Mengue AD, Essimbi BZ. Symmetry chaotic attractors and bursting dynamics of semiconductor lasers subjected to optical injection.
CHAOS (WOODBURY, N.Y.) 2012;
22:013113. [PMID:
22462989 DOI:
10.1063/1.3675623]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper presents the nonlinear dynamics and bifurcations of optically injected semiconductor lasers in the frame of relative high injection strength. The behavior of the system is explored by means of bifurcation diagrams; however, the exact nature of the involved dynamics is well described by a detailed study of the dynamics evolutions as a function of the effective gain coefficient. As results, we notice the different types of symmetry chaotic attractors with the riddled basins, supercritical pitchfork and Hopf bifurcations, crisis of attractors, instability of chaos, symmetry breaking and restoring bifurcations, and the phenomena of the bursting behavior as well as two connected parts of the same chaotic attractor which merge in a periodic orbit.
Collapse