Li W, Lu X, Wu J, Srivastava A. Optical control of the valley Zeeman effect through many-exciton interactions.
NATURE NANOTECHNOLOGY 2021;
16:148-152. [PMID:
33257895 DOI:
10.1038/s41565-020-00804-0]
[Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Charge carriers in two-dimensional transition metal dichalcogenides (TMDs), such as WSe2, have their spin and valley-pseudospin locked into an optically addressable index that is proposed as a basis for future information processing1,2. The manipulation of this spin-valley index, which carries a magnetic moment3, requires tuning its energy. This is typically achieved through an external magnetic field (B), which is practically cumbersome. However, the valley-contrasting optical Stark effect achieves valley control without B, but requires large incident powers4,5. Thus, other efficient routes to control the spin-valley index are desirable. Here we show that many-body interactions among interlayer excitons (IXs) in a WSe2/MoSe2 heterobilayer (HBL) induce a steady-state valley Zeeman splitting that corresponds to B ≈ 6 T. This anomalous splitting, present at incident powers as low as microwatts, increases with power and is able to enhance, suppress or even flip the sign of a B-induced splitting. Moreover, the g-factor of valley Zeeman splitting can be tuned by ~30% with incident power. In addition to valleytronics, our results could prove helpful to achieve optical non-reciprocity using two-dimensional materials.
Collapse