1
|
Kalha C, Fernando NK, Bhatt P, Johansson FOL, Lindblad A, Rensmo H, Medina LZ, Lindblad R, Siol S, Jeurgens LPH, Cancellieri C, Rossnagel K, Medjanik K, Schönhense G, Simon M, Gray AX, Nemšák S, Lömker P, Schlueter C, Regoutz A. Hard x-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:233001. [PMID: 33647896 DOI: 10.1088/1361-648x/abeacd] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Hard x-ray photoelectron spectroscopy (HAXPES) is establishing itself as an essential technique for the characterisation of materials. The number of specialised photoelectron spectroscopy techniques making use of hard x-rays is steadily increasing and ever more complex experimental designs enable truly transformative insights into the chemical, electronic, magnetic, and structural nature of materials. This paper begins with a short historic perspective of HAXPES and spans from developments in the early days of photoelectron spectroscopy to provide an understanding of the origin and initial development of the technique to state-of-the-art instrumentation and experimental capabilities. The main motivation for and focus of this paper is to provide a picture of the technique in 2020, including a detailed overview of available experimental systems worldwide and insights into a range of specific measurement modi and approaches. We also aim to provide a glimpse into the future of the technique including possible developments and opportunities.
Collapse
Affiliation(s)
- Curran Kalha
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Nathalie K Fernando
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Prajna Bhatt
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Fredrik O L Johansson
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Andreas Lindblad
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Håkan Rensmo
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - León Zendejas Medina
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, SE-75121, Uppsala, Sweden
| | - Rebecka Lindblad
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, SE-75121, Uppsala, Sweden
| | - Sebastian Siol
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and Corrosion, Dübendorf, Switzerland
| | - Lars P H Jeurgens
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and Corrosion, Dübendorf, Switzerland
| | - Claudia Cancellieri
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and Corrosion, Dübendorf, Switzerland
| | - Kai Rossnagel
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Katerina Medjanik
- Johannes Gutenberg Universität, Institut für Physik, 55128 Mainz, Germany
| | - Gerd Schönhense
- Johannes Gutenberg Universität, Institut für Physik, 55128 Mainz, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Alexander X Gray
- Department of Physics, Temple University, Philadelphia, PA 19122, United States of America
| | - Slavomír Nemšák
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Patrick Lömker
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | - Anna Regoutz
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| |
Collapse
|
2
|
Ramanantoanina H, Kuri G, Daul C, Bertsch J. Core electron excitations in U(4+): modelling of the nd(10)5f(2)→nd(9)5f(3) transitions with n = 3, 4 and 5 by ligand field tools and density functional theory. Phys Chem Chem Phys 2016; 18:19020-31. [PMID: 27356168 DOI: 10.1039/c6cp01395c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligand field density functional theory (LFDFT) calculations have been used to model the uranium M4,5, N4,5 and O4,5-edge X-ray absorption near edge structure (XANES) in UO2, characterized by the promotion of one electron from the core and the semi-core 3d, 4d and 5d orbitals of U(4+) to the valence 5f. The model describes the procedure to resolve non-empirically the multiplet energy levels originating from the two-open-shell system with d and f electrons and to calculate the oscillator strengths corresponding to the dipole allowed d(10)f(2)→ d(9)f(3) transitions appropriate to represent the d electron excitation process. In the first step, the energy and UO2 unit-cell volume corresponding to the minimum structures are determined using the Hubbard model (DFT+U) approach. The model of the optical properties due to the uranium nd(10)5f(2)→nd(9)5f(3) transitions, with n = 3, 4 and 5, has been tackled by means of electronic structure calculations based on the ligand field concept emulating the Slater-Condon integrals, the spin-orbit coupling constants and the parameters of the ligand field potential needed by the ligand field Hamiltonian from Density Functional Theory. A deep-rooted theoretical procedure using the LFDFT approach has been established for actinide-bearing systems that can be valuable to compute targeted results, such as spectroscopic details at the electronic scale. As a case study, uranium dioxide has been considered because it is a nuclear fuel material, and both atomic and electronic structure calculations are indispensable for a deeper understanding of irradiation driven microstructural changes occurring in this material.
Collapse
|
3
|
Tobin JG, Yu SW. Orbital specificity in the unoccupied states of UO2 from resonant inverse photoelectron spectroscopy. PHYSICAL REVIEW LETTERS 2011; 107:167406. [PMID: 22107429 DOI: 10.1103/physrevlett.107.167406] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Indexed: 05/31/2023]
Abstract
One of the crucial questions of all actinide electronic structure determinations is the issue of 5f versus 6d character and the distribution of these components across the density of states. Here, a breakthough experiment is discussed, which has allowed the direct determination of the U5f and U6d contributions to the unoccupied density of states in uranium dioxide. A novel resonant inverse photoelectron and x-ray emission spectroscopy investigation of UO(2) is presented. It is shown that the U5f and U6d components are isolated and identified unambiguously.
Collapse
Affiliation(s)
- J G Tobin
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | | |
Collapse
|
5
|
Petiau J, Calas G, Petitmaire D, Bianconi A, Benfatto M, Marcelli A. Delocalized versus localized unoccupied 5f states and the uranium site structure in uranium oxides and glasses probed by x-ray-absorption near-edge structure. PHYSICAL REVIEW. B, CONDENSED MATTER 1986; 34:7350-7361. [PMID: 9939391 DOI: 10.1103/physrevb.34.7350] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|