1
|
Surface Diffusion by Means of Stochastic Wave Functions. The Ballistic Regime. MATHEMATICS 2021. [DOI: 10.3390/math9040362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stochastic wave function formalism is briefly introduced and applied to study the dynamics of open quantum systems; in particular, the diffusion of Xe atoms adsorbed on a Pt(111) surface. By starting from a Lindblad functional and within the microscopic Caldeira–Leggett model for linear dissipation, a stochastic differential equation (Ito^-type differential equation) is straightforwardly obtained. The so-called intermediate scattering function within the ballistic regime is obtained, which is observable in Helium spin echo experiments. An ideal two-dimensional gas has been observed in this regime, leading to this function behaving as a Gaussian function. The influence of surface–adsorbate interaction is also analyzed by using the potential of two interactions describing flat and corrugated surfaces. Very low surface coverages are considered and, therefore, the adsorbate–adsorbate interaction is safely neglected. Good agreement is observed when our numerical results are compared with the corresponding experimental results and previous standard Langevin simulations.
Collapse
|
2
|
Zhang CC, Zhang YM, Zhang ZY, Wu X, Yu Q, Liu Y. Photoreaction-driven two-dimensional periodic polyrotaxane-type supramolecular nanoarchitecture. Chem Commun (Camb) 2019; 55:8138-8141. [DOI: 10.1039/c9cc03705e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A stable 2D supramolecular assembly was constructed with photoreaction-driven transformation from polypseudorotaxane to polyrotaxane, which could capture C60 in water and present excellent DNA cleavage ability and photodynamic therapy effect.
Collapse
Affiliation(s)
- Cai-Cai Zhang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Ying-Ming Zhang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Zhi-Yuan Zhang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xuan Wu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Qilin Yu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
3
|
Guttentag AI, Barr KK, Song TB, Bui KV, Fauman JN, Torres LF, Kes DD, Ciomaga A, Gilles J, Sullivan NF, Yang Y, Allara DL, Zharnikov M, Weiss PS. Hexagons to Ribbons: Flipping Cyanide on Au{111}. J Am Chem Soc 2016; 138:15580-15586. [DOI: 10.1021/jacs.6b06046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Andrew I. Guttentag
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Kristopher K. Barr
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Tze-Bin Song
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Material Science and Engineering, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Kevin V. Bui
- Department
of Mathematics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Jacob N. Fauman
- Department
of Mathematics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Physics, University of California, Santa Barbara, California 93106, United States
| | - Leticia F. Torres
- Department
of Mathematics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Mathematics, University of San Francisco, San Francisco, California 94117, United States
| | - David D. Kes
- Department
of Mathematics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Mathematics and Natural Sciences, California State University, Long Beach, California 90840, United States
| | - Adina Ciomaga
- Department
of Mathematics, Laboratoire Jacques Louis Lions, Université Paris Diderot, 5 Rue Thomas Mann, Paris 75013, France
| | - Jérôme Gilles
- Department
of Mathematics and Statistics, San Diego State University, San Diego, California 92182, United States
| | - Nichole F. Sullivan
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yang Yang
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Material Science and Engineering, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - David L. Allara
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michael Zharnikov
- Applied
Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Paul S. Weiss
- California
NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, Los
Angeles, California 90095, United States
- Department
of Material Science and Engineering, University of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
6
|
Juffmann T, Ulbricht H, Arndt M. Experimental methods of molecular matter-wave optics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:086402. [PMID: 23907707 DOI: 10.1088/0034-4885/76/8/086402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We describe the state of the art in preparing, manipulating and detecting coherent molecular matter. We focus on experimental methods for handling the quantum motion of compound systems from diatomic molecules to clusters or biomolecules.Molecular quantum optics offers many challenges and innovative prospects: already the combination of two atoms into one molecule takes several well-established methods from atomic physics, such as for instance laser cooling, to their limits. The enormous internal complexity that arises when hundreds or thousands of atoms are bound in a single organic molecule, cluster or nanocrystal provides a richness that can only be tackled by combining methods from atomic physics, chemistry, cluster physics, nanotechnology and the life sciences.We review various molecular beam sources and their suitability for matter-wave experiments. We discuss numerous molecular detection schemes and give an overview over diffraction and interference experiments that have already been performed with molecules or clusters.Applications of de Broglie studies with composite systems range from fundamental tests of physics up to quantum-enhanced metrology in physical chemistry, biophysics and the surface sciences.Nanoparticle quantum optics is a growing field, which will intrigue researchers still for many years to come. This review can, therefore, only be a snapshot of a very dynamical process.
Collapse
|
8
|
Korte S, Romanyuk K, Schnitzler B, Cherepanov V, Voigtländer B, Filimonov SN. Selective adsorption of C60 on Ge/Si nanostructures. PHYSICAL REVIEW LETTERS 2012; 108:116101. [PMID: 22540490 DOI: 10.1103/physrevlett.108.116101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Indexed: 05/31/2023]
Abstract
Selective adsorption of C60 on nanoscale Ge areas can be achieved, while neighboring Si(111) areas remain uncovered, if the whole surface is initially terminated by Bi. Fullerene chemisorption is found at Bi vacancies which form due to partial thermal desorption of the Bi surfactant. The growth rate and temperature dependence of the C60 adsorption were measured using scanning tunneling microscopy and are described consistently by a rate equation model. The selectivity of the C60 adsorption can be traced back to an easier vacancy formation in the Bi layer on top of the Ge areas compared to the Si areas. Furthermore, it is also possible to desorb C60 from Ge areas, allowing the use of C60 as a resist on the nanoscale.
Collapse
Affiliation(s)
- Stefan Korte
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|