Salmon OR, Crokidakis N, Nobre FD. Multicritical behavior in a random-field Ising model under a continuous-field probability distribution.
JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009;
21:056005. [PMID:
21817311 DOI:
10.1088/0953-8984/21/5/056005]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A random-field Ising model that is capable of exhibiting a rich variety of multicritical phenomena, as well as a smearing of such behavior, is investigated. The model consists of an infinite-range-interaction Ising ferromagnet in the presence of a triple Gaussian random magnetic field, which is defined as a superposition of three Gaussian distributions with the same width σ, centered at H = 0 and H = ± H(0), with probabilities p and (1-p)/2, respectively. Such a distribution is very general and recovers, as limiting cases, the trimodal, bimodal and Gaussian probability distributions. In particular, the special case of the random-field Ising model in the presence of a trimodal probability distribution (limit [Formula: see text]) is able to present a rather nontrivial multicritical behavior. It is argued that the triple Gaussian probability distribution is appropriate for a physical description of some diluted antiferromagnets in the presence of a uniform external field, for which the corresponding physical realization consists of an Ising ferromagnet under random fields whose distribution appears to be well represented in terms of a superposition of two parts, namely a trimodal and a continuous contribution. The model is investigated by means of the replica method, and phase diagrams are obtained within the replica-symmetric solution, which is known to be stable for the present system. A rich variety of phase diagrams is presented, with one or two distinct ferromagnetic phases, continuous and first-order transition lines, tricritical, fourth-order, critical end points and many other interesting multicritical phenomena. Additionally, the present model carries the possibility of destroying such multicritical phenomena due to an increase in the randomness, i.e. increasing σ, which represents a very common feature in real systems.
Collapse