Lee DU, Kim DH, Choi DH, Kim SW, Lee HS, Yoo KH, Kim TW. Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots.
OPTICS EXPRESS 2016;
24:A350-A357. [PMID:
26832587 DOI:
10.1364/oe.24.00a350]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CdSe/CdS/ZnS core-shell-shell quantum dots (QDs) were synthesized by using a solution process. High-resolution transmission electron microscopy images and energy dispersive spectroscopy profiles confirmed that stoichiometric CdSe/CdS/ZnS core-shell-shell QDs were formed. Ultraviolet-visible absorption and photoluminescence (PL) spectra of CdSe/CdS/ZnS core-shell-shell QDs showed the dominant excitonic transitions from the ground electronic subband to the ground hole subband (1S(e)-1S(3/2)(h)). The PL mechanism is suggested; the carriers generated by the exciting high-energy photons in the shell region are relaxed to the band-edge states of the core region and recombined to emit lower-energy photons. The activation energy of the carriers confined in the CdSe/CdS/ZnS core-shell-shell QDs, as obtained from temperature-dependent PL spectra, was 200 meV. The quantum efficiency of the CdSe/CdS/ZnS core-shell-shell QDs at 300 K was estimated to be approximately 57%.
Collapse