Chem. Phys. 151, 061101 (2019)]. We report ground state total energies on the Li-Ne series, together with their first cations, computed with increasingly large basis sets and compare to more elaborate correlation factors involving electron-electron-nucleus coordinates. Numerical results on the Li-Ne ionization potentials show that the use of the single-parameter correlation factor brings on average only a slightly lower accuracy (1.2 mH) in a triple-zeta quality basis set with respect to a more sophisticated correlation factor. However, already using a quadruple-zeta quality basis set yields results within chemical accuracy to complete basis set limit results when using this novel single-parameter correlation factor. Calculations on the H2O, CH2, and FH molecules show that a similar precision can be obtained within a triple-zeta quality basis set for the atomization energies of molecular systems.
Collapse
Affiliation(s)
- Werner Dobrautz
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Aron J Cohen
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Emmanuel Giner
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| |
Collapse
|
23
|
Cuierrier E, Roy PO, Ernzerhof M. The factorization ansatz for non-local approximations to the exchange-correlation hole. J Chem Phys 2022; 156:184110. [PMID: 35568557 DOI: 10.1063/5.0077287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Among the various types of approximations to the exchange-correlation energy (EXC), the completely non-local approach is one of the lesser explored approximation schemes. It has not yet reached the predictive power of the widely used generalized gradient approximations, meta-generalized gradient approximations, hybrids, etc. In non-local functionals pursued here, the electron density at every point in space is employed to express the exchange-correlation energy per particle ϵXC(r) at a given position r. Here, we use the non-local, spherical-averaged density ρ(r,u)=∫dΩu4πρ(r+u) as a starting point to construct approximate exchange-correlation holes through the factorization ansatz ρXC(r, u) = f(r, u)ρ(r, u). We present upper and lower bounds to the exchange energy per particle ϵX(r) in terms of ρ(r, u). The factor f(r, u) is then designed to satisfy various conditions that represent important exchange and correlation effects. We assess the resulting approximations and find that the complex, oscillatory structure of ρ(r, u) makes the construction of a corresponding f(r, u) very challenging. This conclusion, identifying the main issue of the non-local approximation, is supported by a detailed analysis of the resulting exchange-correlation holes.
Collapse
Affiliation(s)
- Etienne Cuierrier
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Pierre-Olivier Roy
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Matthias Ernzerhof
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
24
|
Charry Martinez J, Barborini M, Tkatchenko A. Correlated Wave Functions for Electron-Positron Interactions in Atoms and Molecules. J Chem Theory Comput 2022; 18:2267-2280. [PMID: 35333513 PMCID: PMC9009097 DOI: 10.1021/acs.jctc.1c01193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 11/29/2022]
Abstract
The positron, as the antiparticle of the electron, can form metastable states with atoms and molecules before its annihilation with an electron. Such metastable matter-positron complexes are stabilized by a variety of mechanisms, which can have both covalent and noncovalent character. Specifically, electron-positron binding often involves strong many-body correlation effects, posing a substantial challenge for quantum-chemical methods based on atomic orbitals. Here we propose an accurate, efficient, and transferable variational ansatz based on a combination of electron-positron geminal orbitals and a Jastrow factor that explicitly includes the electron-positron correlations in the field of the nuclei, which are optimized at the level of variational Monte Carlo (VMC). We apply this approach in combination with diffusion Monte Carlo (DMC) to calculate binding energies for a positron e+ and a positronium Ps (the pseudoatomic electron-positron pair), bound to a set of atomic systems (H-, Li+, Li, Li-, Be+, Be, B-, C-, O- and F-). For PsB, PsC, PsO, and PsF, our VMC and DMC total energies are lower than that from previous calculations; hence, we redefine the state of the art for these systems. To assess our approach for molecules, we study the potential-energy surfaces (PES) of two hydrogen anions H- mediated by a positron (e+H22-), for which we calculate accurate spectroscopic properties by using a dense interpolation of the PES. We demonstrate the reliability and transferability of our correlated wave functions for electron-positron interactions with respect to state-of-the-art calculations reported in the literature.
Collapse
Affiliation(s)
| | - Matteo Barborini
- Department of Physics and Materials
Science, University of Luxembourg, L-1511, Luxembourg
City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials
Science, University of Luxembourg, L-1511, Luxembourg
City, Luxembourg
| |
Collapse
|
25
|
Via-Nadal M, Rodríguez Mayorga MA, Ramos Cordoba E, Matito E. Natural Range Separation of the Coulomb Hole. J Chem Phys 2022; 156:184106. [DOI: 10.1063/5.0085284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A natural range separation of the Coulomb hole into two components, one of them being predominant at long interelectronic separations (hcI ) and the other at short distances (hcII ), is exhaustively analyzed throughout various examples that put forward the most relevant features of this approach and how they can be used to develop efficient ways to capture electron correlation. We show that hcI, which only depends on the first-order reduced density matrix, can be used to identify molecules with a predominant nondynamic correlation regime and differentiate between two types of nondynamic correlation, types A and B. Through the asymptotic properties of the hole components, we explain how hcI can retrieve the long-range part of electron correlation. We perform an exhaustive analysis of the hydrogen molecule in a minimal basis set, dissecting the hole contributions into spin components. We also analyze the simplest molecule presenting a dispersion interaction and how hcII helps identify it. The study of several atoms in different spin states reveals that the Coulomb hole components distinguish correlation regimes that are not apparent from the entire hole. The results of this work hold out the promise to aid in developing new electronic structure methods that efficiently capture electron correlation.
Collapse
Affiliation(s)
| | | | - Eloy Ramos Cordoba
- Theoretical Chemistry Group, Donostia International Physics Center, Spain
| | - Eduard Matito
- Donostia International Physics Center, Donostia International Physics Center, Spain
| |
Collapse
|
26
|
Brütting M, Bahmann H, Kümmel S. Hybrid functionals with local range separation: Accurate atomization energies and reaction barrier heights. J Chem Phys 2022; 156:104109. [PMID: 35291795 DOI: 10.1063/5.0082957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Range-separated hybrid approximations to the exchange-correlation density functional mix exact and semi-local exchange in a position-dependent manner. In their conventional form, the range separation is controlled by a constant parameter. Turning this constant into a density functional leads to a locally space-dependent range-separation function and thus a more powerful and flexible range-separation approach. In this work, we explore the self-consistent implementation of a local range-separated hybrid, taking into account a one-electron self-interaction correction and the behavior under uniform density scaling. We discuss different forms of the local range-separation function that depend on the electron density, its gradient, and the kinetic energy density. For test sets of atomization energies, reaction barrier heights, and total energies of atoms, we demonstrate that our best model is a clear improvement over common global range-separated hybrid functionals and can compete with density functionals that contain multiple empirical parameters. Promising results for equilibrium bond lengths, harmonic vibrational frequencies, and vertical ionization potentials further underline the potential and flexibility of our approach.
Collapse
Affiliation(s)
- Moritz Brütting
- Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| | - Hilke Bahmann
- Physical and Theoretical Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Stephan Kümmel
- Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
27
|
Furness JW, Kaplan AD, Ning J, Perdew JP, Sun J. Construction of meta-GGA functionals through restoration of exact constraint adherence to regularized SCAN functionals. J Chem Phys 2022; 156:034109. [DOI: 10.1063/5.0073623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- James W. Furness
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
| | - Aaron D. Kaplan
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Jinliang Ning
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
| | - John P. Perdew
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
28
|
Baskerville AL, Targema M, Cox H. Reparametrization of the Colle-Salvetti formula. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211333. [PMID: 35003756 PMCID: PMC8728172 DOI: 10.1098/rsos.211333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
We investigate the Colle-Salvetti (CS) formula, the basis of the Lee, Yang and Parr (LYP) correlation functional used in approximate density functional theory. The CS formula is reparametrized using high-accuracy Hartree-Fock (HF) wavefunctions to determine the accuracy of the formula to calculate anions. Fitting to the hydride ion or the two-electron system just prior to electron detachment at the HF level of theory does not, in general, improve the calculated correlation energies using the parameters derived from the CS/LYP method. An analysis of the CS parameters used in the popular LYP functional demonstrates the ingenuity and perhaps fortuitousness of the original formulation by CS.
Collapse
Affiliation(s)
- Adam L. Baskerville
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK
| | - Msugh Targema
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK
| | - Hazel Cox
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK
| |
Collapse
|
29
|
Schraivogel T, Cohen AJ, Alavi A, Kats D. Transcorrelated coupled cluster methods. J Chem Phys 2021; 155:191101. [PMID: 34800963 DOI: 10.1063/5.0072495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcorrelated coupled cluster and distinguishable cluster methods are presented. The Hamiltonian is similarity transformed with a Jastrow factor in the first quantization, which results in up to three-body integrals. The coupled cluster with singles and doubles equations on this transformed Hamiltonian are formulated and implemented. It is demonstrated that the resulting methods have a superior basis set convergence and accuracy to the corresponding conventional and explicitly correlated methods. Additionally, approximations for three-body integrals are suggested and tested.
Collapse
Affiliation(s)
- Thomas Schraivogel
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Aron J Cohen
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Daniel Kats
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
30
|
Pietezak DF, Vieira D. N-dependent self-interaction corrections: Are they still appealing? Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Davidson ER, Ortiz JV, Staroverov VN. Complete-active-space extended Koopmans theorem method. J Chem Phys 2021; 155:051102. [PMID: 34364362 DOI: 10.1063/5.0058080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The complete-active-space (CAS) extended Koopmans theorem (EKT) method is defined as a special case of the EKT in which the reference state is a CAS configuration interaction (CI) expansion and the electron removal operator acts only on the active orbitals. With these restrictions, the EKT is equivalent to the CI procedure involving all hole-state configurations derived from the active space of the reference wavefunction and has properties analogous to those of the original Koopmans theorem. The equivalence is used to demonstrate in a transparent manner that the first ionization energy predicted by the EKT is in general not exact, i.e., not equal to the difference between the full CI energies of the neutral and the ion, but can approach the full CI result with arbitrary precision even within a finite basis set. The findings also reconcile various statements about the EKT found in the literature.
Collapse
Affiliation(s)
- Ernest R Davidson
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Joseph Vincent Ortiz
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| | - Viktor N Staroverov
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
32
|
Ruan S, Ren X, Gould T, Ruzsinszky A. Self-Interaction-Corrected Random Phase Approximation. J Chem Theory Comput 2021; 17:2107-2115. [PMID: 33689324 DOI: 10.1021/acs.jctc.0c01079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The short-range correlation energy of the random phase approximation (RPA) is too negative and is often corrected by local or nonlocal methods. These beyond-RPA corrections usually lead to a mixed performance for thermodynamics and dissociation properties. RPA+ is an additive correction based on density functional approximations that often gives realistic total energies for atoms or solids. RPA+ adds a moderate correction to the ionization energies/electron affinities of RPA but does not yield an improvement beyond RPA for atomization energies of molecules. This incompleteness results in severely underestimated atomization energies just like in RPA. Exchange-correlation kernels within the Dyson equation could simultaneously improve atomization, ionization energies, and electron affinities, but their implementation is computationally less feasible in localized basis set codes. In preceding work ( Phys. Rev. A 100, 2019022515), two of the authors proposed a computationally efficient generalized RPA+ (gRPA+) that changes RPA+ only for spin-polarized systems by making gRPA+ exact for all one-electron densities. gRPA+ was found to yield a large improvement of ionization energies and electron affinities of light atoms over RPA, and a smaller improvement over RPA+. Within this work, we investigate to what extent this improvement transfers to atomization energies, ionization energies, and electron affinities of molecules, using a modified gRPA+ (mgRPA+) method that can be applied in codes with localized basis functions. We thereby aim to understand the applicability of beyond-RPA corrections based on density functional approximations.
Collapse
Affiliation(s)
- Shiqi Ruan
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Xinguo Ren
- Institute of Physics, Chinese Academy of Sciences, 3rd South Street 8, Beijing 100190, China
| | - Tim Gould
- Qld Micro- and Nanotechnology Center, Griffith University, Nathan, Qld 4111, Australia
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
33
|
Bhattarai P, Santra B, Wagle K, Yamamoto Y, Zope RR, Ruzsinszky A, Jackson KA, Perdew JP. Exploring and enhancing the accuracy of interior-scaled Perdew–Zunger self-interaction correction. J Chem Phys 2021; 154:094105. [DOI: 10.1063/5.0041646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Puskar Bhattarai
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Biswajit Santra
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Kamal Wagle
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Yoh Yamamoto
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Rajendra R. Zope
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Koblar A. Jackson
- Department of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - John P. Perdew
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
34
|
High-precision Hy-CI and E-Hy-CI studies of atomic and molecular properties. ADVANCES IN QUANTUM CHEMISTRY 2021. [DOI: 10.1016/bs.aiq.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Romero S, Yamamoto Y, Baruah T, Zope RR. Local self-interaction correction method with a simple scaling factor. Phys Chem Chem Phys 2021; 23:2406-2418. [DOI: 10.1039/d0cp06282k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The local self-interaction correction method with a simple scaling factor performs better than the Perdew-Zunger self-interaction correction method and also provides a good description of the binding energies of weakly bonded water clusters.
Collapse
Affiliation(s)
- Selim Romero
- Department of Physics
- University of Texas at El Paso
- El Paso
- USA
- Computational Science Program
| | - Yoh Yamamoto
- Department of Physics
- University of Texas at El Paso
- El Paso
- USA
| | - Tunna Baruah
- Department of Physics
- University of Texas at El Paso
- El Paso
- USA
- Computational Science Program
| | - Rajendra R. Zope
- Department of Physics
- University of Texas at El Paso
- El Paso
- USA
- Computational Science Program
| |
Collapse
|
36
|
El-Samman AM, Ospadov E, Staroverov VN. First Ionization Energy as the Asymptotic Limit of the Average Local Electron Energy. J Chem Theory Comput 2020; 16:6886-6893. [PMID: 33073573 DOI: 10.1021/acs.jctc.0c00806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first vertical ionization energy of an atom or molecule is encoded in the rate of exponential decay of the exact natural orbitals. For natural orbitals represented in terms of Gaussian basis functions, this property does not hold even approximately. We show that it is nevertheless possible to deduce the first ionization energy from the long-range behavior of Gaussian-basis-set wave functions by evaluating the asymptotic limit of a quantity called the average local electron energy (ALEE), provided that the most diffuse functions of the basis set have a suitable shape and location. The ALEE method exposes subtle qualitative differences between seemingly analogous Gaussian basis sets and complements the extended Koopmans theorem by being robust in situations where the one-electron reduced density matrix is ill-conditioned.
Collapse
Affiliation(s)
- Amer M El-Samman
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Egor Ospadov
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Viktor N Staroverov
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
37
|
Genovese C, Shirakawa T, Nakano K, Sorella S. General Correlated Geminal Ansatz for Electronic Structure Calculations: Exploiting Pfaffians in Place of Determinants. J Chem Theory Comput 2020; 16:6114-6131. [PMID: 32804497 PMCID: PMC8011928 DOI: 10.1021/acs.jctc.0c00165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 11/29/2022]
Abstract
We propose here a single Pfaffian correlated variational ansatz that dramatically improves the accuracy with respect to the single determinant one, while remaining at a similar computational cost. A much larger correlation energy is indeed determined by the most general two electron pairing function, including both singlet and triplet channels, combined with a many-body Jastrow factor, including all possible spin-spin, spin-density, and density-density terms. The main technical ingredient to exploit this accuracy is the use of the Pfaffian for antisymmetrizing a highly correlated pairing function, thus recovering the Fermi statistics for electrons with an affordable computational cost. Moreover, the application of the diffusion Monte Carlo, within the fixed node approximation, allows us to obtain very accurate binding energies for the first preliminary calculations reported in this study: C2, N2, and O2 and the benzene molecule. This is promising and remarkable, considering that they represent extremely difficult molecules even for computationally demanding multideterminant approaches, and opens therefore the way for realistic and accurate electronic simulations with an algorithm scaling at most as the fourth power of the number of electrons.
Collapse
Affiliation(s)
- Claudio Genovese
- SISSA,
International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| | - Tomonori Shirakawa
- Computational
Materials Science Research Team, RIKEN Center
for Computational Science (R-CCS), Kobe, Hyogo 650-0047, Japan
| | - Kousuke Nakano
- SISSA,
International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
- School
of Information Science, Japan Advanced Institute
of Science and Technology (JAIST), Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
| | - Sandro Sorella
- SISSA,
International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
38
|
Isaac Moreira E, Brito B, Hai GQ, Cândido L. A quantum Monte Carlo study of the structural and electronic properties of small boron clusters Bn (n=1,…,13). Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Yamamoto Y, Salcedo A, Diaz CM, Alam MS, Baruah T, Zope RR. Assessing the effect of regularization on the molecular properties predicted by SCAN and self-interaction corrected SCAN meta-GGA. Phys Chem Chem Phys 2020; 22:18060-18070. [PMID: 32760934 DOI: 10.1039/d0cp02717k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent regularization of the SCAN meta-GGA functional (rSCAN) has simplified the numerical complexities of the SCAN functional, alleviating SCAN's stringent demand on the numerical integration grids to some extent. The regularization of rSCAN, however, results in the breaking of some constraints such as the uniform electron gas limit, the slowly varying density limit, and coordinate scaling of the iso-orbital indicator. Here, we assess the effects of regularization on the electronic, structural, vibrational, and magnetic properties of molecules by comparing the SCAN and rSCAN predictions. The properties studied include atomic energies, atomization energies, ionization potentials, electron affinities, barrier heights, infrared intensities, dissociation and reaction energies, spin moments of molecular magnets, and isomer ordering of water clusters. Our results show that rSCAN requires less dense numerical grids and gives very similar results to those of SCAN for all properties examined with the exception of atomization energies, which are worsened in rSCAN. We also examine the performance of self-interaction-corrected (SIC) rSCAN with respect to SIC-SCAN using the Perdew-Zunger (PZ) SIC method. The PZSIC method uses orbital densities to compute one-electron self-interaction errors and places an even more stringent demand on numerical grids. Our results show that SIC-rSCAN gives marginally better performance than SIC-SCAN for almost all properties studied in this work with numerical grids that are on average half or less as dense as that needed for SIC-SCAN.
Collapse
Affiliation(s)
- Yoh Yamamoto
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA.
| | - Alan Salcedo
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA.
| | - Carlos M Diaz
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA. and Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Md Shamsul Alam
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA. and Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA. and Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Rajendra R Zope
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA. and Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
40
|
Roy PO, Cuierrier É, Ernzerhof M. The correlation factor approach: Combining density functional and wave function theory. J Chem Phys 2020; 152:211101. [PMID: 32505142 DOI: 10.1063/5.0010333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several of the limitations of approximate exchange-correlation functionals within Kohn-Sham density functional theory can be eliminated by extending the single-determinant reference system to a multi-determinant one. Here, we employ the correlation factor ansatz to combine multi-configurational, self-consistent field (MCSCF) with approximate density functionals. In the proposed correlation factor approach, the exchange-correlation hole ρXC(r, u), a function of the reference point r and the electron-electron separation u, is written as a product of the correlation factor fC(r, u) and an exchange plus static-correlation hole ρXS(r, u), i.e., ρXC CFXS(r, u) = fC(r, u)ρXS(r, u). ρXS(r, u) is constructed to reproduce the exchange-correlation energy of an MCSCF reference wave function. The correlation factor fC(r, u) is designed to account for dynamic correlation effects that are absent in ρXS(r, u). The resulting approximation to the exchange-correlation energy, which we refer to as CFXStatic, is free of empirical parameters, and it combines the qualitatively correct description of the electronic structure obtainable with MCSCF with the advantages of approximate density functionals in accounting for dynamic correlation.
Collapse
Affiliation(s)
- Pierre-Olivier Roy
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Étienne Cuierrier
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Matthias Ernzerhof
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
41
|
Bhattarai P, Wagle K, Shahi C, Yamamoto Y, Romero S, Santra B, Zope RR, Peralta JE, Jackson KA, Perdew JP. A step in the direction of resolving the paradox of Perdew–Zunger self-interaction correction. II. Gauge consistency of the energy density at three levels of approximation. J Chem Phys 2020; 152:214109. [DOI: 10.1063/5.0010375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Puskar Bhattarai
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Kamal Wagle
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Chandra Shahi
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
- Department of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Yoh Yamamoto
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Selim Romero
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Biswajit Santra
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Rajendra R. Zope
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Juan E. Peralta
- Department of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Koblar A. Jackson
- Department of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - John P. Perdew
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
42
|
Yamamoto Y, Romero S, Baruah T, Zope RR. Improvements in the orbitalwise scaling down of Perdew–Zunger self-interaction correction in many-electron regions. J Chem Phys 2020; 152:174112. [DOI: 10.1063/5.0004738] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yoh Yamamoto
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Selim Romero
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Rajendra R. Zope
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
43
|
Zope RR, Yamamoto Y, Diaz CM, Baruah T, Peralta JE, Jackson KA, Santra B, Perdew JP. A step in the direction of resolving the paradox of Perdew-Zunger self-interaction correction. J Chem Phys 2019; 151:214108. [DOI: 10.1063/1.5129533] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rajendra R. Zope
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Yoh Yamamoto
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Carlos M. Diaz
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Juan E. Peralta
- Physics Department and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
| | - Koblar A. Jackson
- Physics Department and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
| | - Biswajit Santra
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - John P. Perdew
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
44
|
Yamamoto Y, Diaz CM, Basurto L, Jackson KA, Baruah T, Zope RR. Fermi-Löwdin orbital self-interaction correction using the strongly constrained and appropriately normed meta-GGA functional. J Chem Phys 2019; 151:154105. [PMID: 31640373 DOI: 10.1063/1.5120532] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite the success of density functional approximations (DFAs) in describing the electronic properties of many-electron systems, the most widely used approximations suffer from self-interaction errors (SIEs) that limit their predictive power. Here, we describe the effects of removing SIE from the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation using the Fermi-Löwdin Orbital Self-Interaction Correction (FLOSIC) method. FLOSIC is a size-extensive implementation of the Perdew-Zunger self-interaction correction (PZ-SIC) formalism. We find that FLOSIC-SCAN calculations require careful treatment of numerical details and an integration grid that yields reliable accuracy with this approach. We investigate the performance of FLOSIC-SCAN for predicting a wide array of properties and find that it provides better results than FLOSIC-LDA and FLOSIC-PBE in nearly all cases. It also gives better predictions than SCAN for orbital energies and dissociation energies where self-interaction effects are known to be important, but total energies and atomization energies are made worse. For these properties, we also investigate the use of the self-consistent FLOSIC-SCAN density in the SCAN functional and find that this DFA@FLOSIC-DFA approach yields improved results compared to pure, self-consistent SCAN calculations. Thus, FLOSIC-SCAN provides improved results over the parent SCAN functional in cases where SIEs are dominant, and even when they are not, if the SCAN@FLOSIC-SCAN method is used.
Collapse
Affiliation(s)
- Yoh Yamamoto
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Carlos M Diaz
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Luis Basurto
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Koblar A Jackson
- Physics Department and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, Michigan 48859, USA
| | - Tunna Baruah
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Rajendra R Zope
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
45
|
Aschebrock T, Kümmel S. Exploring local range separation: The role of spin scaling and one-electron self-interaction. J Chem Phys 2019; 151:154108. [DOI: 10.1063/1.5121731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thilo Aschebrock
- Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| | - Stephan Kümmel
- Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
46
|
Wetthasinghe ST, Rassolov VA. Electron correlation in chemical bonds II. LiH and LiH+. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Kaur J, Ospadov E, Staroverov VN. What Is the Accuracy Limit of Adiabatic Linear-Response TDDFT Using Exact Exchange-Correlation Potentials and Approximate Kernels? J Chem Theory Comput 2019; 15:4956-4964. [PMID: 31386366 DOI: 10.1021/acs.jctc.9b00618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calculation of vertical excitation energies by the adiabatic linear-response time-dependent density-functional theory (TDDFT) requires static Kohn-Sham potentials and exchange-correlation kernels. When these quantities are derived from standard density-functional approximations (DFA), mean absolute errors (MAE) of the method are known to range from 0.2 eV to over 1 eV, depending on the functional and type of excitation. We investigate how the performance of TDDFT varies when increasingly accurate exchange-correlation potentials derived from Hartree-Fock (HF) and post-HF wavefunctions are combined with different approximate kernels. The lowest MAEs obtained in this manner for valence excitations are about 0.15-0.2 eV, which appears to be the practical limit of the accuracy of TDDFT that can be achieved by improving the Kohn-Sham potentials alone. These findings are consistent with previous reports on the benefits of accurate exchange-correlation potentials in TDDFT, but provide new insights and afford more definitive conclusions.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Chemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Egor Ospadov
- Department of Chemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Viktor N Staroverov
- Department of Chemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| |
Collapse
|
48
|
Cohen AJ, Luo H, Guther K, Dobrautz W, Tew DP, Alavi A. Similarity transformation of the electronic Schrödinger equation via Jastrow factorization. J Chem Phys 2019. [DOI: 10.1063/1.5116024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Aron J. Cohen
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Hongjun Luo
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Kai Guther
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Werner Dobrautz
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - David P. Tew
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
49
|
Via-Nadal M, Rodríguez-Mayorga M, Ramos-Cordoba E, Matito E. Singling Out Dynamic and Nondynamic Correlation. J Phys Chem Lett 2019; 10:4032-4037. [PMID: 31276421 DOI: 10.1021/acs.jpclett.9b01376] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The correlation part of the pair density is separated into two components, one of them being predominant at short electronic ranges and the other at long ranges. The analysis of the intracular part of these components permits to classify molecular systems according to the prevailing correlation: dynamic or nondynamic. The study of the long-range asymptotics reveals the key component of the pair density that is responsible for the description of London dispersion forces and a universal decay with the interelectronic distance. The natural range-separation, the identification of the dispersion forces, and the kind of predominant correlation type that arise from this analysis are expected to be important assets in the development of new electronic structure methods in wave function, density, and reduced density-matrix functional theories.
Collapse
Affiliation(s)
- Mireia Via-Nadal
- Donostia International Physics Center (DIPC) , 20018 Donostia , Euskadi , Spain
- Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) , Donostia , Euskadi , Spain
| | - Mauricio Rodríguez-Mayorga
- Donostia International Physics Center (DIPC) , 20018 Donostia , Euskadi , Spain
- Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) , Donostia , Euskadi , Spain
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química , Universitat de Girona , C/Maria Aurèlia Capmany, 69 , 17003 Girona , Catalonia , Spain
| | - Eloy Ramos-Cordoba
- Donostia International Physics Center (DIPC) , 20018 Donostia , Euskadi , Spain
- Kimika Fakultatea , Euskal Herriko Unibertsitatea (UPV/EHU) , Donostia , Euskadi , Spain
| | - Eduard Matito
- Donostia International Physics Center (DIPC) , 20018 Donostia , Euskadi , Spain
- IKERBASQUE , Basque Foundation for Science , 48013 Bilbao , Euskadi , Spain
| |
Collapse
|
50
|
Margraf JT, Kunkel C, Reuter K. Towards density functional approximations from coupled cluster correlation energy densities. J Chem Phys 2019; 150:244116. [DOI: 10.1063/1.5094788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Johannes T. Margraf
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Christian Kunkel
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| |
Collapse
|