1
|
Issa Hamoud H, Wolski L, Pankin I, Bañares MA, Daturi M, El-Roz M. In situ and Operando Spectroscopies in Photocatalysis: Powerful Techniques for a Better Understanding of the Performance and the Reaction Mechanism. Top Curr Chem (Cham) 2022; 380:37. [PMID: 35951125 DOI: 10.1007/s41061-022-00387-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/18/2022] [Indexed: 10/15/2022]
Abstract
In photocatalysis, a set of elemental steps are involved together at different timescales to govern the overall efficiency of the process. These steps are divided as follow: (1) photon absorption and excitation (in femtoseconds), (2) charge separation (femto- to picoseconds), (3) charge carrier diffusion/transport (nano- to microseconds), and (4 and 5) reactant activation/conversion and mass transfer (micro- to milliseconds). The identification and quantification of these steps, using the appropriate tool/technique, can provide the guidelines to emphasize the most influential key parameter that improve the overall efficiency and to develop the "photocatalyst by design" concept. In this review, the identification/quantification of reactant activation/conversion and mass transfer (steps 4 and 5) is discussed in details using the in situ/operando techniques, especially the infrared (IR), Raman, and X-ray absorption spectroscopy (XAS). The use of these techniques in photocatalysis was highlighted by the most recent and conclusive case studies which allow a better characterization of the active site and reveal the reaction pathways in order to establish a structure-performance relationship. In each case study, the reaction conditions and the reactor design for photocatalysis (pressure, temperature, concentration, etc.) were thoroughly discussed. In the last part, some examples in the use of time-resolved techniques (time-resolved FTIR, photoluminescence, and transient absorption) are also presented as an author's guideline to study the elemental steps in photocatalysis at shorter timescale (ps, ns, and µs).
Collapse
Affiliation(s)
- Houeida Issa Hamoud
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France
| | - Lukasz Wolski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Ilia Pankin
- Smart Materials, Research Institute, Southern Federal University, Sladkova Street 174/28, 344090, Rostov-on-Don, Russia
| | - Miguel A Bañares
- Catalytic Spectroscopy Laboratory, Instituto de Catalisis, ICP-CSIC, 28049, Madrid, Spain
| | - Marco Daturi
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France
| | - Mohamad El-Roz
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France.
| |
Collapse
|
3
|
Pelhos K, Lee SA, Rajakarunanayake Y, Reno JL. High-pressure study of the deformation potentials of Cd1-xZnxTe/ZnTe quantum wells via photoluminescence. PHYSICAL REVIEW. B, CONDENSED MATTER 1995; 51:13256-13260. [PMID: 9978127 DOI: 10.1103/physrevb.51.13256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
4
|
Cerne J, Markelz AG, Sherwin MS, Allen SJ, Sundaram M, Gossard AC, Bimberg D. Quenching of excitonic quantum-well photoluminescence by intense far-infrared radiation: Free-carrier heating. PHYSICAL REVIEW. B, CONDENSED MATTER 1995; 51:5253-5262. [PMID: 9979403 DOI: 10.1103/physrevb.51.5253] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
5
|
Kajikawa Y. Comparison of 1s-2s exciton-energy splittings between (001) and (111) GaAs/AlxGa1-xAs quantum wells. PHYSICAL REVIEW. B, CONDENSED MATTER 1993; 48:7935-7939. [PMID: 10006979 DOI: 10.1103/physrevb.48.7935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|