1
|
Chiesa A, Santini P, Garlatti E, Luis F, Carretta S. Molecular nanomagnets: a viable path toward quantum information processing? REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:034501. [PMID: 38314645 DOI: 10.1088/1361-6633/ad1f81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
Molecular nanomagnets (MNMs), molecules containing interacting spins, have been a playground for quantum mechanics. They are characterized by many accessible low-energy levels that can be exploited to store and process quantum information. This naturally opens the possibility of using them as qudits, thus enlarging the tools of quantum logic with respect to qubit-based architectures. These additional degrees of freedom recently prompted the proposal for encoding qubits with embedded quantum error correction (QEC) in single molecules. QEC is the holy grail of quantum computing and this qudit approach could circumvent the large overhead of physical qubits typical of standard multi-qubit codes. Another important strength of the molecular approach is the extremely high degree of control achieved in preparing complex supramolecular structures where individual qudits are linked preserving their individual properties and coherence. This is particularly relevant for building quantum simulators, controllable systems able to mimic the dynamics of other quantum objects. The use of MNMs for quantum information processing is a rapidly evolving field which still requires to be fully experimentally explored. The key issues to be settled are related to scaling up the number of qudits/qubits and their individual addressing. Several promising possibilities are being intensively explored, ranging from the use of single-molecule transistors or superconducting devices to optical readout techniques. Moreover, new tools from chemistry could be also at hand, like the chiral-induced spin selectivity. In this paper, we will review the present status of this interdisciplinary research field, discuss the open challenges and envisioned solution paths which could finally unleash the very large potential of molecular spins for quantum technologies.
Collapse
Affiliation(s)
- A Chiesa
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - P Santini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - E Garlatti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - F Luis
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC, Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Fısica de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
| | - S Carretta
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| |
Collapse
|
2
|
Gimeno I, Urtizberea A, Román-Roche J, Zueco D, Camón A, Alonso PJ, Roubeau O, Luis F. Broad-band spectroscopy of a vanadyl porphyrin: a model electronuclear spin qudit. Chem Sci 2021; 12:5621-5630. [PMID: 34168797 PMCID: PMC8179683 DOI: 10.1039/d1sc00564b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023] Open
Abstract
We explore how to encode more than a qubit in vanadyl porphyrin molecules hosting a S = 1/2 electronic spin coupled to a I = 7/2 nuclear spin. The spin Hamiltonian and its parameters, as well as the spin dynamics, have been determined via a combination of electron paramagnetic resonance, heat capacity, magnetization and on-chip magnetic spectroscopy experiments performed on single crystals. We find low temperature spin coherence times of micro-seconds and spin relaxation times longer than a second. For sufficiently strong magnetic fields (B > 0.1 T, corresponding to resonance frequencies of 9-10 GHz) these properties make vanadyl porphyrin molecules suitable qubit realizations. The presence of multiple equispaced nuclear spin levels then merely provides 8 alternatives to define the '1' and '0' basis states. For lower magnetic fields (B < 0.1 T), and lower frequencies (<2 GHz), we find spectroscopic signatures of a sizeable electronuclear entanglement. This effect generates a larger set of allowed transitions between different electronuclear spin states and removes their degeneracies. Under these conditions, we show that each molecule fulfills the conditions to act as a universal 4-qubit processor or, equivalently, as a d = 16 qudit. These findings widen the catalogue of chemically designed systems able to implement non-trivial quantum functionalities, such as quantum simulations and, especially, quantum error correction at the molecular level.
Collapse
Affiliation(s)
- Ignacio Gimeno
- Instituto de Nanociencia y Materiales de Aragón, CSIC and Universidad de Zaragoza 50009 Zaragoza Spain
| | - Ainhoa Urtizberea
- Instituto de Nanociencia y Materiales de Aragón, CSIC and Universidad de Zaragoza 50009 Zaragoza Spain
- Centro Universitario de la Defensa 50090 Zaragoza Spain
| | - Juan Román-Roche
- Instituto de Nanociencia y Materiales de Aragón, CSIC and Universidad de Zaragoza 50009 Zaragoza Spain
| | - David Zueco
- Instituto de Nanociencia y Materiales de Aragón, CSIC and Universidad de Zaragoza 50009 Zaragoza Spain
| | - Agustín Camón
- Instituto de Nanociencia y Materiales de Aragón, CSIC and Universidad de Zaragoza 50009 Zaragoza Spain
| | - Pablo J Alonso
- Instituto de Nanociencia y Materiales de Aragón, CSIC and Universidad de Zaragoza 50009 Zaragoza Spain
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón, CSIC and Universidad de Zaragoza 50009 Zaragoza Spain
| | - Fernando Luis
- Instituto de Nanociencia y Materiales de Aragón, CSIC and Universidad de Zaragoza 50009 Zaragoza Spain
| |
Collapse
|
3
|
Gimeno I, Kersten W, Pallarés MC, Hermosilla P, Martínez-Pérez MJ, Jenkins MD, Angerer A, Sánchez-Azqueta C, Zueco D, Majer J, Lostao A, Luis F. Enhanced Molecular Spin-Photon Coupling at Superconducting Nanoconstrictions. ACS NANO 2020; 14:8707-8715. [PMID: 32441922 DOI: 10.1021/acsnano.0c03167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We combine top-down and bottom-up nanolithography to optimize the coupling of small molecular spin ensembles to 1.4 GHz on-chip superconducting resonators. Nanoscopic constrictions, fabricated with a focused ion beam at the central transmission line, locally concentrate the microwave magnetic field. Drops of free-radical molecules have been deposited from solution onto the circuits. For the smallest ones, the molecules were delivered at the relevant circuit areas by means of an atomic force microscope. The number of spins Neff effectively coupled to each device was accurately determined combining Scanning Electron and Atomic Force Microscopies. The collective spin-photon coupling constant has been determined for samples with Neff ranging between 2 × 106 and 1012 spins, and for temperatures down to 44 mK. The results show the well-known collective enhancement of the coupling proportional to the square root of Neff. The average coupling of individual spins is enhanced by more than 4 orders of magnitude (from 4 mHz up to above 180 Hz), when the transmission line width is reduced from 400 μm down to 42 nm, and reaches maximum values near 1 kHz for molecules located on the smallest nanoconstrictions.
Collapse
Affiliation(s)
- Ignacio Gimeno
- Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Wenzel Kersten
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
| | - María C Pallarés
- Laboratorio de Microscopı́as Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Pablo Hermosilla
- Laboratorio de Microscopı́as Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - María José Martínez-Pérez
- Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Fundación ARAID, Av. de Ranillas 1-D, 50018 Zaragoza, Spain
| | - Mark D Jenkins
- Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Andreas Angerer
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
| | | | - David Zueco
- Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Fundación ARAID, Av. de Ranillas 1-D, 50018 Zaragoza, Spain
| | - Johannes Majer
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
| | - Anabel Lostao
- Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Laboratorio de Microscopı́as Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Fundación ARAID, Av. de Ranillas 1-D, 50018 Zaragoza, Spain
| | - Fernando Luis
- Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Macaluso E, Rubín M, Aguilà D, Chiesa A, Barrios LA, Martínez JI, Alonso PJ, Roubeau O, Luis F, Aromí G, Carretta S. A heterometallic [LnLn′Ln] lanthanide complex as a qubit with embedded quantum error correction. Chem Sci 2020; 11:10337-10343. [PMID: 36196278 PMCID: PMC9445828 DOI: 10.1039/d0sc03107k] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/18/2020] [Indexed: 11/21/2022] Open
Abstract
We show that a [Er–Ce–Er] molecular trinuclear coordination compound is a promising platform to implement the three-qubit quantum error correction code protecting against pure dephasing, the most important error in magnetic molecules. We characterize it by preparing the [Lu–Ce–Lu] and [Er–La–Er] analogues, which contain only one of the two types of qubit, and by combining magnetometry, low-temperature specific heat and electron paramagnetic resonance measurements on both the elementary constituents and the trimer. Using the resulting parameters, we demonstrate by numerical simulations that the proposed molecular device can efficiently suppress pure dephasing of the spin qubits. We show that a [Er–Ce–Er] molecular trinuclear coordination compound is a promising platform to implement the three-qubit quantum error correction code protecting against pure dephasing, the most important error in magnetic molecules.![]()
Collapse
|