1
|
Arita R, Koretsune T, Sakai S, Akashi R, Nomura Y, Sano W. Nonempirical Calculation of Superconducting Transition Temperatures in Light-Element Superconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28060417 DOI: 10.1002/adma.201602421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Indexed: 02/05/2023]
Abstract
Recent progress in the fully nonempirical calculation of the superconducting transition temperature (Tc ) is reviewed. Especially, this study focuses on three representative light-element high-Tc superconductors, i.e., elemental Li, sulfur hydrides, and alkali-doped fullerides. Here, it is discussed how crucial it is to develop the beyond Migdal-Eliashberg (ME) methods. For Li, a scheme of superconducting density functional theory for the plasmon mechanism is formulated and it is found that Tc is dramatically enhanced by considering the frequency dependence of the screened Coulomb interaction. For sulfur hydrides, it is essential to go beyond not only the static approximation for the screened Coulomb interaction, but also the constant density-of-states approximation for electrons, the harmonic approximation for phonons, and the Migdal approximation for the electron-phonon vertex, all of which have been employed in the standard ME calculation. It is also shown that the feedback effect in the self-consistent calculation of the self-energy and the zero point motion considerably affect the calculation of Tc . For alkali-doped fullerides, the interplay between electron-phonon coupling and electron correlations becomes more nontrivial. It has been demonstrated that the combination of density functional theory and dynamical mean field theory with the ab initio downfolding scheme for electron-phonon coupled systems works successfully. This study not only reproduces the experimental phase diagram but also obtains a unified view of the high-Tc superconductivity and the Mott-Hubbard transition in the fullerides. The results for these high-Tc superconductors will provide a firm ground for future materials design of new superconductors.
Collapse
Affiliation(s)
- Ryotaro Arita
- RIKEN Center for Emergent Matter Science, Wako, Saitama, 351-0198, Japan
- JST ERATO Isobe Degenerate π-Integration Project, Advanced Institute for Materials Research, Tohoku University, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Takashi Koretsune
- RIKEN Center for Emergent Matter Science, Wako, Saitama, 351-0198, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Shiro Sakai
- RIKEN Center for Emergent Matter Science, Wako, Saitama, 351-0198, Japan
| | - Ryosuke Akashi
- Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Nomura
- Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay, F-91128, Palaiseau, France
| | - Wataru Sano
- RIKEN Center for Emergent Matter Science, Wako, Saitama, 351-0198, Japan
- Department of Applied Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
2
|
Nomura Y, Sakai S, Capone M, Arita R. Exotic s-wave superconductivity in alkali-doped fullerides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:153001. [PMID: 26974650 DOI: 10.1088/0953-8984/28/15/153001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Alkali-doped fullerides (A3C60 with A = K, Rb, Cs) show a surprising phase diagram, in which a high transition-temperature (Tc) s-wave superconducting state emerges next to a Mott insulating phase as a function of the lattice spacing. This is in contrast with the common belief that Mott physics and phonon-driven s-wave superconductivity are incompatible, raising a fundamental question on the mechanism of the high-Tc superconductivity. This article reviews recent ab initio calculations, which have succeeded in reproducing comprehensively the experimental phase diagram with high accuracy and elucidated an unusual cooperation between the electron-phonon coupling and the electron-electron interactions leading to Mott localization to realize an unconventional s-wave superconductivity in the alkali-doped fullerides. A driving force behind the exotic physics is unusual intramolecular interactions, characterized by the coexistence of a strongly repulsive Coulomb interaction and a small effectively negative exchange interaction. This is realized by a subtle energy balance between the coupling with the Jahn-Teller phonons and Hund's coupling within the C60 molecule. The unusual form of the interaction leads to a formation of pairs of up- and down-spin electrons on the molecules, which enables the s-wave pairing. The emergent superconductivity crucially relies on the presence of the Jahn-Teller phonons, but surprisingly benefits from the strong correlations because the correlations suppress the kinetic energy of the electrons and help the formation of the electron pairs, in agreement with previous model calculations. This confirms that the alkali-doped fullerides are a new type of unconventional superconductors, where the unusual synergy between the phonons and Coulomb interactions drives the high-Tc superconductivity.
Collapse
Affiliation(s)
- Yusuke Nomura
- Department of Applied Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|
3
|
Kato T. New method of accurate estimation of the electron–phonon coupling constants in fractionally charged incommensurate electronic states in molecular systems. J Chem Phys 2011; 135:024103. [DOI: 10.1063/1.3600066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
4
|
Abstract
The mechanism of the occurrence of intraatomic diamagnetic currents in the neutral He atoms with microscopic sizes is investigated. It is found that most of all electrons can form electron pairs originating from attractive Coulomb interactions between two electrons with opposite spins occupying the 1s atomic orbital in the neutral He atom at 298 K. Intraatomic diamagnetic currents in the neutral He atoms with microscopic sizes can be explained by such electron pairing. The transition temperature Tc(He),(1s) value at which intraatomic diamagnetic currents can disappear in each He atom is estimated. The Tc(He),(1s) values for the neutral He atoms with microscopic sizes are estimated to be much larger than the superconducting transition temperatures Tc,BCS values for the conventional superconductors with macroscopic sizes. This result can be understood from continuous energy levels of electronic states in conventional superconductivity with macroscopic sizes, and from discrete energy levels of electronic states in the neutral He atoms with microscopic sizes. The energy difference between the occupied and unoccupied orbitals decreases with an increase in material size and thus the second-order perturbation effect becomes more important with an increase in material size. Therefore, the mechanism of the occurrence of intraatomic diamagnetic current in the neutral He atoms suggested in this research would not be true for materials with large sizes. The dependence of electronic properties on temperature in the diamagnetic currents in the neutral He atoms with microscopic sizes is studied and compared with that in the conventional superconductivity with macroscopic sizes.
Collapse
Affiliation(s)
- Takashi Kato
- Institute for Innovative Science and Technology, Graduate School of Engineering, Nagasaki Institute of Applied Science, 3-1, Shuku-machi, Nagasaki 851-0121, Japan.
| | | |
Collapse
|
5
|
Kato T, Yamabe T. Electron−Phonon Interactions and Intra- and Intermolecular Charge Mobility in the Monocations of Annulenes. J Phys Chem B 2006; 110:18166-79. [PMID: 16970433 DOI: 10.1021/jp068000u] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Possible electron pairing in pi-conjugated positively charged annulenes such as (CH)(18) (18an) and (CH)(30) (30an) is studied and compared with that in the positively charged acenes. The total electron-phonon coupling constants in the monocations (l(HOMO)) for 18an and 30an are estimated. The E(2g) modes of 1611 and 1201 cm(-1) most strongly couple to the highest occupied molecular orbitals (HOMO) in 18an and 30an, respectively. The l(HOMO) values for annulenes are larger than those for acenes. The phase pattern difference between the HOMO of acenes localized on the edge part of carbon atoms and the delocalized HOMO of annulenes is the main reason for the calculated results. In view of the calculated results of the l(HOMO) values, intramolecular electron mobility (sigma(intra,HOMO)), and the reorganization energies (RE(HOMO)) in the positively charged molecules, the monocations of annulenes cannot easily become good conductors compared with the monocations of acenes, but the condition of the attractive electron-electron interactions is realized more easily in the monocations of annulenes than in the monocations of acenes. The hypothetical intramolecular supercurrent originating from both intramolecular and intermolecular vibrations in the monocations of annulenes and acenes in a case where the distance between two adjacent molecules is too large for the molecular crystal to become normal metallic state, is also discussed.
Collapse
Affiliation(s)
- Takashi Kato
- Institute for Innovative Science and Technology, Graduate School of Engineering, Nagasaki Institute of Applied Science, 3-1 Shuku-machi, Nagasaki 851-0121, Japan.
| | | |
Collapse
|
6
|
Ehrler OT, Yang JP, Hättig C, Unterreiner AN, Hippler H, Kappes MM. Femtosecond pump/probe photoelectron spectroscopy of isolated C60 negative ions. J Chem Phys 2006; 125:074312. [PMID: 16942344 DOI: 10.1063/1.2244557] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have measured pump/probe photoelectron spectra of mass-selected, near room temperature C60- in the gas phase. The lifetime of the vibrationally excited B- (2Eg) state at a calculated energy of 1.26 eV was found to be tau = 2.2+/-0.2 ps. The dominant decay process corresponds to intramolecular radiationless transitions into ground state C60-. This is in contrast to C60 for which pumping at the absorption onset (1.95 eV) leads to predominantly intersystem crossing.
Collapse
Affiliation(s)
- Oli T Ehrler
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Kato T, Yamabe T. Electron-phonon interactions in the monocations of polyacetylenes. J Chem Phys 2006; 124:084705. [PMID: 16512734 DOI: 10.1063/1.2149851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electron-phonon interactions in the monocations of trans-polyacetylenes such as C2H4 (2tpa), C4H6 (2tpa), C6H8 (6tpa), and C8H10 (8tpa) are studied. The C-C stretching Ag modes around 1700 cm(-1) afford the largest electron-phonon coupling constants in the monocations of polyacetylenes. However, the C-C bending Ag modes around 1200 cm(-1) afford much smaller electron-phonon coupling constants than the C-C stretching Ag modes around 1700 cm(-1) in the monocations of polyacetylenes. The total electron-phonon coupling constants for the monocations (l HOMO) are estimated to be 0.357, 0.285, 0.281, and 0.279 eV for 2tpa, 4tpa, 6tpa, and 8tpa, respectively. The l HOMO values for polyacetylenes with C 2h geometry hardly change with an increase in molecular size while those for polyacenes with D 2h geometry significantly decrease with an increase in molecular size. The l HOMO values for polyacetylenes are larger than those for polyacenes. The calculated results are rationalized in terms of the phase patterns of the molecular orbitals in detail. The electron transfer in the positively charged polyacetylenes is also discussed. Intramolecular electron mobility (sigma(intra,monocation)) in the positively charged polyacetylenes is estimated to be smaller than those for the positively charged polyacenes. The reorganization energies for the positively charged polyacetylenes are estimated to be larger than those for the positively charged polyacenes. Thus, the larger overlap integrals between two neighboring molecules are needed for the positively charged polyacetylenes to become good conductor than those for positively charged polyacenes. On the other hand, the conditions under which the electron-electron interactions are attractive are more easily realized in the monocations of polyacetylenes than in the monocations of polyacenes. The quality as conducting materials would not significantly depend on the molecular size in the positively charged polyacetylenes, compared with that in the positively charged polyacenes. Multimode problem is also treated in order to investigate how consideration of multimode problem is closely related to the characteristics of the electron-phonon interactions.
Collapse
Affiliation(s)
- Takashi Kato
- Institute for Innovative Science and Technology, Graduate School of Engineering, Nagasaki Institute of Applied Science, 3-14 Shuku-machi, Nagasaki 851-0121, Japan.
| | | |
Collapse
|
8
|
Kato T, Yamabe T. Electron−Phonon Interactions and Jahn−Teller Effects in the Monocation of Corannulene. J Phys Chem A 2006; 110:2785-95. [PMID: 16494390 DOI: 10.1021/jp0581936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron-phonon interactions in the monocation of corannulene are studied by using the hybrid Hartree-Fock (HF)/density-functional-theory (DFT) method in the Gaussian 98 program package. The C-C stretching mode of 1498 cm(-1) most strongly couples to the e1 highest occupied molecular orbitals (HOMO) in corannulene. The total electron-phonon coupling constant for the monocation (l(HOMO)) of corannulene is estimated to be 0.165 eV. The l(HOMO) value for corannulene is much larger than those for coronene and acenes with similar numbers of carbon atoms. The delocalized electronic structures and the intermediate characteristics between the strong sigma-orbital interactions and weak pi-orbital interactions originating from a bowl-shaped C(5v) geometry are the main reason that the l(HOMO) value for corannulene is much larger than those for planar D(6h) symmetric pi-conjugated coronene and D(2h) symmetric pi-conjugated acenes with similar numbers of carbon atoms. The electron transfer in the positively charged corannulene is also discussed. Intramolecular electron mobility (sigma(intra,monocation)) in the positively charged corannulene is estimated to be smaller than those for the positively charged pi-conjugated acenes and coronene. The reorganization energy for the positively charged corannulene (0.060 eV) is estimated to be larger than those for the positively charged acenes and coronene. The strong orbital interactions between two neighboring carbon atoms in the HOMO of corannulene with the bowl-shaped structure are the main reasons for the calculated results. Thus, the larger overlap integral between two neighboring molecules is needed for the positively charged corannulene to become a better conductor than those for positively charged coronene and acenes. The smaller density of states at the Fermi level n(0) values are enough for the conditions of the attractive electron-electron interactions to be realized in the monocation of corannulene than in the monocations of coronene and acenes with similar numbers of carbon atoms. The multimode problem is also treated in order to investigate how consideration of the multimode problem is closely related to the characteristics of the electron-phonon interactions.
Collapse
Affiliation(s)
- Takashi Kato
- Institute for Innovative Science and Technology, Graduate School of Engineering, Nagasaki Institute of Applied Science, 3-1, Shuku-machi, Nagasaki 851-0121, Japan.
| | | |
Collapse
|
9
|
|
10
|
Kato T, Yamabe T. Vibronic interactions and possible electron pairing in positively charged cyanodienes. J Chem Phys 2005; 123:94701. [PMID: 16164356 DOI: 10.1063/1.1993553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The conditions under which the attractive electron-electron interactions are realized in the monocations of sigma-conjugated cyanodienes such as C(6)N(4)H(4), C(8)N(6)H(4), and C(10)N(8)H(4) and of pi-conjugated acenes are discussed. The total electron-phonon coupling constants for the monocations l(HOMO) of cyanodienes are much larger than those for the monocations of acenes. The strong sigma orbital interactions between two neighboring atoms in the highest occupied molecular orbitals (HOMO) of sigma-conjugated cyanodienes are the main reason for the calculated results. Furthermore, we discuss how the conditions under which the monocation crystals become good conductor are related to the molecular size. Both the l(HOMO) values and the reorganization energies between the neutral molecules and the monocations decrease with an increase in molecular size in cyanodienes. The calculated results for the sigma-conjugated cyanodienes are compared with those for the pi-conjugated acenes in order to investigate how the CH-N substitutions in cyanodienes are closely related to the l(HOMO) values and the reorganization energies. Both the l(HOMO) and the reorganization energies in the positively charged sigma-conjugated cyanodienes are much larger than those in the positively charged pi-conjugated acenes. This means that in order to become good conductors, the positively charged sigma-conjugated cyanodienes need larger overlap integral between two adjacent molecules than the positively charged pi-conjugated acenes. On the other hand, since the l(HOMO) values for cyanodienes are much larger than those for acenes, the condition of attractive electron-electron interactions is more easily to be realized in the monocations of cyanodienes than in the monocations of acenes. It is suggested that the positively charged sigma-conjugated cyanodienes cannot easily become good conductors, but the conditions under which the electron-electron interactions become attractive are realized more easily in the positively charged sigma-conjugated cyanodienes than in the positively charged pi-conjugated acenes.
Collapse
Affiliation(s)
- Takashi Kato
- Institute for Innovative Science and Technology, Graduate School of Engineering, Nagasaki Institute of Applied Science, 3-1, Shuku-machi, Nagasaki 851-0121, Japan.
| | | |
Collapse
|
11
|
Kato T, Yamabe T. The essential role of the electronegativity perturbation in vibronic interactions in positively charged B,N-substituted acenes. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2004.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Kato T, Yamabe T. Electron-phonon interactions in photoinduced excited electronic states in fluoroacenes. J Chem Phys 2005; 123:24301. [PMID: 16050739 DOI: 10.1063/1.1950670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The electron-phonon coupling constants [l(B1u(HOMO-->LUMO))] in the photoinduced excited electronic states in fluoroacenes are estimated and compared with those in the monoanions (l(LUMO)) and cations (l(HOMO)). The l(B1u(HOMO-->LUMO)) values are much larger than the l(LUMO) and l(HOMO) values in fluoroacenes. Furthermore, the Coulomb pseudopotential mu* values for the excited electronic states are estimated to be smaller than those for the monoanions and cations. The complete phase patterns difference between the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) is the main reason why the electron-phonon coupling constants and the mu* values are larger and smaller, respectively, in the photoinduced excited electronic states than in the monoanions and cations. The possible electron pairing and Bose-Einstein condensation in the excited electronic states of fluoroacenes are discussed. Because of larger electron-phonon coupling constants and smaller mu* values in the excited electronic states than in the charged states, the conditions under which the electron-electron interactions become attractive can be more easily realized, in principle, in the excited electronic states than in the charged states in fluoroacenes. The l(B1u(HOMO-->LUMO)) values hardly change by H-F substitution, even though the l(LUMO) and l(HOMO) values significantly increase by H-F substitution in acenes. Antibonding interactions between carbon and fluorine atoms in the HOMO and LUMO are the main reason why the l(B1u(HOMO-->LUMO)) values hardly change by H-F substitution in acenes.
Collapse
Affiliation(s)
- Takashi Kato
- Institute for Innovative Science and Technology, Graduate School of Engineering, Nagasaki Institute of Applied Science, 3-1, Shuku-machi, Nagasaki 851-0121, Japan.
| | | |
Collapse
|
13
|
Kato T, Yamabe T. Vibronic Interactions and Possible Electron Pairing in the Photoinduced Excited Electronic States in Molecular Systems: A Theoretical Study. J Phys Chem A 2005; 109:4804-15. [PMID: 16833824 DOI: 10.1021/jp040643r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron-phonon interactions in the photoinduced excited electronic states in molecular systems such as phenanthrene-edge-type hydrocarbons are discussed and compared with those in the monoanions and cations. The complete phase patterns difference between the highest occupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO) (the atomic orbitals between two neighboring carbon atoms combined in phase (out of phase) in the HOMO are combined out of phase (in phase) in the LUMO) are the main reason that the C-C stretching modes around 1500 cm(-1) afford much larger electron-phonon coupling constants in the excited electronic states than in the charged electronic states. The frequencies of the vibrational modes that play an essential role in the electron-phonon interactions for the excited electronic states are similar to those for the monoanions and cations in phenanthrene-edge-type hydrocarbons. Possible electron pairing and Bose-Einstein condensation in the photoinduced excited electronic states as well as those in the monoanions and cations in molecular systems such as phenanthrene-edge-type hydrocarbons are also discussed.
Collapse
Affiliation(s)
- Takashi Kato
- Institute for Innovative Science and Technology, Graduate School of Engineering, Nagasaki Institute of Applied Science, 3-1, Shuku-machi, Nagasaki 851-0121, Japan.
| | | |
Collapse
|
14
|
Kato T, Yamabe T. Vibronic Interactions in Negatively Charged Polyacetylene. J Phys Chem B 2005; 109:10620-30. [PMID: 16852289 DOI: 10.1021/jp0406823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron-phonon interactions in the monoanions of polyacetylenes such as C2H4 (2tpa), C4H6 (4tpa), C6H8 (6tpa), and C8H10 (8tpa) are studied and compared with those in the monoanions of polyacenes. The C-C stretching A(g) modes around 1500 cm(-1) the most strongly couple to the lowest unoccupied molecular orbitals (LUMO) in polyacetylenes. The estimated total electron-phonon coupling constants for the monoanions (l(LUMO)) are 0.579, 0.555, 0.463, and 0.401 eV for 2tpa, 4tpa, 6tpa, and 8tpa, respectively. The l(LUMO) values for polyacetylenes are much larger than those for polyacenes. Furthermore, the l(LUMO) value for polyacetylene with C(2h) geometry is estimated to be 0.254 eV, and is larger than that (0.024 eV) for polyacene with D(2h) geometry. The phase patterns difference between the LUMO of polyacenes localized on the edge part of carbon atoms, and the delocalized LUMO of polyacetylenes is the main reason for the calculated results. The single charge transfer through the molecule in polyacetylenes are also discussed. The reorganization energies between the neutral molecule and the corresponding monoanion are estimated to be 0.164, 0.144, 0.125, and 0.113 eV for 2tpa, 4tpa, 6tpa, and 8tpa, respectively. Such reorganization energy decreases with an increase in molecular size. The conditions under which the attractive electron-electron interactions are realized in the monoanions of polyacetylenes and polyacenes are discussed. In terms of the electron-phonon interactions and the reorganization energies, the relationships between the normal and possible superconducting states are briefly discussed. We find that the monoanions with smaller molecular size cannot easily become good conductors, however, the conditions under which the interactions between two electrons are attractive are more easily realized in the monoanions with smaller molecular size than in the monoanions with larger molecular size.
Collapse
Affiliation(s)
- Takashi Kato
- Institute for Innovative Science and Technology, Graduate School of Engineering, Nagasaki Institute of Applied Science, 3-1, Shuku-machi, Nagasaki 851-0121, Japan.
| | | |
Collapse
|
15
|
Kato T, Yamabe T. Electron−Phonon Interactions in the Monoanions of Polycyanodienes. J Phys Chem A 2004. [DOI: 10.1021/jp0404753] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takashi Kato
- Institute for Innovative Science and Technology, Graduate School of Engineering, Nagasaki Institute of Applied Science, 3-1, Shuku-machi, Nagasaki 851-0121, Japan
| | - Tokio Yamabe
- Institute for Innovative Science and Technology, Graduate School of Engineering, Nagasaki Institute of Applied Science, 3-1, Shuku-machi, Nagasaki 851-0121, Japan
| |
Collapse
|
16
|
Kato T, Yamabe T. The effect of atomic substitution on electron–phonon interactions in negatively charged B, N-substituted acenes. J Chem Phys 2004; 121:501-9. [PMID: 15260571 DOI: 10.1063/1.1755671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Electron-phonon interactions in the monoanions of B, N-substituted acenes such as B(3)N(3)F(6) (1f) and B(5)N(5)F(8) (2f) are studied, and compared with those in the monoanions of B(3)N(3)H(6) (1h) and B(5)N(5)H(8) (2h), and B(3)N(3)D(6) (1d) and B(5)N(5)D(8) (2d). The low frequency modes around 500 cm(-1) as well as the frequency modes higher than 1000 cm(-1) strongly couple to the lowest unoccupied molecular orbitals (LUMO) in 1f and 2f. The total electron-phonon coupling constants (l(LUMO)) are estimated to be 2.710 and 2.054 eV for 1f and 2f, respectively, and those are estimated to be 0.342 and 0.235 eV for 1d and 2d, respectively, while those were estimated to be 0.340 and 0.237 eV for 1h and 2h, respectively. That is, the l(LUMO) value increases much more significantly by H-F substitution than by H-D substitution in B, N-substituted acenes. The larger displacements of B and N atoms in the vibronic active modes in 1f and 2f than those in 1d and 2d due to larger atomic mass of fluorine than that of deuterium, and the phase patterns difference between the LUMO in 1f and 2f, in which the atomic orbitals between N and its neighboring F atoms form strong sigma-antibonding interactions, and that in 1d and 2d, in which the atomic orbitals between two neighboring B and N atoms form weak pi-bonding and pi-antibonding interactions, are the main reason why the l(LUMO) value increases much more significantly by H-F substitution than by H-D substitution. The reorganization energies between the neutral molecules and the corresponding monoanions are estimated to be 0.122, 0.063, 0.733, and 0.830 eV for 1h, 2h, 1f, and 2f, respectively. Therefore, the estimated reorganization energies between the neutral molecules and the corresponding monoanions for 1f and 2f are much larger than those for 1h and 2h.
Collapse
Affiliation(s)
- Takashi Kato
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan.
| | | |
Collapse
|
17
|
Kato T, Hirao K. Vibronic Interactions and Jahn–Teller Effects in Charged Hydrocarbons. ADVANCES IN QUANTUM CHEMISTRY 2003. [DOI: 10.1016/s0065-3276(03)44016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Electron Correlation and Jahn–Teller Effect in Alkali-Metal-Doped C60. ADVANCES IN QUANTUM CHEMISTRY 2003. [DOI: 10.1016/s0065-3276(03)44035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
19
|
Yamaguchi K, Kitagawa Y, Onishi T, Isobe H, Kawakami T, Nagao H, Takamizawa S. Spin-mediated superconductivity in cuprates, organic conductors and π–d conjugated systems. Coord Chem Rev 2002. [DOI: 10.1016/s0010-8545(01)00440-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Kato T, Kondo M, Tachibana M, Yamabe T, Yoshizawa K. Vibronic interaction in a copper oxide cluster. Chem Phys 2001. [DOI: 10.1016/s0301-0104(01)00431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Grochala W, Hoffmann R. Real and Hypothetical Intermediate-Valence AgII/AgIII and AgII/AgI Fluoride Systems as Potential Superconductors. Angew Chem Int Ed Engl 2001; 40:2742-2781. [DOI: 10.1002/1521-3773(20010803)40:15<2742::aid-anie2742>3.0.co;2-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2000] [Indexed: 11/11/2022]
|
22
|
Grochala W, Hoffmann R. Real and Hypothetical Intermediate-Valence AgII/AgIII and AgII/AgI Fluoride Systems as Potential Superconductors. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3773(20010803)40:15%3c2742::aid-anie2742%3e3.0.co;2-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Grochala W, Hoffmann R. Existierende und hypothetische intermediärvalente AgII/AgIII- und AgII/AgI-Fluoride als potentielle Supraleiter. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3757(20010803)113:15<2816::aid-ange2816>3.0.co;2-d] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
|
25
|
Yamabe T, Yahara K, Kato T, Yoshizawa K. Vibronic Coupling and Jahn−Teller Effects in Negatively Charged Corannulene. J Phys Chem A 2000. [DOI: 10.1021/jp992496g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tokio Yamabe
- Department of Molecular Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan, and Institute for Fundamental Chemistry, 34-4 Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| | - Kazuyuki Yahara
- Department of Molecular Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan, and Institute for Fundamental Chemistry, 34-4 Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| | - Takashi Kato
- Department of Molecular Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan, and Institute for Fundamental Chemistry, 34-4 Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| | - Kazunari Yoshizawa
- Department of Molecular Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan, and Institute for Fundamental Chemistry, 34-4 Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
26
|
Yoshizawa K, Kato T, Tachibana M, Yamabe T. Vibronic Interactions in Silicon Polyhedra of the Si46 Clathrate Compound. J Phys Chem A 1998. [DOI: 10.1021/jp982113z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazunari Yoshizawa
- Department of Molecular Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Kato
- Department of Molecular Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masamitsu Tachibana
- Department of Molecular Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tokio Yamabe
- Department of Molecular Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan, and Institute for Fundamental Chemistry, 34-4 Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
27
|
Tanaka K, Asai Y, Sato T, Kuga T, Yamabe T, Tokumoto M. Orientation dependent magnetic interaction in TDAE-C60, where TDAE is tetrakis(dimethylamino)ethylene. Chem Phys Lett 1996. [DOI: 10.1016/0009-2614(96)00831-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Asai Y, Tokumoto M, Tanaka K, Sato T, Yamabe T. Magnetic interactions in TDAE-C60. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 53:4176-4179. [PMID: 9983977 DOI: 10.1103/physrevb.53.4176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
29
|
Tanaka Y, Tokumoto M, Sugawara Y. Isotope Effect on Intramolecular Vibration of C60. ACTA ACUST UNITED AC 1995. [DOI: 10.1080/153638x9508543779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Asai Y. Jahn-Teller mechanism of the half width of the intramolecular vibrational spectrum in doped C60: Coupling with Hg, T1u, and Hu modes. PHYSICAL REVIEW. B, CONDENSED MATTER 1994; 49:4289-4294. [PMID: 10011327 DOI: 10.1103/physrevb.49.4289] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
31
|
Fulara J, Jakobi M, Maier JP. Electronic and infrared spectra of C+60 and C−60 in neon and argon matrices. Chem Phys Lett 1993. [DOI: 10.1016/0009-2614(93)85190-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Faulhaber JC, Ko DY, Briddon PR. Vibronic coupling in C60 and C603-. PHYSICAL REVIEW. B, CONDENSED MATTER 1993; 48:661-664. [PMID: 10006835 DOI: 10.1103/physrevb.48.661] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|