1
|
Min B, Anto-Sztrikacs N, Brenes M, Segal D. Bath-Engineering Magnetic Order in Quantum Spin Chains: An Analytic Mapping Approach. PHYSICAL REVIEW LETTERS 2024; 132:266701. [PMID: 38996288 DOI: 10.1103/physrevlett.132.266701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 07/14/2024]
Abstract
Dissipative processes can drive different magnetic orders in quantum spin chains. Using a nonperturbative analytic mapping framework, we systematically show how to structure different magnetic orders in spin systems by controlling the locality of the attached baths. Our mapping approach reveals analytically the impact of spin-bath couplings, leading to the suppression of spin splittings, bath dressing and mixing of spin-spin interactions, and emergence of nonlocal ferromagnetic interactions between spins coupled to the same bath, which become long ranged for a global bath. Our general mapping method can be readily applied to a variety of spin models: we demonstrate (i) a bath-induced transition from antiferromagnetic (AFM) to ferromagnetic ordering in a Heisenberg spin chain, (ii) AFM to extended Neel phase ordering within a transverse-field Ising chain with pairwise couplings to baths, and (iii) a quantum phase transition in the fully connected Ising model. Our method is nonperturbative in the system-bath coupling. It holds for a variety of non-Markovian baths and it can be readily applied towards studying bath-engineered phases in frustrated or topological materials.
Collapse
Affiliation(s)
- Brett Min
- Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, 60 Saint George Street, Toronto, Ontario, M5S 1A7, Canada
| | | | - Marlon Brenes
- Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, 60 Saint George Street, Toronto, Ontario, M5S 1A7, Canada
| | - Dvira Segal
- Department of Physics and Centre for Quantum Information and Quantum Control, University of Toronto, 60 Saint George Street, Toronto, Ontario, M5S 1A7, Canada
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
2
|
Zeng Y, Crépel V, Millis AJ. Keldysh Field Theory of Dynamical Exciton Condensation Transitions in Nonequilibrium Electron-Hole Bilayers. PHYSICAL REVIEW LETTERS 2024; 132:266001. [PMID: 38996303 DOI: 10.1103/physrevlett.132.266001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 07/14/2024]
Abstract
Recent experiments have realized steady-state electrical injection of interlayer excitons in electron-hole bilayers subject to a large bias voltage. In the ideal case in which interlayer tunneling is negligibly weak, the system is in quasiequilibrium with a reduced effective band gap. Interlayer tunneling introduces a current and drives the system out of equilibrium. In this work we derive a nonequilibrium field theory description of interlayer excitons in biased electron-hole bilayers. In the large bias limit, we find that p-wave interlayer tunneling reduces the effective band gap and increases the effective temperature for intervalley excitons. We discuss possible experimental implications for InAs/GaSb quantum wells and transition metal dichalcogenide bilayers.
Collapse
Affiliation(s)
- Yongxin Zeng
- Department of Physics, Columbia University, New York, New York 10027, USA
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
3
|
Begg SE, Hanai R. Quantum Criticality in Open Quantum Spin Chains with Nonreciprocity. PHYSICAL REVIEW LETTERS 2024; 132:120401. [PMID: 38579202 DOI: 10.1103/physrevlett.132.120401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/26/2023] [Accepted: 02/20/2024] [Indexed: 04/07/2024]
Abstract
We investigate the impact of nonreciprocity on universality and critical phenomena in open quantum interacting many-body systems. Nonreciprocal open quantum systems often have an exotic spectral sensitivity to boundary conditions, known as the Liouvillian skin effect (LSE). By considering an open quantum XXZ spin chain that exhibits LSE, we demonstrate the existence of a universal scaling regime that is not affected by the presence of the LSE. We resolve the critical exponents, which differ from those of free fermions, via tensor network methods and demonstrate that observables exhibit a universal scaling collapse, irrespective of the reciprocity. We find that the LSE only becomes relevant when a healing length scale ξ_{heal} at the system's edge (which is different from the localization length of the eigenstate of the Liouvillian) exceeds the system size, allowing edge properties to dominate the physics. We expect this result to be a generic feature of nonreciprocal models in the vicinity of a critical point. The driven-dissipative quantum criticality we observe has no classical analog and stems from the existence of multiple dark states.
Collapse
Affiliation(s)
- Samuel E Begg
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Korea
| | - Ryo Hanai
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Korea
- Center for Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Kazemi J, Weimer H. Driven-Dissipative Rydberg Blockade in Optical Lattices. PHYSICAL REVIEW LETTERS 2023; 130:163601. [PMID: 37154665 DOI: 10.1103/physrevlett.130.163601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023]
Abstract
While dissipative Rydberg gases exhibit unique possibilities to tune dissipation and interaction properties, very little is known about the quantum many-body physics of such long-range interacting open quantum systems. We theoretically analyze the steady state of a van der Waals interacting Rydberg gas in an optical lattice based on a variational treatment that also includes long-range correlations necessary to describe the physics of the Rydberg blockade, i.e., the inhibition of neighboring Rydberg excitations by strong interactions. In contrast to the ground state phase diagram, we find that the steady state undergoes a single first order phase transition from a blockaded Rydberg gas to a facilitation phase where the blockade is lifted. The first order line terminates in a critical point when including sufficiently strong dephasing, enabling a highly promising route to study dissipative criticality in these systems. In some regimes, we also find good quantitative agreement of the phase boundaries with previously employed short-range models, however, with the actual steady states exhibiting strikingly different behavior.
Collapse
Affiliation(s)
- Javad Kazemi
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
| | - Hendrik Weimer
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany and Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36 EW 7-1, 10623 Berlin, Germany
| |
Collapse
|
5
|
Starchl E, Sieberer LM. Relaxation to a Parity-Time Symmetric Generalized Gibbs Ensemble after a Quantum Quench in a Driven-Dissipative Kitaev Chain. PHYSICAL REVIEW LETTERS 2022; 129:220602. [PMID: 36493426 DOI: 10.1103/physrevlett.129.220602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The construction of the generalized Gibbs ensemble, to which isolated integrable quantum many-body systems relax after a quantum quench, is based upon the principle of maximum entropy. In contrast, there are no universal and model-independent laws that govern the relaxation dynamics and stationary states of open quantum systems, which are subjected to Markovian drive and dissipation. Yet, as we show, relaxation of driven-dissipative systems after a quantum quench can, in fact, be determined by a maximum entropy ensemble, if the Liouvillian that generates the dynamics of the system has parity-time symmetry. Focusing on the specific example of a driven-dissipative Kitaev chain, we show that, similar to isolated integrable systems, the approach to a parity-time symmetric generalized Gibbs ensemble becomes manifest in the relaxation of local observables and the dynamics of subsystem entropies. In contrast, the directional pumping of fermion parity, which is induced by nontrivial non-Hermitian topology of the Kitaev chain, represents a phenomenon that is unique to relaxation dynamics in driven-dissipative systems. Upon increasing the strength of dissipation, parity-time symmetry is broken at a finite critical value, which thus constitutes a sharp dynamical transition that delimits the applicability of the principle of maximum entropy. We show that these results, which we obtain for the specific example of the Kitaev chain, apply to broad classes of noninteracting fermionic models, and we discuss their generalization to a noninteracting bosonic model and an interacting spin chain.
Collapse
Affiliation(s)
- Elias Starchl
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas M Sieberer
- Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Marino J. Universality Class of Ising Critical States with Long-Range Losses. PHYSICAL REVIEW LETTERS 2022; 129:050603. [PMID: 35960567 DOI: 10.1103/physrevlett.129.050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
We show that spatial resolved dissipation can act on d-dimensional spin systems in the Ising universality class by qualitatively modifying the nature of their critical points. We consider power-law decaying spin losses with a Lindbladian spectrum closing at small momenta as ∝q^{α}, with α a positive tunable exponent directly related to the power-law decay of the spatial profile of losses at long distances, 1/r^{(α+d)}. This yields a class of soft modes asymptotically decoupled from dissipation at small momenta, which are responsible for the emergence of a critical scaling regime ascribable to the nonunitary counterpart of the universality class of long-range interacting Ising models. For α<1 we find a nonequilibrium critical point ruled by a dynamical field theory described by a Langevin model with coexisting inertial (∼∂_{t}^{2}) and frictional (∼∂_{t}) kinetic coefficients, and driven by a gapless Markovian noise with variance ∝q^{α} at small momenta. This effective field theory is beyond the Halperin-Hohenberg description of dynamical criticality, and its critical exponents differ from their unitary long-range counterparts. Our Letter lays out perspectives for a revision of universality in driven open systems by employing dark states tailored by programmable dissipation.
Collapse
Affiliation(s)
- Jamir Marino
- Institut für Physik, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030, USA
| |
Collapse
|
7
|
Singh VP, Weimer H. Driven-Dissipative Criticality within the Discrete Truncated Wigner Approximation. PHYSICAL REVIEW LETTERS 2022; 128:200602. [PMID: 35657854 DOI: 10.1103/physrevlett.128.200602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
We present an approach to the numerical simulation of open quantum many-body systems based on the semiclassical framework of the discrete truncated Wigner approximation. We establish a quantum jump formalism to integrate the quantum master equation describing the dynamics of the system, which we find to be exact in both the noninteracting limit and the limit where the system is described by classical rate equations. We apply our method to simulation of the paradigmatic dissipative Ising model, where we are able to capture the critical fluctuations of the system beyond the level of mean-field theory.
Collapse
Affiliation(s)
- Vijay Pal Singh
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
- Zentrum für Optische Quantentechnologien and Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hendrik Weimer
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
| |
Collapse
|
8
|
Rose DC, Macieszczak K, Lesanovsky I, Garrahan JP. Hierarchical classical metastability in an open quantum East model. Phys Rev E 2022; 105:044121. [PMID: 35590670 DOI: 10.1103/physreve.105.044121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
We study in detail an open quantum generalization of a classical kinetically constrained model-the East model-known to exhibit slow glassy dynamics stemming from a complex hierarchy of metastable states with distinct lifetimes. Using the recently introduced theory of classical metastability for open quantum systems, we show that the driven open quantum East model features a hierarchy of classical metastabilities at low temperature and weak driving field. We find that the effective long-time description of its dynamics not only is classical, but shares many properties with the classical East model, such as obeying an effective detailed balance condition and lacking static interactions between excitations, but with this occurring within a modified set of metastable phases which are coherent, and with an effective temperature that is dependent on the coherent drive.
Collapse
Affiliation(s)
- Dominic C Rose
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Katarzyna Macieszczak
- TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Ave., Cambridge CB3 0HE, United Kingdom
| | - Igor Lesanovsky
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
9
|
Luo D, Chen Z, Carrasquilla J, Clark BK. Autoregressive Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation. PHYSICAL REVIEW LETTERS 2022; 128:090501. [PMID: 35302809 DOI: 10.1103/physrevlett.128.090501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/19/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The theory of open quantum systems lays the foundation for a substantial part of modern research in quantum science and engineering. Rooted in the dimensionality of their extended Hilbert spaces, the high computational complexity of simulating open quantum systems calls for the development of strategies to approximate their dynamics. In this Letter, we present an approach for tackling open quantum system dynamics. Using an exact probabilistic formulation of quantum physics based on positive operator-valued measure, we compactly represent quantum states with autoregressive neural networks; such networks bring significant algorithmic flexibility due to efficient exact sampling and tractable density. We further introduce the concept of string states to partially restore the symmetry of the autoregressive neural network and improve the description of local correlations. Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator using a forward-backward trapezoid method and find the steady state via a variational formulation. Our approach is benchmarked on prototypical one-dimensional and two-dimensional systems, finding results which closely track the exact solution and achieve higher accuracy than alternative approaches based on using Markov chain Monte Carlo method to sample restricted Boltzmann machines. Our Letter provides general methods for understanding quantum dynamics in various contexts, as well as techniques for solving high-dimensional probabilistic differential equations in classical setups.
Collapse
Affiliation(s)
- Di Luo
- Department of Physics, University of Illinois at Urbana-Champaign, Illinois 61801, USA
- IQUIST and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Zhuo Chen
- Department of Physics, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Juan Carrasquilla
- Vector Institute for Artificial Intelligence, MaRS Centre, Toronto, Ontario, Canada
- Department of Physics and Astronomy, University of Waterloo, Ontario N2L 3G1,Canada
| | - Bryan K Clark
- Department of Physics, University of Illinois at Urbana-Champaign, Illinois 61801, USA
- IQUIST and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Illinois 61801, USA
- NCSA Center for Artificial Intelligence Innovation, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| |
Collapse
|
10
|
Sen A, Sen D, Sengupta K. Analytic approaches to periodically driven closed quantum systems: methods and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:443003. [PMID: 34359051 DOI: 10.1088/1361-648x/ac1b61] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
We present a brief overview of some of the analytic perturbative techniques for the computation of the Floquet Hamiltonian for a periodically driven, or Floquet, quantum many-body system. The key technical points about each of the methods discussed are presented in a pedagogical manner. They are followed by a brief account of some chosen phenomena where these methods have provided useful insights. We provide an extensive discussion of the Floquet-Magnus (FM) expansion, the adiabatic-impulse approximation, and the Floquet perturbation theory. This is followed by a relatively short discourse on the rotating wave approximation, a FM resummation technique and the Hamiltonian flow method. We also provide a discussion of some open problems which may possibly be addressed using these methods.
Collapse
Affiliation(s)
- Arnab Sen
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S C Mullick Road, Jadavpur 700032, India
| | - Diptiman Sen
- Center for High Energy Physics and Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - K Sengupta
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S C Mullick Road, Jadavpur 700032, India
| |
Collapse
|
11
|
Shapiro DS. Transport of pseudothermal photons through an anharmonic cavity. Sci Rep 2021; 11:8328. [PMID: 33859246 PMCID: PMC8050331 DOI: 10.1038/s41598-021-87536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/31/2021] [Indexed: 11/14/2022] Open
Abstract
Under nonequilibrium conditions, quantum optical systems reveal unusual properties that might be distinct from those in condensed matter. The fundamental reason is that photonic eigenstates can have arbitrary occupation numbers, whereas in electronic systems these are limited by the Pauli principle. Here, we address the steady-state transport of pseudothermal photons between two waveguides connected through a cavity with Bose–Hubbard interaction between photons. One of the waveguides is subjected to a broadband incoherent pumping. We predict a continuous transition between the regimes of Lorentzian and Gaussian chaotic light emitted by the cavity. The rich variety of nonequilibrium transport regimes is revealed by the zero-frequency noise. There are three limiting cases, in which the noise-current relation is characterized by a power-law, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S\propto J^\gamma$$\end{document}S∝Jγ. The Lorentzian light corresponds to Breit-Wigner-like transmission and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma =2$$\end{document}γ=2. The Gaussian regime corresponds to many-body transport with the shot noise (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma =1$$\end{document}γ=1) at large currents; at low currents, however, we find an unconventional exponent \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma =3/2$$\end{document}γ=3/2 indicating a nontrivial interplay between multi-photon transitions and incoherent pumping. The nonperturbative solution for photon dephasing is obtained in the framework of the Keldysh field theory and Caldeira-Leggett effective action. These findings might be relevant for experiments on photon blockade in superconducting qubits, thermal states transfer, and photon statistics probing.
Collapse
Affiliation(s)
- Dmitriy S Shapiro
- Dukhov Research Institute of Automatics (VNIIA), Moscow, Russia, 127055. .,Department of Physics, National Research University Higher School of Economics, Moscow, Russia, 101000. .,Laboratory of Superconducting Metamaterials, National University of Science and Technology MISiS, Moscow, Russia, 119049. .,V. A. Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia, 125009.
| |
Collapse
|
12
|
Yang Z, Yang Q, Hu J, Liu DE. Dissipative Floquet Majorana Modes in Proximity-Induced Topological Superconductors. PHYSICAL REVIEW LETTERS 2021; 126:086801. [PMID: 33709754 DOI: 10.1103/physrevlett.126.086801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/27/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
We study a realistic Floquet topological superconductor, a periodically driven nanowire proximitized to an equilibrium s-wave superconductor. Because of the strong energy and density fluctuations caused by the superconducting proximity effect, the Floquet Majorana wire becomes dissipative. We show that the Floquet band structure is still preserved in this dissipative system. In particular, we find that the Floquet Majorana zero and π modes can no longer be simply described by the Floquet topological band theory. We also propose an effective model to simplify the calculation of the lifetime of these Floquet Majoranas and find that the lifetime can be engineered by the external driving field.
Collapse
Affiliation(s)
- Zhesen Yang
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qinghong Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Jiangping Hu
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- South Bay Interdisciplinary Science Center, Dongguan, Guangdong 523808, China
| | - Dong E Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Frontier Science Center for Quantum Information, Beijing 100184, China
| |
Collapse
|
13
|
Lieu S, Belyansky R, Young JT, Lundgren R, Albert VV, Gorshkov AV. Symmetry Breaking and Error Correction in Open Quantum Systems. PHYSICAL REVIEW LETTERS 2020; 125:240405. [PMID: 33412027 DOI: 10.1103/physrevlett.125.240405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Symmetry-breaking transitions are a well-understood phenomenon of closed quantum systems in quantum optics, condensed matter, and high energy physics. However, symmetry breaking in open systems is less thoroughly understood, in part due to the richer steady-state and symmetry structure that such systems possess. For the prototypical open system-a Lindbladian-a unitary symmetry can be imposed in a "weak" or a "strong" way. We characterize the possible Z_{n} symmetry-breaking transitions for both cases. In the case of Z_{2}, a weak-symmetry-broken phase guarantees at most a classical bit steady-state structure, while a strong-symmetry-broken phase admits a partially protected steady-state qubit. Viewing photonic cat qubits through the lens of strong-symmetry breaking, we show how to dynamically recover the logical information after any gap-preserving strong-symmetric error; such recovery becomes perfect exponentially quickly in the number of photons. Our study forges a connection between driven-dissipative phase transitions and error correction.
Collapse
Affiliation(s)
- Simon Lieu
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Ron Belyansky
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Jeremy T Young
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Rex Lundgren
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Victor V Albert
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
- Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Alexey V Gorshkov
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
14
|
Dutta S, Cooper NR. Long-Range Coherence and Multiple Steady States in a Lossy Qubit Array. PHYSICAL REVIEW LETTERS 2020; 125:240404. [PMID: 33412034 DOI: 10.1103/physrevlett.125.240404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
We show that a simple experimental setting of a locally pumped and lossy array of two-level quantum systems can stabilize states with strong long-range coherence. Indeed, by explicit analytic construction, we show there is an extensive set of steady-state density operators, from minimally to maximally entangled, despite this being an interacting open many-body problem. Such nonequilibrium steady states arise from a hidden symmetry that stabilizes Bell pairs over arbitrarily long distances, with unique experimental signatures. We demonstrate a protocol by which one can selectively prepare these states using dissipation. Our findings are accessible in present-day experiments.
Collapse
Affiliation(s)
- Shovan Dutta
- T. C. M. Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Nigel R Cooper
- T. C. M. Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
15
|
Lundgren R, Gorshkov AV, Maghrebi MF. Nature of the nonequilibrium phase transition in the non-Markovian driven Dicke model. PHYSICAL REVIEW. A 2020; 102:10.1103/PhysRevA.102.032218. [PMID: 34136732 PMCID: PMC8204515 DOI: 10.1103/physreva.102.032218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Dicke model famously exhibits a phase transition to a superradiant phase with a macroscopic population of photons and is realized in multiple settings in open quantum systems. In this paper, we study a variant of the Dicke model where the cavity mode is lossy due to the coupling to a Markovian environment while the atomic mode is coupled to a colored bath. We analytically investigate this model by inspecting its low-frequency behavior via the Schwinger-Keldysh field theory and carefully examine the nature of the corresponding superradiant phase transition. Integrating out the fast modes, we can identify a simple effective theory allowing us to derive analytical expressions for various critical exponents including the dynamical exponent. We find excellent agreement with previous numerical results when the non-Markovian bath is at zero temperature; however, contrary to these studies, our low-frequency approach reveals that the same exponents govern the critical behavior when the colored bath is at finite temperature unless the chemical potential is zero. Furthermore, we show that the superradiant phase transition is classical in nature, while it is genuinely nonequilibrium. We derive a fractional Langevin equation and conjecture the associated fractional Fokker-Planck equation that captures the system's long-time memory as well as its nonequilibrium behavior. Finally, we consider finite-size effects at the phase transition and identify the finite-size scaling exponents, unlocking a rich behavior in both statics and dynamics of the photonic and atomic observables.
Collapse
Affiliation(s)
- Rex Lundgren
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, College Park, Maryland 20742, USA
| | - Alexey V Gorshkov
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and University of Maryland, College Park, Maryland 20742, USA
| | - Mohammad F Maghrebi
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
16
|
Young JT, Gorshkov AV, Foss-Feig M, Maghrebi MF. Nonequilibrium Fixed Points of Coupled Ising Models. PHYSICAL REVIEW. X 2020; 10:10.1103/physrevx.10.011039. [PMID: 33364075 PMCID: PMC7756198 DOI: 10.1103/physrevx.10.011039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Driven-dissipative systems are expected to give rise to nonequilibrium phenomena that are absent in their equilibrium counterparts. However, phase transitions in these systems generically exhibit an effectively classical equilibrium behavior in spite of their nonequilibrium origin. In this paper, we show that multicritical points in such systems lead to a rich and genuinely nonequilibrium behavior. Specifically, we investigate a driven-dissipative model of interacting bosons that possesses two distinct phase transitions: one from a high- to a low-density phase-reminiscent of a liquid-gas transition-and another to an antiferromagnetic phase. Each phase transition is described by the Ising universality class characterized by an (emergent or microscopic) ℤ 2 symmetry. However, they coalesce at a multicritical point, giving rise to a nonequilibrium model of coupled Ising-like order parameters described by a ℤ 2 × ℤ 2 symmetry. Using a dynamical renormalization-group approach, we show that a pair of nonequilibrium fixed points (NEFPs) emerge that govern the long-distance critical behavior of the system. We elucidate various exotic features of these NEFPs. In particular, we show that a generic continuous scale invariance at criticality is reduced to a discrete scale invariance. This further results in complex-valued critical exponents and spiraling phase boundaries, and it is also accompanied by a complex Liouvillian gap even close to the phase transition. As direct evidence of the nonequilibrium nature of the NEFPs, we show that the fluctuation-dissipation relation is violated at all scales, leading to an effective temperature that becomes "hotter" and "hotter" at longer and longer wavelengths. Finally, we argue that this nonequilibrium behavior can be observed in cavity arrays with cross-Kerr nonlinearities.
Collapse
Affiliation(s)
- Jeremy T. Young
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Alexey V. Gorshkov
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Michael Foss-Feig
- United States Army Research Laboratory, Adelphi, Maryland 20783, USA
| | - Mohammad F. Maghrebi
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
17
|
Vicentini F, Biella A, Regnault N, Ciuti C. Variational Neural-Network Ansatz for Steady States in Open Quantum Systems. PHYSICAL REVIEW LETTERS 2019; 122:250503. [PMID: 31347877 DOI: 10.1103/physrevlett.122.250503] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 06/10/2023]
Abstract
We present a general variational approach to determine the steady state of open quantum lattice systems via a neural-network approach. The steady-state density matrix of the lattice system is constructed via a purified neural-network Ansatz in an extended Hilbert space with ancillary degrees of freedom. The variational minimization of cost functions associated to the master equation can be performed using a Markov chain Monte Carlo sampling. As a first application and proof of principle, we apply the method to the dissipative quantum transverse Ising model.
Collapse
Affiliation(s)
- Filippo Vicentini
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013, Paris, France
| | - Alberto Biella
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013, Paris, France
| | - Nicolas Regnault
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Sorbonne Paris Cité, F-75005, Paris, France
| | - Cristiano Ciuti
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013, Paris, France
| |
Collapse
|
18
|
Rota R, Minganti F, Ciuti C, Savona V. Quantum Critical Regime in a Quadratically Driven Nonlinear Photonic Lattice. PHYSICAL REVIEW LETTERS 2019; 122:110405. [PMID: 30951358 DOI: 10.1103/physrevlett.122.110405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 06/09/2023]
Abstract
We study an array of coupled optical cavities in the presence of two-photon driving and dissipation. The system displays a critical behavior similar to that of a quantum Ising model at finite temperature. Using the corner-space renormalization method, we compute the steady-state properties of finite lattices of varying size, both in one and two dimensions. From a finite-size scaling of the average of the photon number parity, we highlight the emergence of a critical point in regimes of small dissipations, belonging to the quantum Ising universality class. For increasing photon loss rates, a departure from this universal behavior signals the onset of a quantum critical regime, where classical fluctuations induced by losses compete with long-range quantum correlations.
Collapse
Affiliation(s)
- Riccardo Rota
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Fabrizio Minganti
- Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, CNRS-UMR 7162, 75013 Paris, France
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Cristiano Ciuti
- Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, CNRS-UMR 7162, 75013 Paris, France
| | - Vincenzo Savona
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Kilda D, Keeling J. Fluorescence Spectrum and Thermalization in a Driven Coupled Cavity Array. PHYSICAL REVIEW LETTERS 2019; 122:043602. [PMID: 30768317 DOI: 10.1103/physrevlett.122.043602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/04/2018] [Indexed: 06/09/2023]
Abstract
We calculate the fluorescence spectra of a driven lattice of coupled cavities. To do this, we extend methods of evaluating two-time correlations in infinite lattices to open quantum systems; this allows access to momentum-resolved fluorescence spectrum. We illustrate this for a driven-dissipative transverse-field anisotropic XY model. By studying the fluctuation-dissipation theorem, we find the emergence of a quasithermalized steady state with a temperature dependent on system parameters; for blue-detuned driving, we show this effective temperature is negative. In the low excitation density limit, we compare these numerical results to analytical spin-wave theory, providing an understanding of the form of the distribution function and the origin of quasithermalization.
Collapse
Affiliation(s)
- Dainius Kilda
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Jonathan Keeling
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
| |
Collapse
|
20
|
Zhu HJ, Zhang GF, Zhuang L, Liu WM. Universal Dissipationless Dynamics in Gaussian Continuous-Variable Open Systems. PHYSICAL REVIEW LETTERS 2018; 121:220403. [PMID: 30547620 DOI: 10.1103/physrevlett.121.220403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 06/09/2023]
Abstract
We investigate the universal dissipationless dynamics of Gaussian continuous-variable systems in the presence of a band-gapped bosonic environment. Our results show that environmental band gaps can induce localized modes, which give rise to the dissipationless dynamics where the system behaves as free oscillators instead of experiencing a full decay in the long-time limit. We present a complete characterization of localized modes and show the existence of the critical system-environment coupling. Beyond the critical values, localized modes can be produced, and the system dynamics become dissipationless. This novel dynamics can be utilized to overcome the environmental noises and protect the quantum resources in the continuous-variable quantum information.
Collapse
Affiliation(s)
- Han-Jie Zhu
- School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
| | - Guo-Feng Zhang
- School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
| | - Lin Zhuang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wu-Ming Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
21
|
Raghunandan M, Wrachtrup J, Weimer H. High-Density Quantum Sensing with Dissipative First Order Transitions. PHYSICAL REVIEW LETTERS 2018; 120:150501. [PMID: 29756853 DOI: 10.1103/physrevlett.120.150501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 06/08/2023]
Abstract
The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is proportional to sqrt[N]. However, interactions invariably occurring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of the master equation describing the open quantum many-body system, we establish the existence of a dissipative first order transition that can be used for quantum sensing. We investigate the properties of this phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed using current experimental technology. Finally, we show that quantum sensors based on dissipative phase transitions are particularly robust against imperfections such as disorder or decoherence, with the sensitivity of the sensor not being limited by the T_{2} coherence time of the device. Our results can readily be applied to other applications in quantum sensing and quantum metrology where interactions are currently a limiting factor.
Collapse
Affiliation(s)
- Meghana Raghunandan
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
| | - Jörg Wrachtrup
- 3. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Hendrik Weimer
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
| |
Collapse
|
22
|
Foss-Feig M, Young JT, Albert VV, Gorshkov AV, Maghrebi MF. Solvable Family of Driven-Dissipative Many-Body Systems. PHYSICAL REVIEW LETTERS 2017; 119:190402. [PMID: 29219530 PMCID: PMC6467283 DOI: 10.1103/physrevlett.119.190402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 05/28/2023]
Abstract
Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.
Collapse
Affiliation(s)
- Michael Foss-Feig
- United States Army Research Laboratory, Adelphi, Maryland 20783, USA
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Jeremy T Young
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Victor V Albert
- Yale Quantum Institute and Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Alexey V Gorshkov
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Mohammad F Maghrebi
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
23
|
Foss-Feig M, Niroula P, Young JT, Hafezi M, Gorshkov AV, Wilson RM, Maghrebi MF. Emergent equilibrium in many-body optical bistability. PHYSICAL REVIEW. A 2017; 95:10.1103/PhysRevA.95.043826. [PMID: 31093586 PMCID: PMC6513354 DOI: 10.1103/physreva.95.043826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many-body systems constructed of quantum-optical building blocks can now be realized in experimental platforms ranging from exciton-polariton fluids to ultracold Rydberg gases, establishing a fascinating interface between traditional many-body physics and the driven-dissipative, nonequilibrium setting of cavity QED. At this interface, the standard techniques and intuitions of both fields are called into question, obscuring issues as fundamental as the role of fluctuations, dimensionality, and symmetry on the nature of collective behavior and phase transitions. Here, we study the driven-dissipative Bose-Hubbard model, a minimal description of numerous atomic, optical, and solid-state systems in which particle loss is countered by coherent driving. Despite being a lattice version of optical bistability, a foundational and patently nonequilibrium model of cavity QED, the steady state possesses an emergent equilibrium description in terms of a classical Ising model. We establish this picture by making new connections between traditional techniques from many-body physics (functional integrals) and quantum optics (the system-size expansion). To lowest order in a controlled expansion-organized around the experimentally relevant limit of weak interactions-the full quantum dynamics reduces to nonequilibrium Langevin equations, which support a phase transition described by model A of the Hohenberg-Halperin classification. Numerical simulations of the Langevin equations corroborate this picture, revealing that canonical behavior associated with the Ising model manifests readily in simple experimental observables.
Collapse
Affiliation(s)
- M Foss-Feig
- United States Army Research Laboratory, Adelphi, Maryland 20783, USA
- Joint Quantum Institute, NIST and University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA
| | - P Niroula
- Joint Quantum Institute, NIST and University of Maryland, College Park, Maryland 20742, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - J T Young
- Joint Quantum Institute, NIST and University of Maryland, College Park, Maryland 20742, USA
| | - M Hafezi
- Joint Quantum Institute, NIST and University of Maryland, College Park, Maryland 20742, USA
- Department of Electrical and Computer Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - A V Gorshkov
- Joint Quantum Institute, NIST and University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA
| | - R M Wilson
- Department of Physics, United States Naval Academy, Annapolis, Maryland 21402, USA
| | - M F Maghrebi
- Joint Quantum Institute, NIST and University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
24
|
Overbeck VR, Maghrebi MF, Gorshkov AV, Weimer H. Multicritical behavior in dissipative Ising models. PHYSICAL REVIEW. A 2017; 95:10.1103/PhysRevA.95.042133. [PMID: 31093585 PMCID: PMC6513333 DOI: 10.1103/physreva.95.042133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We analyze theoretically the many-body dynamics of a dissipative Ising model in a transverse field using a variational approach. We find that the steady-state phase diagram is substantially modified compared to its equilibrium counterpart, including the appearance of a multicritical point belonging to a different universality class. Building on our variational analysis, we establish a field-theoretical treatment corresponding to a dissipative variant of a Ginzburg-Landau theory, which allows us to compute the upper critical dimension of the system. Finally, we present a possible experimental realization of the dissipative Ising model using ultracold Rydberg gases.
Collapse
Affiliation(s)
- Vincent R. Overbeck
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
| | - Mohammad F. Maghrebi
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Alexey V. Gorshkov
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Hendrik Weimer
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
| |
Collapse
|
25
|
Rose DC, Macieszczak K, Lesanovsky I, Garrahan JP. Metastability in an open quantum Ising model. Phys Rev E 2016; 94:052132. [PMID: 27967090 DOI: 10.1103/physreve.94.052132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 06/06/2023]
Abstract
We apply a recently developed theory for metastability in open quantum systems to a one-dimensional dissipative quantum Ising model. Earlier results suggest this model features either a nonequilibrium phase transition or a smooth but sharp crossover, where the stationary state changes from paramagnetic to ferromagnetic, accompanied by strongly intermittent emission dynamics characteristic of first-order coexistence between dynamical phases. We show that for a range of parameters close to this transition or crossover point the dynamics of the finite system displays pronounced metastability, i.e., the system relaxes first to long-lived metastable states before eventual relaxation to the true stationary state. From the spectral properties of the quantum master operator we characterize the low-dimensional manifold of metastable states, which are shown to be probability mixtures of two, paramagnetic and ferromagnetic, metastable phases. We also show that for long times the dynamics can be approximated by a classical stochastic dynamics between the metastable phases that is directly related to the intermittent dynamics observed in quantum trajectories and thus the dynamical phases.
Collapse
Affiliation(s)
- Dominic C Rose
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Katarzyna Macieszczak
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Igor Lesanovsky
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
26
|
Sieberer LM, Buchhold M, Diehl S. Keldysh field theory for driven open quantum systems. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:096001. [PMID: 27482736 DOI: 10.1088/0034-4885/79/9/096001] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.
Collapse
Affiliation(s)
- L M Sieberer
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | | |
Collapse
|
27
|
Marcuzzi M, Buchhold M, Diehl S, Lesanovsky I. Absorbing State Phase Transition with Competing Quantum and Classical Fluctuations. PHYSICAL REVIEW LETTERS 2016; 116:245701. [PMID: 27367395 DOI: 10.1103/physrevlett.116.245701] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 06/06/2023]
Abstract
Stochastic processes with absorbing states feature examples of nonequilibrium universal phenomena. While the classical regime has been thoroughly investigated in the past, relatively little is known about the behavior of these nonequilibrium systems in the presence of quantum fluctuations. Here, we theoretically address such a scenario in an open quantum spin model which, in its classical limit, undergoes a directed percolation phase transition. By mapping the problem to a nonequilibrium field theory, we show that the introduction of quantum fluctuations stemming from coherent, rather than statistical, spin flips alters the nature of the transition such that it becomes first order. In the intermediate regime, where classical and quantum dynamics compete on equal terms, we highlight the presence of a bicritical point with universal features different from the directed percolation class in a low dimension. We finally propose how this physics could be explored within gases of interacting atoms excited to Rydberg states.
Collapse
Affiliation(s)
- Matteo Marcuzzi
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Michael Buchhold
- Institut für Theoretische Physik, Universität zu Köln, D-50937 Cologne, Germany
| | - Sebastian Diehl
- Institut für Theoretische Physik, Universität zu Köln, D-50937 Cologne, Germany
| | - Igor Lesanovsky
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
28
|
Wilson RM, Mahmud KW, Hu A, Gorshkov AV, Hafezi M, Foss-Feig M. Collective phases of strongly interacting cavity photons. PHYSICAL REVIEW. A 2016; 94:10.1103/PhysRevA.94.033801. [PMID: 31098434 PMCID: PMC6515917 DOI: 10.1103/physreva.94.033801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We study a coupled array of coherently driven photonic cavities, which maps onto a driven-dissipative XY spin- 1 2 model with ferromagnetic couplings in the limit of strong optical nonlinearities. Using a site-decoupled mean-field approximation, we identify steady-state phases with canted antiferromagnetic order, in addition to limit cycle phases, where oscillatory dynamics persist indefinitely. We also identify collective bistable phases, where the system supports two steady states among spatially uniform, antiferromagnetic, and limit cycle phases. We compare these mean-field results to exact quantum trajectory simulations for finite one-dimensional arrays. The exact results exhibit short-range antiferromagnetic order for parameters that have significant overlap with the mean-field phase diagram. In the mean-field bistable regime, the exact quantum dynamics exhibits real-time collective switching between macroscopically distinguishable states. We present a clear physical picture for this dynamics and establish a simple relationship between the switching times and properties of the quantum Liouvillian.
Collapse
Affiliation(s)
- Ryan M Wilson
- Department of Physics, The United States Naval Academy, Annapolis, Maryland 21402, USA
- Kavli Institute of Theoretical Physics, Santa Barbara, California 93106, USA
| | - Khan W Mahmud
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Anzi Hu
- Department of Physics, American University, Washington, DC 20016, USA
| | - Alexey V Gorshkov
- Kavli Institute of Theoretical Physics, Santa Barbara, California 93106, USA
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Mohammad Hafezi
- Kavli Institute of Theoretical Physics, Santa Barbara, California 93106, USA
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Department of Electrical Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Michael Foss-Feig
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- United States Army Research Laboratory, Adelphi, Maryland 20783, USA
| |
Collapse
|