Abstract
The high-temperature copper oxide superconductors are of fundamental and enduring interest. They not only manifest superconducting transition temperatures inconceivable 15 years ago, but also exhibit many other properties apparently incompatible with conventional metal physics. The materials expand our notions of what is possible, and compel us to develop new experimental techniques and theoretical concepts. This article provides a perspective on recent developments and their implications for our understanding of interacting electrons in metals.
Collapse