1
|
Arita R, Koretsune T, Sakai S, Akashi R, Nomura Y, Sano W. Nonempirical Calculation of Superconducting Transition Temperatures in Light-Element Superconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28060417 DOI: 10.1002/adma.201602421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Indexed: 02/05/2023]
Abstract
Recent progress in the fully nonempirical calculation of the superconducting transition temperature (Tc ) is reviewed. Especially, this study focuses on three representative light-element high-Tc superconductors, i.e., elemental Li, sulfur hydrides, and alkali-doped fullerides. Here, it is discussed how crucial it is to develop the beyond Migdal-Eliashberg (ME) methods. For Li, a scheme of superconducting density functional theory for the plasmon mechanism is formulated and it is found that Tc is dramatically enhanced by considering the frequency dependence of the screened Coulomb interaction. For sulfur hydrides, it is essential to go beyond not only the static approximation for the screened Coulomb interaction, but also the constant density-of-states approximation for electrons, the harmonic approximation for phonons, and the Migdal approximation for the electron-phonon vertex, all of which have been employed in the standard ME calculation. It is also shown that the feedback effect in the self-consistent calculation of the self-energy and the zero point motion considerably affect the calculation of Tc . For alkali-doped fullerides, the interplay between electron-phonon coupling and electron correlations becomes more nontrivial. It has been demonstrated that the combination of density functional theory and dynamical mean field theory with the ab initio downfolding scheme for electron-phonon coupled systems works successfully. This study not only reproduces the experimental phase diagram but also obtains a unified view of the high-Tc superconductivity and the Mott-Hubbard transition in the fullerides. The results for these high-Tc superconductors will provide a firm ground for future materials design of new superconductors.
Collapse
Affiliation(s)
- Ryotaro Arita
- RIKEN Center for Emergent Matter Science, Wako, Saitama, 351-0198, Japan
- JST ERATO Isobe Degenerate π-Integration Project, Advanced Institute for Materials Research, Tohoku University, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Takashi Koretsune
- RIKEN Center for Emergent Matter Science, Wako, Saitama, 351-0198, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Shiro Sakai
- RIKEN Center for Emergent Matter Science, Wako, Saitama, 351-0198, Japan
| | - Ryosuke Akashi
- Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Nomura
- Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay, F-91128, Palaiseau, France
| | - Wataru Sano
- RIKEN Center for Emergent Matter Science, Wako, Saitama, 351-0198, Japan
- Department of Applied Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
2
|
Nomura Y, Sakai S, Capone M, Arita R. Exotic s-wave superconductivity in alkali-doped fullerides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:153001. [PMID: 26974650 DOI: 10.1088/0953-8984/28/15/153001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Alkali-doped fullerides (A3C60 with A = K, Rb, Cs) show a surprising phase diagram, in which a high transition-temperature (Tc) s-wave superconducting state emerges next to a Mott insulating phase as a function of the lattice spacing. This is in contrast with the common belief that Mott physics and phonon-driven s-wave superconductivity are incompatible, raising a fundamental question on the mechanism of the high-Tc superconductivity. This article reviews recent ab initio calculations, which have succeeded in reproducing comprehensively the experimental phase diagram with high accuracy and elucidated an unusual cooperation between the electron-phonon coupling and the electron-electron interactions leading to Mott localization to realize an unconventional s-wave superconductivity in the alkali-doped fullerides. A driving force behind the exotic physics is unusual intramolecular interactions, characterized by the coexistence of a strongly repulsive Coulomb interaction and a small effectively negative exchange interaction. This is realized by a subtle energy balance between the coupling with the Jahn-Teller phonons and Hund's coupling within the C60 molecule. The unusual form of the interaction leads to a formation of pairs of up- and down-spin electrons on the molecules, which enables the s-wave pairing. The emergent superconductivity crucially relies on the presence of the Jahn-Teller phonons, but surprisingly benefits from the strong correlations because the correlations suppress the kinetic energy of the electrons and help the formation of the electron pairs, in agreement with previous model calculations. This confirms that the alkali-doped fullerides are a new type of unconventional superconductors, where the unusual synergy between the phonons and Coulomb interactions drives the high-Tc superconductivity.
Collapse
Affiliation(s)
- Yusuke Nomura
- Department of Applied Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|
4
|
Burkhart GJ, Meingast C. High-resolution thermal expansion of superconducting fullerides A3C60 (A=K,Rb). PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 54:R6865-R6868. [PMID: 9984400 DOI: 10.1103/physrevb.54.r6865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
5
|
Zimmer G, Thier K, Mehring M, Rachdi F, Fischer JE. 87Rb NMR and the T' problem in Rb3C60. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 53:5620-5625. [PMID: 9984170 DOI: 10.1103/physrevb.53.5620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
6
|
Crespi VH, Cohen ML. Scattering mechanisms in Rb-doped single-crystal C60. PHYSICAL REVIEW. B, CONDENSED MATTER 1995; 52:3619-3623. [PMID: 9981488 DOI: 10.1103/physrevb.52.3619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|