1
|
Leifer N, Aurbach D, Greenbaum SG. NMR studies of lithium and sodium battery electrolytes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 142-143:1-54. [PMID: 39237252 DOI: 10.1016/j.pnmrs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 09/07/2024]
Abstract
This review focuses on the application of nuclear magnetic resonance (NMR) spectroscopy in the study of lithium and sodium battery electrolytes. Lithium-ion batteries are widely used in electronic devices, electric vehicles, and renewable energy systems due to their high energy density, long cycle life, and low self-discharge rate. The sodium analog is still in the research phase, but has significant potential for future development. In both cases, the electrolyte plays a critical role in the performance and safety of these batteries. NMR spectroscopy provides a non-invasive and non-destructive method for investigating the structure, dynamics, and interactions of the electrolyte components, including the salts, solvents, and additives, at the molecular level. This work attempts to give a nearly comprehensive overview of the ways that NMR spectroscopy, both liquid and solid state, has been used in past and present studies of various electrolyte systems, including liquid, gel, and solid-state electrolytes, and highlights the insights gained from these studies into the fundamental mechanisms of ion transport, electrolyte stability, and electrode-electrolyte interfaces, including interphase formation and surface microstructure growth. Overviews of the NMR methods used and of the materials covered are presented in the first two chapters. The rest of the review is divided into chapters based on the types of electrolyte materials studied, and discusses representative examples of the types of insights that NMR can provide.
Collapse
Affiliation(s)
- Nicole Leifer
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002 Israel
| | - Doron Aurbach
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002 Israel
| | - Steve G Greenbaum
- Department of Physics, Hunter College, City University of New York, New York, NY, USA.
| |
Collapse
|
2
|
Marshenya SN, Dembitskiy AD, Fedorov DS, Scherbakov AG, Trussov IA, Emelianova O, Aksyonov DA, Buzlukov AL, Zhuravlev NA, Denisova TA, Medvedeva NI, Abakumov AM, Antipov EV, Fedotov SS. NaGaPO 4F - a KTiOPO 4-structured solid sodium-ion conductor. Dalton Trans 2023; 52:17426-17437. [PMID: 37947446 DOI: 10.1039/d3dt03107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Advanced ionic conductors are crucial for a large variety of contemporary technologies spanning solid state ion batteries, fuel cells, gas sensors, water desalination, etc. In this work, we report on a new member of KTiOPO4-structured materials, NaGaPO4F, with sodium-ion conductivity. NaGaPO4F has been obtained for the first time via a facile two-step synthesis consisting of a hydrothermal preparation of an ammonia-based precursor, NH4GaPO4F, followed by an ion exchange reaction with NaNO3. Its crystal structure was precisely refined using a combination of synchrotron X-ray powder diffraction and electron diffraction tomography. The material is thermally stable upon 450 °C showing no significant structural transformations or degradation but only a ∼1% cell volume expansion. Na-ion mobility in NaGaPO4F was investigated by a joint experimental and computational approach comprising solid-state nuclear magnetic resonance (NMR) and density functional theory (DFT). DFT and bond-valence site energy (BVSE) calculations reveal 3D diffusion of sodium in the [GaPO4F] framework with migration barriers amounting to 0.22 and 0.44 eV, respectively, while NMR yields 0.3-0.5 eV that, being coupled with a calculated bandgap of ∼4.25 eV, makes NaGaPO4F a promising fast Na-ion conductor.
Collapse
Affiliation(s)
- Sergey N Marshenya
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia.
| | - Artem D Dembitskiy
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia.
| | - Dmitry S Fedorov
- Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Science, 91 Pervomaiskaya Street, 620990 Ekaterinburg, Russia
- M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Science, 18 S. Kovalevskaya Street, 620137 Ekaterinburg, Russia
| | - Alexey G Scherbakov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia.
| | - Ivan A Trussov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia.
| | - Olga Emelianova
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia.
| | - Dmitry A Aksyonov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia.
| | - Anton L Buzlukov
- M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Science, 18 S. Kovalevskaya Street, 620137 Ekaterinburg, Russia
| | - Nikolai A Zhuravlev
- Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Science, 91 Pervomaiskaya Street, 620990 Ekaterinburg, Russia
| | - Tatiana A Denisova
- Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Science, 91 Pervomaiskaya Street, 620990 Ekaterinburg, Russia
| | - Nadezhda I Medvedeva
- Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Science, 91 Pervomaiskaya Street, 620990 Ekaterinburg, Russia
| | - Artem M Abakumov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia.
| | - Evgeny V Antipov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia.
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Stanislav S Fedotov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, 121205 Moscow, Russia.
| |
Collapse
|
3
|
Buzlukov AL, Arapova IY, Baklanova YV, Medvedeva NI, Denisova TA, Savina AA, Lazoryak BI, Khaikina EG, Bardet M. Coexistence of three types of sodium motion in double molybdate Na 9Sc(MoO 4) 6: 23Na and 45Sc NMR data and ab initio calculations. Phys Chem Chem Phys 2019; 22:144-154. [PMID: 31793960 DOI: 10.1039/c9cp05249f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rechargeable Na-ion batteries attract much attention as an alternative to the widely used but expensive Li-ion batteries. The search for materials with high sodium diffusion is important for the development of solid state electrolytes. We present the results of experimental and ab initio studies of the Na-ion diffusion mechanism in Na9Sc(MoO4)6. The ion conductivity reaches the value of 3.6 × 10-2 S cm-1 at T ∼ 850 K. The 23Na and 45Sc NMR data reveal the coexistence of three different types of Na-ion motion in the temperature range from 300 to 750 K. They are activated at different temperatures and are characterized by substantially different dynamics parameters. These features are confirmed by ab initio calculations of activation barriers for sodium diffusion along various paths.
Collapse
Affiliation(s)
- Anton L Buzlukov
- Institute of Metal Physics, Ural Branch, Russian Academy of Science, S. Kovalevskaya St. 18, Ekaterinburg 620137, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Cuervo-Reyes E, Roedern E, Yun Y, Battaglia C. Analytical approximation for the frequency dependent conductivity in ionic conductors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Gombotz M, Lunghammer S, Breuer S, Hanzu I, Preishuber-Pflügl F, Wilkening HMR. Spatial confinement – rapid 2D F− diffusion in micro- and nanocrystalline RbSn2F5. Phys Chem Chem Phys 2019; 21:1872-1883. [PMID: 30632556 DOI: 10.1039/c8cp07206j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
NMR and conductivity spectroscopy reveal 2D diffusion in both microcrystalline and nanocrystalline RbSn2F5.
Collapse
Affiliation(s)
- Maria Gombotz
- Christian Doppler Laboratory for Lithium Batteries, and Institute for Chemistry and Technology of Materials
- Graz University of Technology (NAWI Graz)
- 8010 Graz
- Austria
| | - Sarah Lunghammer
- Christian Doppler Laboratory for Lithium Batteries, and Institute for Chemistry and Technology of Materials
- Graz University of Technology (NAWI Graz)
- 8010 Graz
- Austria
| | - Stefan Breuer
- Christian Doppler Laboratory for Lithium Batteries, and Institute for Chemistry and Technology of Materials
- Graz University of Technology (NAWI Graz)
- 8010 Graz
- Austria
| | - Ilie Hanzu
- Christian Doppler Laboratory for Lithium Batteries, and Institute for Chemistry and Technology of Materials
- Graz University of Technology (NAWI Graz)
- 8010 Graz
- Austria
- Alistore-ERI European Research Institute
| | - Florian Preishuber-Pflügl
- Christian Doppler Laboratory for Lithium Batteries, and Institute for Chemistry and Technology of Materials
- Graz University of Technology (NAWI Graz)
- 8010 Graz
- Austria
| | - H. Martin R. Wilkening
- Christian Doppler Laboratory for Lithium Batteries, and Institute for Chemistry and Technology of Materials
- Graz University of Technology (NAWI Graz)
- 8010 Graz
- Austria
- Alistore-ERI European Research Institute
| |
Collapse
|
6
|
Breuer S, Wilkening M. Mismatch in cation size causes rapid anion dynamics in solid electrolytes: the role of the Arrhenius pre-factor. Dalton Trans 2018; 47:4105-4117. [DOI: 10.1039/c7dt04487a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mixed (Ba,Ca)F2 reveals highly correlated F anion diffusion in disordered potentials landscapes.
Collapse
Affiliation(s)
- Stefan Breuer
- Christian Doppler Laboratory for Lithium Batteries and Institute for Chemistry and Technology of Materials
- Graz University of Technology (NAWI Graz)
- 8010 Graz
- Austria
| | - Martin Wilkening
- Christian Doppler Laboratory for Lithium Batteries and Institute for Chemistry and Technology of Materials
- Graz University of Technology (NAWI Graz)
- 8010 Graz
- Austria
- ALISTORE-ERI European Research Institute
| |
Collapse
|
7
|
Gabriel J, Petrov OV, Kim Y, Martin SW, Vogel M. Lithium ion dynamics in Li2S+GeS2+GeO2 glasses studied using (7)Li NMR field-cycling relaxometry and line-shape analysis. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 70:53-62. [PMID: 26146137 DOI: 10.1016/j.ssnmr.2015.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/11/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
We use (7)Li NMR to study the ionic jump motion in ternary 0.5Li2S+0.5[(1-x)GeS2+xGeO2] glassy lithium ion conductors. Exploring the "mixed glass former effect" in this system led to the assumption of a homogeneous and random variation of diffusion barriers in this system. We exploit that combining traditional line-shape analysis with novel field-cycling relaxometry, it is possible to measure the spectral density of the ionic jump motion in broad frequency and temperature ranges and, thus, to determine the distribution of activation energies. Two models are employed to parameterize the (7)Li NMR data, namely, the multi-exponential autocorrelation function model and the power-law waiting times model. Careful evaluation of both of these models indicates a broadly inhomogeneous energy landscape for both the single (x=0.0) and the mixed (x=0.1) network former glasses. The multi-exponential autocorrelation function model can be well described by a Gaussian distribution of activation barriers. Applicability of the methods used and their sensitivity to microscopic details of ionic motion are discussed.
Collapse
Affiliation(s)
- Jan Gabriel
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Oleg V Petrov
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Youngsik Kim
- Interdissciplinary School of Green Energy, UNIST, Ulsan 689-798, South Korea
| | - Steve W Martin
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| | - Michael Vogel
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany.
| |
Collapse
|
8
|
Preishuber-Pflügl F, Bottke P, Pregartner V, Bitschnau B, Wilkening M. Correlated fluorine diffusion and ionic conduction in the nanocrystalline F(-) solid electrolyte Ba(0.6)La(0.4)F(2.4)-(19)F T1(ρ) NMR relaxation vs. conductivity measurements. Phys Chem Chem Phys 2015; 16:9580-90. [PMID: 24728404 DOI: 10.1039/c4cp00422a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chemical reactions induced by mechanical treatment may give access to new compounds whose properties are governed by chemical metastability, defects introduced and the size effects present. Their interplay may lead to nanocrystalline ceramics with enhanced transport properties being useful to act as solid electrolytes. Here, the introduction of large amounts of La into the cubic structure of BaF2 served as such an example. The ion transport properties in terms of dc-conductivity values of the F(-) anion conductor Ba1-xLaxF2+x (here with x = 0.4) considerably exceed those of pure, nanocrystalline BaF2. So far, there is only little knowledge about activation energies and jump rates of the elementary hopping processes. Here, we took advantage of both impedance spectroscopy and (19)F NMR relaxometry to get to the bottom of ion jump diffusion proceeding on short-range and long-range length scales in Ba0.6La0.4F2.4. While macroscopic transport is governed by an activation energy of 0.55 to 0.59 eV, the elementary steps of hopping seen by NMR are characterised by much smaller activation energies. Fortunately, we were able to deduce an F(-) self-diffusion coefficient by the application of spin-locking NMR relaxometry.
Collapse
Affiliation(s)
- F Preishuber-Pflügl
- Institute for Chemistry and Technology of Materials, and Christian Doppler Laboratory for Lithium Batteries, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
| | | | | | | | | |
Collapse
|
9
|
Ngai KL, Capaccioli S. An explanation of the differences in diffusivity of the components of the metallic glass Pd43Cu27Ni10P20. J Chem Phys 2013; 138:094504. [PMID: 23485310 DOI: 10.1063/1.4793597] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bartsch et al. [Phys. Rev. Lett. 104, 195901 (2010)] reported measurements of the diffusivities of different components of the multi-component bulk metallic glass Pd43Cu27Ni10P20. The diffusion of the largest Pd and the smallest P was found to be drastically different. The Stokes-Einstein relation breaks down when considering the P constituent atom, while the relation is obeyed by the Pd atom over 14 orders of magnitude of change in Pd diffusivity. This difference in behavior of Pd and P poses a problem challenging for explanation. With the assist of a recent finding in metallic glasses that the β-relaxation and the diffusion of the smallest component are closely related processes by Yu et al. [Phys. Rev. Lett. 109, 095508 (2012)], we use the Coupling Model to explain the observed difference between P and Pd quantitatively. The same model also explains the correlation between property of the β-relaxation with fragility found in the family of (CexLa1-x)68Al10Cu20Co2 with 0 ≤ x ≤ 1.
Collapse
Affiliation(s)
- K L Ngai
- Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy.
| | | |
Collapse
|
10
|
Wilkening M, Heitjans P. From Micro to Macro: Access to Long-Range Li+ Diffusion Parameters in Solids via Microscopic 6, 7Li Spin-Alignment Echo NMR Spectroscopy. Chemphyschem 2011; 13:53-65. [DOI: 10.1002/cphc.201100580] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Indexed: 11/06/2022]
|
11
|
Arbi K, Sobrados I, Hoelzel M, Kuhn A, Garcia-Alvarado F, Sanz J. Ionic mobility in Nasicon-type LiMIV2(PO4)3 materials followed by 7Li NMR spectroscopy. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/opl.2011.705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractLithium mobility in LiM2(PO4)3 compounds, with M= Ge, Ti, Sn, Zr and Hf, has been investigated by 7Li Nuclear Magnetic Resonance (NMR) spectroscopy in the temperature range 100-500 K. From the analysis of 7Li NMR quadrupole interactions (CQ and η parameters), Li sites occupancy and exchange processes between structural sites have been studied. Below 250K, Li ions are preferentially located at M1 sites in rhombohedral phases, but occupy M12 sites in triclinic ones. At increasing temperatures, Li mobility has been deduced from spin-spin () and spin-lattice relaxation () rates. In this analysis, the presence of two relaxation mechanisms in plots has been associated with departures of conductivity from the Arrhenius behavior. At high temperatures, residence times at M12−T11−T11−T1 and M12 sites become similar and conductivity significantly increase. This superionic state can be achieved by enlarged order-disorder transformations in rhombohedral phases, or by sharp first order transitions in triclinic ones. Results described in the LiTi2(PO4)3 sample have been compared with those obtained in rhombohedral Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 series showing respectively higher and lower conductivities. In the case of Li1.2Ti1.8Al0.2(PO4)3, displaying the highest reported conductivity, NMR results are discussed in relation with those obtained by Neutron Diffraction (ND) and Impedance Spectroscopy (IS). Diffusion coefficients determined by NMR Pulse Field Gradient (PFG) technique are similar to those deduced from Impedance Spectroscopy and NMR relaxation data.
Collapse
|
12
|
Ngai KL. Breakdown of Debye-Stokes-Einstein and Stokes-Einstein relations in glass-forming liquids: An explanation from the coupling model. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/13642819908223061] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- K. L. Ngai
- a Naval Research Laboratory , Washington , DC , 20375-5320 , USA
| |
Collapse
|
13
|
Ngai KL. Evidence of interaction between oxygen ions from conductivity relaxation and quasielastic light scattering data of yttria-stabilized zirconia. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/13642819808206392] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- K. L. Ngai
- a Naval Research Laboratory , Washington , DC , 20375-5320 , USA
| |
Collapse
|
14
|
Bih L, Abbas L, Mohdachi S, Nadiri A. Thermal and electrical properties of mixed alkali in Li2O–Na2O–WO3–P2O5 glasses. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2008.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Abbas L, Bih L, Nadiri A, El Amraoui Y, Mezzane D, Elouadi B. Properties of mixed Li2O and Na2O molybdenum phosphate glasses. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2007.06.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
León C, Lucía ML, Santamaría J. Analytical distributions of relaxation times for the description of electrical conductivity relaxation in ionic conductors. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/13642819708202344] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- C. León
- a Departamento de Física Aplicada III, Facultad de Ciencias Físicas , Universidad Complutense de Madrid , Avenida Complutense s/n, 28040 , Madrid , Spain
| | - M. L. Lucía
- a Departamento de Física Aplicada III, Facultad de Ciencias Físicas , Universidad Complutense de Madrid , Avenida Complutense s/n, 28040 , Madrid , Spain
| | - J. Santamaría
- a Departamento de Física Aplicada III, Facultad de Ciencias Físicas , Universidad Complutense de Madrid , Avenida Complutense s/n, 28040 , Madrid , Spain
| |
Collapse
|
17
|
Macdonald JR. Comparison and evaluation of several models for fitting the frequency response of dispersive systems. J Chem Phys 2003. [DOI: 10.1063/1.1539092] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
León C, Lucía ML, Santamaría J, París MA, Sanz J, Várez A. Electrical conductivity relaxation and nuclear magnetic resonance of Li conducting Li0.5La0.5TiO3. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 54:184-189. [PMID: 9984245 DOI: 10.1103/physrevb.54.184] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
19
|
Roland CM, Ngai KL. Response to ‘‘Comment on ‘Short time dynamics of glass‐forming liquids’ ’’ [J. Chem. Phys. 104, 8169 (1996)]. J Chem Phys 1996. [DOI: 10.1063/1.471528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Greaves GN, Ngai KL. Reconciling ionic-transport properties with atomic structure in oxide glasses. PHYSICAL REVIEW. B, CONDENSED MATTER 1995; 52:6358-6380. [PMID: 9981865 DOI: 10.1103/physrevb.52.6358] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
21
|
Rufflé B, Beaufils S, Gallier J. Low-frequency motions in an alkali phosphate glass studied by 7Li and 31P NMR. Chem Phys 1995. [DOI: 10.1016/0301-0104(95)00065-v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Wang Y, Gu M, Sun L, Ngai KL. Mechanism of Snoek-Köster relaxation in body-centered-cubic metals. PHYSICAL REVIEW. B, CONDENSED MATTER 1994; 50:3525-3531. [PMID: 9976627 DOI: 10.1103/physrevb.50.3525] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|