Hayami W, Tang S, Chiu TW, Tang J. Reduction in Work Functions of Transition-Metal Carbides and Oxycarbides upon Oxidation.
ACS OMEGA 2021;
6:14559-14565. [PMID:
34124479 PMCID:
PMC8190902 DOI:
10.1021/acsomega.1c01671]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Herein, the work functions of group 4 and group 5 transition-metal (Ti, Zr, Hf, V, Nb, and Ta) carbides and transition-metal oxycarbides (TMCOs) were investigated by first-principles calculations for their potential application as electron emitters. The work functions of both groups decreased as the substitution of carbon atoms with oxygen proceeded, and the reduction in group 4 was more than that of group 5. In particular, ZrC1-x O x and HfC1-x O x (x ≥ 0.25) exhibited work functions of less than 3 eV, which were comparable with those of LaB6- and ZrO-coated tungsten. The reduction in the work functions could be explained by the rigid-band model of the electronic density of states. The increase in valence electrons increased the Fermi energy, while it demonstrated a less significant influence on the vacuum potential, resulting in a reduction in the work functions. The phonon dispersion curves indicated that the NaCl-type group 5 TMCOs were less stable than the group 4 TMCOs. This agrees with the experimental findings that TaC1-x O x was not synthesized and NbC1-x O x was synthesized only for smaller values of x (i.e., x < 0.28). From the viewpoints of the work functions and structural stabilities, group 4 (Ti, Zr, and Hf) TMCOs exhibit better potential for application as electron emitters than group 5 (V, Nb, and Ta) TMCOs.
Collapse